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The growth of data throughput in optical microscopy has triggered the extensive use of 

supervised learning (SL) models on compressed datasets for automated analysis. Investigating 

the effects of image compression on SL predictions is therefore pivotal to assess their reliability, 

especially for clinical use. 

We quantify the statistical distortions induced by compression through the comparison of 

predictions on compressed data to the raw predictive uncertainty, numerically estimated from 

the raw noise statistics measured via sensor calibration. Predictions on cell segmentation 

parameters are altered by up to 15% and more than 10 standard deviations after 16-to-8 bits 

pixel depth reduction and 10:1 JPEG compression. JPEG formats with higher compression 

ratios show significantly larger distortions. Interestingly, a recent metrologically accurate 
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algorithm, offering up to 10:1 compression ratio, provides a prediction spread equivalent to that 

stemming from raw noise. The method described here allows to set a lower bound to the 

predictive uncertainty of a SL task and can be generalized to determine the statistical distortions 

originated from a variety of processing pipelines in AI-assisted fields. 

 

In the last years, an ever-growing community of optical microscopists is facing a massive data 

throughput, long-term storage costs, data transfer limitations and, more importantly, the need for 

automated quantitative data analysis, which has paved the way for extensive use of artificial 

intelligence (AI) methods. Supervised learning (SL) algorithms are routinely adopted to automate 

classification, segmentation, and artificial labelling of cellular or sub-cellular structures1,2,3, biological 

tissues4,5,6, as well as material defects7,8,9. SL approaches have reported remarkable results in various 

fields, such as medical screening10,11, single molecule localization12,13 and drug discovery14,15. Deep-

learning (DL)  algorithms have also been successfully employed for micrograph restoration, in 

particular for de-noising and spatial resolution enhancement16,17,18. 

However, to deal with large training datasets and computational power constraints, SL models are 

ubiquitously executed on compressed imaging datasets. Despite producing visually faithful images, 

lossy compression algorithms are known to remove an unpredictable amount of information from the 

raw image. Moreover, compressed data often undergo additional processing before being used to train 

or test a SL model. Therefore, image compression can modify SL predictions with respect to when 

raw datasets are used and lead to unreliable scientific outcomes, based on how much the statistical 

distribution of the final predictions is altered. For this reason, the statistical distortions induced by 

compression need to be quantified to investigate the tolerability of image compression methods for SL 

applications. 

To this end, it is crucial to measure the statistical distribution of the SL outcomes in the absence of 

compression, in other terms the prediction uncertainty associated to raw data. According to Begoli et 

al19, the lifecycle of an AI process from the physical sample to the AI-assisted decisions is affected by 

multiple sources of uncertainty. Understanding how image compression affects the statistical 

distribution of SL outcomes can be ascribed to investigating the representational uncertainty of the AI 
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pipeline, consisting in errors due to the data representation adopted for training or testing the SL 

model. 

Here, we propose a method for quantifying the statistical distortions induced by compression in SL 

predictions. We first determine the predictive uncertainty in a SL-based optical microscopy 

application from the statistical noise of raw imaging data. Raw noise is measured via sensor 

calibration. As raw noise is unavoidable, our approach allows one to estimate the minimal level of 

representational uncertainty in SL predictions. Then, we compare outcomes obtained on compressed 

datasets to the raw predictive uncertainty by using a specific figure of merit, that will indicate the level 

of alteration of the SL outcomes statistics. 

We implement this method to investigate the impact of image compression on the outcomes of cell 

segmentation tasks. To this end, we will consider three types of operations aimed at reducing data 

volume: pixel depth reduction, JPEG compression, as well as a metrologically accurate compression 

technique developed by the Dotphoton (DP) company (www.dotphoton.com). The DP method reports 

compression ratios from 5:1 to 10:1 after an initial image preparation step, in which image noise is 

replaced with a pseudo-random noise that closely mimics the statistical distribution of the raw pixel 

values. Although the noise replacement reduces the signal-to-noise ratio of each pixel by 1.2 dB, it 

allows to achieve high compression factors, as the pseudo-noise can be computed and makes the 

subsequent application of a standard lossless compression algorithm more efficient20.  

Results 

Raw data statistical noise 

Raw data, typically obtained through a digitization operation on a physical sample via an acquisition 

instrument, are intrinsically affected by the noise associated with the acquisition process. When an 

optical sensor is used, raw data variability is mainly provided by the quantum noise of the photons 

hitting the sensor, as well as by the electronic noise21. Hence, if one performs a sample acquisition 

under stabilized illumination conditions, as shown in Figure 1a, the acquired raw images are not 

identical and the raw pixel values display a statistical distribution of average µ and width s (the 

standard deviation associated to the per-pixel noise). 
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Raw statistics could be in principle determined by repeating and averaging the acquisition of the same 

image several times. However, these tests are often hard to be carried out in a microscopy laboratory, 

because of sample variability, non-stationary illumination conditions, mechanical instabilities, as well 

as computational limitations.  

Sensor calibration and measurement of statistical distortions of SL predictions 

The first step of our method consists in calibrating the microscope’s imaging sensor to determine an 

accurate mapping between light intensities and per-pixel noise. This is performed by sending to the 

sensor variable intensities from a homogeneous and controlled light source (see Supplementary 

Material).  

Secondly, using the sensor-dependent calibration data (Figure 1b), statistically raw-equivalent images 

are numerically generated from a single raw image by replacing the original pixel value with a random 

one satisfying the raw pixel value statistical distribution (Figure 1c). By testing a previously trained 

SL model on the synthetic images (Figure 1e), the prediction spread σ!"#	associated to a certain 

parameter χ can be determined similarly to a Monte-Carlo simulation. 

As a final step, we evaluate whether image compression (Figure 1d) leads to predictions exceeding the 

original predictive uncertainty σ!"#. To this end, the difference between the values of a parameter χ 

without (χ!"#) and with compression (χ$) is compared to σ!"# by using, as a figure of merit, the 

standard score defined as 

𝜖 =
%!"#	'	%$

(!"#
 . 

A standard score ϵ such that |ϵ| < 1 indicates that the statistical variability of SL predictions is smaller 

than that stemming from the natural noise of raw micrographs, defining therefore a general criterion 

for tolerability of statistical distortions induced by compression. 
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Figure 1 Quantification of the statistical distortions induced by image compression on SL 

predictions  

 

2D cell segmentation  

To demonstrate our method, we perform SL-based cellular segmentation tasks on 2-dimensional (2D) 

image datasets, obtained through phase-contrast (PC) microscopy, as well as 3-dimensional (3D) 

datasets obtained via light-sheet (LS) microscopy and optical projection tomography (OPT). By 

increasing the dimensionality of the raw dataset, we aim at observing how the complexification of raw 

data noise impacts the SL predictive uncertainty.  

We first consider a cell segmentation task on PC images of microspheres, as well as mouse kidney 

collecting duct (MPK) cells. A random forest (RF) algorithm22, taking decisions on the basis of 

morphological spatial features, is trained via a manual pixel-based labelling performed on a raw 

image. After producing a segmentation map, we estimate parameters related to the whole image, as 

well as specific to single segmented objects. After calibration of the acquisition camera, we 

numerically generate a set of 10 statistically raw-equivalent images and determine the predictive 

uncertainty σ!"#	of the considered parameters as the standard deviation of the values obtained with 

this dataset.  The segmented mask obtained from an image of microspheres is shown in Figure 2a. In 

Figure 2d, we compare the total number of objects Ntot and the total segmented area Atot predicted 
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from the raw image with those obtained from the corresponding 7:1 DP, 8-bit, 10:1 and 100:1 JPEG 

file. The difference in Ntot with respect to the raw value is in all cases less than 1% (𝜖 ≈ 1). In 

contrast, the predicted value of Atot in the 8-bit and JPEG cases (𝜖 > 50) shows a 2% deviation with 

respect to the raw result, while only 0.1% variation in the DP case (𝜖 = −2). 

We then perform a similar analysis on 19 different morphological parameters estimated for each 

segmented object (area, coordinates of the center of mass (XCM, YCM), perimeter, major axis, minor 

axis, ellipsoid angle, circularity, Feret, Feret X, Feret Y, Feret angle, Minimum Feret, aspect ratio, 

roundness, solidity, Feret aspect ratio, compactness, and extent)23. The inset of Figure 2b shows a 

linear trend between the single-object area estimated from the raw (Araw) and the DP (ADP) mask. The 

groups of points accumulating along the diagonal correspond to aggregates of microspheres. The mean 

and the standard deviation of the distribution of the difference in the single-object area (∆A) obtained 

from the synthetic raw-equivalent images with respect to the raw ones is in good agreement with the 

one obtained for the DP format. However, a clear shift of around 3 pixels and a larger spread of the 

distribution of ∆A is observed in the 8-bit and JPEG cases (Figure 2c and Table 1).  

In Figure 2e, we plot the standard scores 𝜖 for all parameters averaged over all objects. All scores for 

the DP format are close to zero and have standard deviations (indicated by error bars) of the order of 1, 

showing that alterations induced by the DP compression can be considered statistically equivalent to 

those produced by the intrinsic noise of the raw images. In contrast, the distribution of the standard 

scores is larger than the [-1,1] interval, in some cases of up to 10 standard deviations, with mean 

values far from 0 for almost all parameters in the 8-bit and JPEG cases. These results imply that 

predictions on the 8-bit and JPEG files exceed the predictive uncertainty provided by the raw 

statistical noise. Statistical distortions of predictions on JPEG files are similar to the 8-bit case when 

the 10:1 factor is used and deviate dramatically (more than 10 standard deviations for almost all 

parameters) from the raw ones as the compression ratio increases.  

The same analysis is performed on a PC micrograph of MPK cells with high confluence and high 

mean pixel intensity (Figure 2f). In these experimental conditions, the good agreement between the 

DP and the raw results is confirmed. We observe a 1-2% deviation in the values of Atot and Ntot in the 

8-bit and 10:1 JPEG cases (Figure 2g). As concerns the single object parameters (Figure 2h), the 
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statistical equivalence of processing results on raw and DP data is confirmed despite the more 

complex cell spatial configuration. In contrast, predictions on single-object parameters are 

significantly altered in the 8-bit pixel depth and JPEG cases. This effect turns out to be more relevant 

for the MPK cells than for the microspheres image, probably because of the presence of larger spatial 

frequencies, such that more information is lost for the same compression ratio. 

 

 

Figure 2 Statistical distortions induced by compression in 2D segmentation tasks in PC 

microscopy 

 𝜇)* (nr pixels) 𝜎)*	(nr pixels) 

Synthetic raw-equivalent images 0.1 1.1 

DP -0.1 1.0 

8 bits 3.0 3.4 

10:1 JPEG 3.1 3.4 

100:1 JPEG 2.9 10.3 

 

Table 1 Distribution of the difference in the area of the single objects segmented in the PC 

microspheres image with respect to the raw outcomes (Figure 2c) 

 

3D cell segmentation  
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We then challenge our method on more complex segmentation tasks involving 3D datasets produced 

by LS microscopy and OPT.  

By using of a RF voxel classification algorithm, we perform segmentation of neuronal nuclei in a 

portion of a mouse brain after c-fos antibody staining, imaged by a mesoscale Selective Plane 

Illumination LS Microscope (mesoSPIM) (Figure 3a, b, c)24 and providing a 4.3 GB raw dataset. To 

obtain the 3D segmented volumes, a threshold criterion is applied to the 3D probability map obtained 

from the trained ML model. We perform these tests only with the DP method (7.3:1 compression 

ratio), and 8-bit down-sampling, as JPEG formats are not generally utilized in these fields. 

As shown in Figure 3f, the number of segmented nuclei Ntot (around 190’000), as well as the total 

segmented volume Vtot and surface area SAtot calculated from the DP dataset, display a discrepancy of 

0.1-0.2% with respect to the values obtained from the raw segmented 3D image (𝜖 = −1.6, −0.9, −0.1 

for Ntot, Vtot and SAtot respectively) and are perfectly compatible with the spread shown by the 

synthetic images. In contrast, for all global parameters, the 8-bit conversion provides 15-20% 

discrepancy, much larger than in the 2D case (𝜖 = 366, 87, 9 for Ntot, Vtot and SAtot respectively). 

The 2D histogram in Figure 3d compares the volume in voxels of each single object identified in the 

raw (Vraw) and in the DP dataset (VDP). To identify the same corresponding objects in the two datasets, 

especially those not having the same center coordinates after segmentation, an association based on 

the minimal Euclidean distance is performed. The accumulation of points along the diagonal of the 

histogram in Figure 3d reveals the agreement of the predictions obtained with the raw and the DP 

datasets. The distribution of single-volume differences DV with respect to the raw outcomes (Figure 

3g and Table 2), obtained from the synthetic raw files is in good agreement with that provided by the 

DP stack. Interestingly, the 8-bit conversion alters the distribution of DV in a more dramatic way 

compared to the 2D case (Figure 3e), confirming the results obtained for the global parameters. The 8-

bit conversion seems affecting the action of the morphological operators used in the SL algorithm in a 

more complex way with respect to the 2D case (Table 2). This effect is probably due to the higher 

noise correlation existing between the different slices of the 3D LS microscopy dataset. 
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Figure 3 Statistical distortions induced by compression in 3D segmentation tasks in light-sheet 

microscopy 

 𝜇)+ (nr voxels) 𝜎)+	(nr voxels) 

Synthetic raw-equivalent images 0.1 2.7 

DP -0.1 2.2 

8 bits 7.3 6.4 

 

Table 2 Distribution of the difference in the volume of the single objects segmented in the LS 3D 

image with respect to the raw outcomes (Figure 3g) 

 

 

We then adopt our compression tolerability method on a pre-clinical application, based on the 

estimation of amyloidosis in a middle-aged mouse brain affected by Alzheimer’s disease via Optical 

Projection Tomography (OPT) imaging. OPT is well suited to image mesoscopic centimeter-sized 

biological specimens, such as organs, and represents the optical equivalent of computed tomography: 

fluorescent projection images are captured at different angles around the specimen and the 3D image 

of the organ is reconstructed via a Filtered Back Projection (FBP) algorithm using an inverse Radon 

transform (Figure 4a, b, c)25. Compared to the segmentation performed on LS microscopy data, an 
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image reconstruction step is introduced before the AI testing, making more complex the propagation 

of the original noise of the raw projections through the AI pipeline. To obtain the amyloid plaques 

segmentation mask on the raw and compressed 3D images, we adopt the same RF algorithm used for 

the LS microscopy data to classify every voxel of the reconstructed images and apply a threshold 

criterion on the 3D probability map (namely 0.7 for brain anatomy and 0.5 for amyloid plaques) 

according to a previous study26. A close up of a slice of a reconstructed diseased mouse brain and the 

corresponding plaques segmentation mask are shown in Figure 4d and e, respectively. In this 

experiment, to quantify the SL predictive uncertainty, we simulate a dataset of 10 statistically raw-

equivalent projections of the mouse brain.  

The voxel classifier relies on intensity-based, edge-based, as well as texture operators, computed on 

the 3D image after various levels of Gaussian smoothing. We first compare the results of all operators 

on the raw dataset of 0.5 GB size, the 7.8:1 DP compressed and the 8-bit converted projections 

datasets, by calculating their standard scores averaged over all projection pixels. As shown by Figure 

4f, the averaged standard scores belong for all parameters to the [-1,1] interval in the DP case. In 

contrast, the 8-bit conversion shows in general larger discrepancies for an increasing gaussian 

smoothing. Similar results are found when the considered processing operations are performed after 

the 3D reconstruction (Figure 4g). In this case, the averaged standard scores of the gaussian smoothing 

operators applied over all voxels of the reconstructed 3D images are around 0 because smoothing is 

already performed in the applied FBP algorithm26.  

Finally, we compare the sensitivity of the quantitative analysis of amyloidosis in the mouse brain to 

DP compression and 8-bit conversion. Given the complete 3D prediction map, we compute the values 

of the standard scores for four plaque parameters: the total volume of plaque, the plaque load (the ratio 

of plaque volume to the total organ volume), the total plaque count and the plaque mean volume. The 

results, shown in Figure 4h, indicate that global segmentation parameters are conserved upon DP 

compression. In contrast, the 8-bit conversion provides around 5% deviation with respect to the raw 

values, confirming the alteration of the raw predictions also in this case. 
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Figure 4 Statistical distortions induced by compression in 3D segmentation of amyloid Alzheimer 

plaques imaged via optical projection tomography 

 

Discussion 

In this work, we show the statistical nature of the distortions induced by image compression on the 

outcomes of SL tasks in optical microscopy. We present an experimental method capable of 

quantifying these statistical distortions, relying on determining the SL predictive uncertainty from the 

intrinsic statistical noise of raw data. As raw noise is unavoidable, our approach sets a lower bound to 

the predictive uncertainty in SL-assisted decision-making processes. 

We show that 16-to-8 bits pixel depth reduction and JPEG compression can alter SL outcomes by 

more than 10 standard deviations. Interestingly, these distortions are more relevant in 3D applications: 

the use of 8-bit conversion brings to 5% and 15% prediction change in OPT and LS datasets 

segmentation, respectively, exceeding raw predictions by many standard deviations. The different 

distortions in the two 3D cases are probably related to the different propagation of the raw data noise 

through the processing pipeline. In contrast, we observe that alterations induced by the DP 
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compression can be considered as statistically equivalent to those provided by the raw noise in both 

2D and 3D cases. By respecting the raw pixel value statistics and providing compressed images with 

size reduced by a factor up to 10, the DP image format represents a valuable solution to computational 

and data management challenges associated to computer-vision automated tasks in microscopy. 

In this work, we also measure the statistical distortions of the predictions of a pre-clinical cell 

segmentation task in OPT. Our results indicate that the reliability of scientific outcomes obtained in 

diagnostic applications can be compromised by image compression in a non-negligible way. Finally, 

our work highlights the importance to preserve raw pixel value statistics in image processing pipelines 

to achieve the minimum prediction spread for an AI model. We expect our method to be generalizable 

to any field where acquisition devices can be calibrated and raw data are processed before AI use. 
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Figure legends 

 

Figure 1 Quantification of the statistical distortions induced by image compression on SL 

predictions  

a Raw imaging data from a microscope are intrinsically affected by noise: pixel values in a raw 

micrograph (in the figure a PC image of human neural stem cells (scale bar: 100 µm)) have a 

statistical distribution of width s and mean µ. This is shown by the plot of the relative error (RE) of 

the single pixel values obtained from 1000 acquired images at the corresponding light intensity 

(insets). b, c Via calibration data of the acquisition sensor, statistically raw-equivalent unprocessed 

images (with same s and µ) are generated. d Image compression is performed on raw data: the 

differences between the 8-bit, 10:1 JPEG, 7:1 DP compressed formats and the raw image (D), 

normalized to the per-pixel noise s (D/s), indicate the artifacts induced by compression on the original 

image. The displayed image portions correspond to the dotted rectangle in a. e A pre-trained SL model 

(based in our work on a Random Forest algorithm), producing cell segmentation masks, is tested on 

the statistically raw-equivalent synthetic data to determine the standard deviation σ!"#	associated to a 

certain parameter χ,-.. The model also predicts a value of the considered parameter from the 

compressed data χ$. To verify the statistical impact of image compression, the value of χ$	 is compared 

to χ!"#	via the standard score 𝜖 =
%!"#	'	%$

(!"#
. If |ϵ| > 1, SL predictions on the compressed image 

exceed the statistical variability stemming from raw data noise. 

 

Figure 2 Statistical distortions induced by compression in 2D segmentation tasks in PC 

microscopy 

a Micrograph of microspheres (scale bar: 20 µm) with corresponding segmentation mask. b Area of 

each segmented object obtained from the raw (Araw) and the corresponding 6.7:1 DP compressed 

image (ADP) for all objects. c Histogram of the difference in the single object area (DA) determined 

from the raw and the statistically raw-equivalent images (Araw – Asynt raw), the DP (Araw - ADP), the 8-bit 



 14 

(Araw – A8bit), the 10:1 JPEG (Araw – A10:1 JPEG) and the 100:1 JPEG file (Araw – A100:1 JPEG). d Values of 

the parameters associated to the whole segmented image, such as number of objects and total 

segmented area, obtained from the DP, the 8-bit and the JPEG segmented images and normalized to 

the raw value. The error bars on the raw values are calculated from the standard deviation of the 

values obtained from the synthetic raw images. e Average of the standard score ϵ of 19 parameters 

associated to the single segmented objects. f PC Micrograph of MPK cells (scale bar: 50 µm) with 

segmentation mask, down-sampled to 8-bits and compressed into 6.1:1 DP, 10:1 and 100:1 JPEG 

formats. g, h Same as d and e for the MPK cells. 

 

Figure 3 Statistical distortions induced by compression in 3D segmentation tasks in light-sheet 

microscopy 

a 3D light-sheet image composed of 550 slices from a portion of a mouse brain obtained after c-fos 

staining performed to identify neuronal nuclei (1 voxel = 5.26 µm x 5.26 µm x 5 µm = 138 µm3). b 

Single slice of the 3D image (scale bar: 1 mm) c Corresponding segmentation mask. d, e 2D histogram 

comparing the volume of the same objects in the raw (Vraw) and the 7.3:1 DP 3D compressed image 

(VDP) (d), as well as the 8-bit 3D image (V8 bits) (e). f Values of the parameters associated to the whole 

segmented image, such as the number of objects, total segmented volume and surface area, obtained 

from the DP and 8-bit segmented image, normalized to the raw value. The error bars on the raw values 

are calculated from the standard deviation of the values obtained from the synthetic 3D images. g 

Histogram of the difference in the single object volume (DV) calculated from the raw and the 

statistically raw-equivalent images (Vraw – Vsynt raw), the DP (Vraw - VDP), and the 8-bit 3D image (Vraw – 

V8bit).  

 

Figure 4 Statistical distortions induced by compression in 3D segmentation of amyloid Alzheimer 

plaques imaged via optical projection tomography 

a-c Typical OPT pipeline. Fluorescent projections of an organ at different angles are used to 

reconstruct its 3D image via an inverse Radon transform. Transverse slices are used for physiological 
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analysis (scale bar: 1 mm). d Close-up of a reconstructed slice showing amyloid plaque deposition in 

the mice brain. e Segmented mask of amyloid plaques (scale bar: 300 μm). f, g Plot of the single pixel 

standard scores of four image-processing operators for different sizes of the Gaussian-smoothing 

kernel calculated on projections (f) and reconstructed slices (g) obtained from the 7.8:1 DP 

compressed and the 8-bit converted 3D image. h Normalized values of amyloid plaque characteristics 

associated to the whole dataset, obtained from the raw (red), the DP compressed (blue) and the 8-bit 

converted datasets (green). The error bars on the raw values are determined via the synthetic 

statistically raw-equivalent 3D images.  
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Methods 

PC  

For PC microscopy measurements, we used two inverted PC microscopes (Axiovert 40C and Axiovert 

25, Carl Zeiss Jena GmbH) equipped with 5x, 10x and 20x objectives and a calibrated CMOS camera 

(CM3-U3-31S4M-CS, Sony). Samples of carboxylate microspheres of 500 nm diameter 

(Polysciences) were obtained by deposing 5 μL of an aqueous solution with a concentration of 3.6·108 

particles/mL on a 170 μm thick glass slide. After solvent evaporation, PMMA at 0.1g/mL was added 

to the sample, then centrifugated and dried. Microspheres were imaged with a 20x objective and used 

for segmentation tests, as well as for the measurement of the microscope’s point spread function 

(PSF). Two cell lines with variable confluence have been cultured: human neural stem cells (HIP) 

(A3890101, ThermoFisher)27 and mpkCCDC14 mouse kidney collecting duct cells (MPK)28,29. Both 

cell lines were cultured and grown on a cell treated plastic surface at a temperature of 37 °C with an 

air atmosphere enriched with 5% CO2. Micrographs of HIP and MPK cells were obtained with a 10x 

and 20x objective, respectively. For the measurement of the modulation transfer function (MTF), we 

imaged the 1951 USAF test target (R3L3S1P, Thorlabs Inc.) in bright field configuration with the 5x 

objective.  

All segmentation tests on PC images were carried out via the trainable Weka segmentation ImageJ 

plug-in30, using a RF algorithm that produces pixel-based segmentations via a classification performed 

through the following training features: gaussian blur, hessian, sobel filter and difference of gaussians. 

To analyze the segmented masks, we used the “Extended Particle Analyzer” macro of the Biovoxxel 

toolbox in ImageJ23, allowing to analyze the segmented objects according to a large variety of 

morphological parameters, shape descriptors and angle orientations. As the RF model was trained on a 

single 16-bit raw image, the synthetic images and the DP compressed were automatically suited to be 

tested by the model, while the 8-bit and JPEG files needed to be upsampled to 16-bit depth. 
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LS 

For LS microscopy measurements, we used a home-built mesoscale single-plane illumination 

microscope24. This setup consists of a dual-sided excitation path using a fiber-coupled multiline laser 

combiner (405,  488, 561 and 647 nm, Toptica MLE) and a detection path comprising a 42 Olympus 

MVX-10 zoom microscope with a 1x objective (Olympus MVPLAPO 1x), a filter wheel (Ludl 

96A350), and a calibrated scientific CMOS camera (Hamamatsu Orca Flash 4.0 V3). The excitation 

paths also contain galvo scanners for light-sheet generation and reduction of shadow artifacts due to 

absorption of the light-sheet. In addition, the beam waist is scanned using electrically tunable lenses 

(ETL, Optotune EL-16-40-5D-TC-L) synchronized with the rolling shutter of the camera. Sample was 

illuminated by one of the two acquisition paths. Image acquisition was done using custom software 

written in Python 3. Z-stacks were acquired at 5 μm spacing with a zoom set at 1.25X resulting in an 

in-plane pixel size of 5.26 μm (2048x2048 pixels).  Excitation wavelength of the c-fos antibody 

was set at 647 nm with an emission filter LP 663 nm bandpass filter (BrightLine HC, AHF).  

Concerning the sample preparation, mice were perfused with 4% PFA and tissue was post-fixed 

overnight in 4% PFA. Mouse brain were prepared for imaging following the iDISCO procedure 

described by Renier et al.31. To visualize a reporter of neuronal activity (c-fos), a c-fos antibody 

(synaptic System Anti c-Fos CN226003) was used to label the brain 1:2000 (0.25 ug/ml). This was 

coupled to an anti-rabbit Alexa Fluor-647 (far-red spectrum) (5ug/ml). After clearing, brains were 

immersed in a 10 x 20 x 45 mm quartz cuvette filled with DiBenzyl Ether (RI 1.56).  

For PSF measurements, fluorescent Tetraspeck microspheres 0.1 µm were diluted into 1% agarose. 

Excitation wavelength was set at 488 nm with an emission 530/40 nm bandpass filter (BrightLine HC, 

AHF).  

The 3D segmentation tests on c-fos positive neuron nuclei were performed via a voxel classification 

workflow realized via the open-source image analysis software iLastik32. The training step consisted 

of a manual attribution of classes (anatomy, c-fos positive nuclei, background) to a few voxels of a 

reduced 3D volume. The trained algorithm could therefore predict the type of the remaining voxels in 

the full volume. To do so, the software attributed to each voxel a vector of features computed by 

typical image analysis operators and used RF as learning algorithm, where several decision trees were 
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built by randomly picking computed features and searching for proper decision boundaries to separate 

between classes. The output was a 3D probability map where the value of each voxel corresponded to 

the likelihood to be a c-fos positive neuronal nucleus. The final nuclei segmentation was then realized 

by applying a threshold value of 0.5 to the 3D probability map. As done for the 2D segmentation tests, 

the RF model was trained on a single 16-bit raw image stack, while the 8-bit stacks are upsampled to 

16-bit depth. 

OPT  

For OPT measurements, we processed datasets of full intact mouse brains previously studied in 26 

using an SL approach to quantify amyloidosis of an Alzheimer’s disease mouse model. The epi-

fluorescent image projections were acquired with a custom mesoscopic OPT setup consisting of a 

calibrated CMOS camera (ORCA-Flash 4.0 V2, Hamamatsu) coupled to a 300-mm achromat 

objective lens providing 0.5X magnification of the sample33. The sample was mounted on a motorized 

rotation stage allowing for projection acquisitions over 360 degrees by steps of 0.3 or 0.9 degrees in 

approximately five minutes. The sample fluorescent signal was excited by a 420-nm LED light source 

illuminating the whole organ. In this configuration, the OPT setup had an isotropic pixel-limited 

resolution of approximately 50 μm over the whole organ, due to the physical pixel size of the camera. 

Each set of projections (1024x1024x1200 matrix for 1200 projections) were previously saved as 

uncompressed 16-bit stacked .tif files. The 3D reconstruction of the sample was achieved by applying 

a filtered back-projection (FBP)34 to the raw and compressed projection sets with the Matlab iRadon 

function. To do so, we follow the same procedure as previously described in 33. After reconstruction, 

the 3D image volumes were cropped along the three dimensions in order to remove background 

contribution and conserve the brain signal only. The intensity of each voxels was normalized over the 

volume using Fiji35 and its contrast enhancement tool before SL segmentation to accommodate for 

differences in dynamic range.  

The plaque segmentation process relied on the same voxel classification workflow used for the 

segmentation of c-fos positive neuronal nuclei realized with the software iLastik32 on LS datasets. In 

this case, the three classes manually labeled in the training step were plaque, anatomy, and 
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background. 12 slices (2D) from the full mouse brain were manually annotated (brain tissues and 

amyloid plaques), half of them were used to train the RF algorithm, while the other half served as a 

test set. The final plaque segmentation and quantification was then realized by applying a threshold 

value of 0.5 to the 3D plaque probability map. This pipeline was the same as that provided by the 

authors of a previous study26. 
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