Ando H, Nara Y, Kosaka Y, Arai M, Okamoto H. (2016). Neuroprotective effect of nitrite-derived NO in brain injury mediated through the NOS-independent but not the GC/COX/xanthine oxidase/PGIS-dependent pathways. The Kitasato medical journal, 46(1), 67-72.
Artimani T, Karimi J, Mehdizadeh M, Yavangi M, Khanlarzadeh E, Ghorbani M, Asadi S, Kheiripour N. (2018). Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecological endocrinology, 34(2), 148-152.
Az‐Ma T, Fujii K, Yuge O. (1996). Self‐limiting enhancement by nitric oxide of oxygen free radical‐induced endothelial cell injury: evidence against the dual action of NO as hydroxyl radical donor/scavenger. British journal of pharmacology, 119(3), 455-462.
Berlinguer, F., C. Porcu, G. Molle, A. Cabiddu, M. Dattena, M. Gallus, V. Pasciu, S. Succu, F.D. Sotgiu, P. Paliogiannis, S. Sotgia, A.A. Mangoni, A. Gonzalez-Bulnes, C. Carru, and A. Zinellu. 2020. Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses. Animals 10:65.
Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu Ö, Durak, I. (2007). Role of oxidative stress in intrauterine growth restriction. Gynecologic and obstetric investigation, 64(4), 187-192.
Birmani W, Raza A, Nawab A, Tang S, Waseem M, Li G, Xiao M, An L. (2019). Importance of Arginine as Immune Regulator in Animal Nutrition. International Journal, 5(1), 1-10.
Celik E, Taysi S, Sucu S, Ulusal H, Sevincler E, Celik A. (2019). Urotensin 2 and Oxidative Stress Levels in Maternal Serum in Pregnancies Complicated by Intrauterine Growth Restriction. Medicina, 55(7), 328.
Chacher B, Wang D, Liu H, Liu J. (2012). Degradation of L-arginine and N-carbamoyl glutamate and their effect on rumen fermentation in vitro. Italian Journal of Animal Science, 11(4), 4693-4696.
Chacher B, Zhu W, Ye J, Wang D, Liu J. (2014). Effect of dietary N-carbamoylglutamate on milk production and nitrogen utilization in high-yielding dairy cows. Journal of Dairy Science, 97(4), 2338-2345.
Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, Keating CE. Thompson JJ. Verriere TG. Brown RE. (2018). BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal immunology, 11(5), 1363.
Dasgupta T, Hebbel RP, Kaul DK, Medicine. (2006). Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Radic BiolMed, 41(12), 1771-1780.
Dhar I, Dhar A, Wu L, Desai K. (2012). Arginine attenuates methylglyoxal-and high glucose-induced endothelial dysfunction and oxidative stress by an endothelial nitric-oxide synthase-independent mechanism. J Pharmacol Exp Ther, 342(1), 196-204.
El-Hattab AW, Hsu JW, Emrick LT, Wong L-JC, Craigen WJ, Jahoor F, Scaglia F. (2012). Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab, 105(4), 607-614.
Eldem T, Speiser P, Hincal, A. (1991). Optimization of spray-dried and-congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharm Res, 8(1), 47-54.
Fisker S, Jørgensen J, Orskov H, Christiansen J. (1998). l-Arginine and insulin-tolerance tests in the diagnosis of adult growth hormone deficiency: influence of confounding factors. Clinical endocrinology, 48(1), 109-115.
Gao, F., X. Hou, and Y. Liu. 2008. Effect of intrauterine growth restriction on weight and cellularity of gastrointestinal tract in postnatal lambs. Can. J. Anim. Sci. 88:107–112.
Guo Y, Nie H, Xu C, Zhang G, Sun L, Zhang T, Wang Z, Feng X, Wang, F. (2018). Effects of nutrient restriction and arginine treatment on oxidative stress in the ovarian tissue of ewes during the luteal phase. Theriogenology, 113, 127-136.
Gupta P, Narang M, Banerjee B, Basu S. (2004). Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatr, 4(1), 14.
He Q, Tang H, Ren P, Kong X, Wu G, Yin Y, Wang Y. (2011). Dietary supplementation with l-arginine partially counteracts serum metabonome induced by weaning stress in piglets. Journal of proteome research, 10(11), 5214-5221.
Hu L, Peng X, Chen H, Yan C, Liu Y, Xu Q, Fang Z, Lin Y, Xu S, Feng B. (2016). Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. European Journal of Nutrition, 1-13.
Huang, S., N. Li, C. Liu, T. Li, W. Wang, L. Jiang, Z. Li, D. Han, S. Tao, and J. Wang. 2019. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J Microbiol. 57:748–758.
Lee SH. (2015). Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intestinal research, 13(1), 11.
Liang M, Wang Z, Li H, Cai L, Pan J, He H, Wu Q, Tang Y, Ma J, Yang L. (2018). l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food and chemical toxicology, 115, 315-328.
Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M. (2016). Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine, 86, 100-109.
Marseglia L, D'Angelo G, Manti S, Aversa S, Reiter RJ, Antonuccio P, Centorrino A, Romeo C, Impellizzeri P, Gitto E. (2015). Oxidative stress-mediated damage in newborns with necrotizing enterocolitis: a possible role of melatonin. Am J Perinatol, 32(10), 905-909.
Mccoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, Linden DVD. (2013). Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. Springerplus, 2(1), 684.
Meyer, A.M., and J.S. Caton. 2016. Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring. Adv Nutr 7:169–178.
Meyer, A.M., T.L. Neville, J.J. Reed, J.B. Taylor, L.P. Reynolds, D.A. Redmer, C.J. Hammer, K.A. Vonnahme, and J.S. Caton. 2013. Maternal nutritional plane and selenium supply during gestation impact visceral organ mass and intestinal growth and vascularity of neonatal lamb offspring. J Anim Sci 91:2628–2639.
Moncada S, Higgs A. (1993). The L-arginine-nitric oxide pathway. N Engl J Med, 329(27), 2002-2012.
Murphy PM. (2009). How mitochondria produce reactive oxygen species. Biochem. J, 417(1), 1-13.
NRC. 1985. Nutrient requirements of small ruminants: Sheep, goats, cervids and new world camelids. Natl. Acad. Press, Washington, DC.
Nikiforou M, Kemp MW, Van Gorp RH, Saito M, Newnham JP, Reynaert NL, Janssen LEW, Jobe AH, Kallapur SG, Kramer BW. (2016). Selective IL-1α exposure to the fetal gut, lung, and chorioamnion/skin causes intestinal inflammatory and developmental changes in fetal sheep. Laboratory Investigation, 96(1), 69.
Russel A, Doney J, Gunn R. (1969). Subjective assessment of body fat in live sheep. J. Agric. Sci, 72(3), 451-454.
Su W, Zhang H, Ying Z, Li Y, Zhou L, Wang F, Zhang L, Wang T. (2018). Effects of dietary L-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur. J. Nutr, 57(8), 2735-2745.
Suzuki T, Yamamoto M. (2015). Molecular basis of the Keap1–Nrf2 system. Free Radic.Biol. Med, 88, 93-100.
Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med, 45(1), 18-31.
Tokuda S, Yu ASL. (2019). Regulation of Epithelial Cell Functions by the Osmolality and Hydrostatic Pressure Gradients: A Possible Role of the Tight Junction as a Sensor. International journal of molecular sciences, 20(14), 3513.
Wang T, Huo YJ, Shi FX, Xu RJ, Hutz RJ. (2005). Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. 88(1), 66-72.
Wang X, Lin G, Liu C, Feng C, Zhou H, Wang T, Li D, Wu G, Wang J. (2014). Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. J Nutr Biochem, 25(7), 785-795.
Wang X, Qiao S, Yin Y, Yue L, Wang Z, Wu G. (2007). A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J. Nutr, 137(6), 1442-1446.
Wang Y, Zhang L, Zhou G, Liao Z, Ahmad H, Liu W, Wang T. (2012). Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. British Journal of Nutrition, 108(8), 1371-1381.
Weckman AM, McDonald CR, Baxter J-AB, Fawzi WW, Conroy AL, Kain KC. (2019). Perspective: L-arginine and L-citrulline Supplementation in Pregnancy: A Potential Strategy to Improve Birth Outcomes in Low-Resource Settings. Advances in Nutrition, 10(5), 765-777.
Wu GY, Knabe DA, Kim SW. (2004). Arginine nutrition in neonatal pigs. The Journal of nutrition, 134(10), 2783S-2790S.
Xu RJ, Mellor DJ, Birtles MJ, Reynolds GW, Simpson HV. (1994). Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs. 18(2), 231.
Xu X, Chen S, Wang H, Tu Z, Wang S, Wang X, Zhu H. Wang C. Zhu J. Liu Y. (2018). Medium-chain TAG improve intestinal integrity by suppressing toll-like receptor 4, nucleotide-binding oligomerisation domain proteins and necroptosis signalling in weanling piglets challenged with lipopolysaccharide. British Journal of Nutrition, 119(9), 1019-1028.
Yang H, Fu D, Kong X, Wang W, Yang X, Nyachoti C, Yin Y. (2013). Dietary supplementation with N-carbamylglutamate increases the expression of intestinal amino acid transporters in weaned Huanjiang mini-pig piglets. 91(6), 2740-2748.
Yao K, Guan S, Li T, Huang R, Wu G, Ruan Z, Yin Y. (2011). Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br. J. Nutr, 105(5), 703-709.
Yin J, Ren W, Liu G, Duan J, Yang G, Wu L, Li T, Yin Y. (2013b). Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res, 47(12), 1027-1035.
Yin J, Ren W, Wu X, Yang G, Wang J, Li T, Ding J, Cai L, Su D. (2013a). Oxidative stress-mediated signaling pathways: a review. Food Agric. Environ, 11(2), 132-139.
Zeng X, Huang Z, Mao X, Wang J, Wu G, Qiao S. (2012). N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway. PLoS One, 7(7), e41192.
Zhang H, Sun L, Wang Z, Deng M, Zhang G, Guo R, Ma T, Wang F. (2016). Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation ameliorate fetal growth restriction in undernourished ewes. Journal of Animal Science, 94(5), 2072-2085.
Zhang H, Zhao F, Nie H, Ma T, Wang Z, Feng W, Loor J. (2018a). Dietary N-carbamylglutamate and rumen-protected l-arginine supplementation during intrauterine growth restriction in undernourished ewes improve fetal thymus development and immune function. Reproduction Fertility Development, 30(11), 1522-1531.
Zhang H, Dong L, Wang M, Yu L, Wang H. (2018b). Effects of dietary L-arginine and N-carbamylglutamate supplementation on intestinal integrity, immune function and oxidative status in intrauterine growth retarded suckling lambs. J. Agric. Food Chem, 66(16), acs.jafc.8b00726.
Zhang H, Sun H, Peng A, Guo S, Wang M, Loor J, Wang H. (2019a). N-carbamylglutamate and L-arginine promote intestinal function in suckling lambs with intrauterine growth restriction by regulating antioxidant capacity via a nitric oxide–dependent pathway. Food & Function.
Zhang H, Peng A, Yu Y, Guo S, Wang M, Coleman DN, Loor J, Wang H. (2019b). N-Carbamylglutamate and l-Arginine Promote Intestinal Absorption of Amino Acids by Regulating the mTOR Signaling Pathway and Amino Acid and Peptide Transporters in Suckling Lambs with Intrauterine Growth Restriction. The Journal of nutrition, 149(6), 923-932.
Zhang H, Peng A, Guo S, Wang M, Wang H. (2019c). Dietary N-carbamylglutamate and L-arginine supplementation improve intestinal energy status in intrauterine-growth-retarded suckling lambs. Food & Function, 10.
Zhang H, Peng A, Yu Y, Guo S, Wang M, Wang H. (2019d). l-Arginine Protects Ovine Intestinal Epithelial Cells from Lipopolysaccharide-Induced Apoptosis through Alleviating Oxidative Stress. J. Agric. Food Chem, 67(6), 1683-1690.
Zheng P, Song Y, Tian Y, Zhang H, Yu B, He J, Mao X, Yu J, Luo Y, Luo J. (2018). Dietary arginine supplementation affects intestinal function by enhancing antioxidant capacity of a nitric oxide–independent pathway in low-birth-weight piglets. The Journal of nutrition, 148(11), 1751-1759.
Zhu Y, Li T, Huang S, Wang W, Dai Z, Feng C. (2018). Maternal L-glutamine supplementation during late gestation alleviates intrauterine growth restriction-induced intestinal dysfunction in piglets. Amino acids, 50(9), 1289-1299.
Zihni C, Mills C, Matter K, Balda MS. (2016). Tight junctions: from simple barriers to multifunctional molecular gates. Nature reviews Molecular cell biology, 17(9), 564.