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Abstract
Objective: To develop an integrative model with clinical, pathological, and radiomic characteristics to predict the status of microsatellite
instability (MSI) in rectal carcinoma (RC).

Methods: A cohort of 788 RCs with 97 high MSI status (MSI-H) and 691 microsatellite stable status (MSS) were enrolled. The clinical and
pathological characteristics were recorded. The radiomic features were calculated after segmentation of volume of interests and then
patients were divided into the training set and validation set with a random proportion of 7:3. The logistic models of simple clinical
characteristics (LM-Clin), pathological characteristics (LM-Patho), and radiomic features (LM-Radio) were constructed to distinguish MSI-H
from MSS. The relevant radiomic score was calculated. Finally, a integrative nomogram (LM-Nomo) including signi�cant clinical,
pathological characteristics, and radiomics was developed. The area under receiver operator curve (AUC) was calculated to evaluate the
e�cacy of prediction.

Results: The AUC of simple LM-Clin including variables of CEA and hypertension and LM-Patho including characteristics of gross type and
lymph node metastasis ratio (LNR) was 0.584 (95%CI, 0.549-0.619) and 0.585 (95%CI, 0.550-0.619), which was lower than that of LM-Radio
including 12 radiomic features with AUC of 0.737 (95%CI, 0.675-0.799). The LM-Nomo contained CEA, hypertension, LNR, and radiomic
score, and the AUC was 0.757 (95%CI, 0.726-0.787).

Conclusion: The AUCs of LM-Clin and LM-Patho were disappointing and lower than that of LM-Radio. The LM-Nomo demonstrated the best
performance in predicting MSI-H status. 

Background
Colorectal carcinoma (CRC) is one of the most frequently diagnosed cancers and also the leading cause of cancer-related mortality[1]. Rectal
carcinoma (RC) accounts for approximately 29% of newly diagnosed CRC between 2012 to 2016 and is the most common type of CRC in
people younger than 50 years old[2]. The prognosis of CRC depends on the biology and heterogeneity of the tumor[3]. Microsatellite
instability (MSI) is an important biomarker of CRC with prominent diagnosis, prognosis, and prediction signi�cance. Tumors detect loss of
one or more mismatch repair (MMR) proteins testing by immunohistochemistry are considered to be high-MSI (MSI-H)[4]. Whereas those
with intact MMR proteins are expected to be microsatellite stable or low-MSI (MSS or MSI-L). MSI is detected in about 15% of CRC patients
and has emerged as a predictor of patient response to adjuvant chemotherapy[5]. MSI which shared clinicopathological characteristics
distinctly different from the MSS ones has been reported to have a higher prevalence in stage II CRC[6], and a better prognosis[7].

Radiomics extracts the quantitative high-through image data from conventional images which was applied to improve diagnostic and
predictive accuracy[8], is gaining great attention in medical research. Previous studies indicated that computed tomography (CT) based[9] or
magnetic resonance (MR) based[10] radiomics analysis helped to predict MSI status in CRC. To the best of our knowledge, there were only
three articles that studied the MR-based[11, 12] and T2WI-based[13] radiomic signature in predicting MSI phenotype of RCs. However, there
was no CT relevant radiomic analysis in this �eld. It is meant to develop a non-invasive, reproducible CT radiomic approach to evaluate the
MSI-H status of RCs. The purpose of this article was to construct and con�rm an integrative model with clinical, pathological, and radiomics
features to evaluate the status of MSI-H of RCs on the basis of three-phase CT images, preoperatively.

Materials And Methods
This retrospective study was conducted with the permission of the Medical Ethics Committee (No. 2020QT251) and in conformity to the
Declaration of Helsinki. The informed consent was waived for this retrospective study.

Patients selection
There were 1103 patients who pathologically proved to be RCs from January 2015 to January 2021 after searching the surgical database in
our hospital. The inclusion criteria were as follows: (a) patients were pathologically proved to be RCs, including classical adenocarcinoma,
mucous adenocarcinoma, and signet-ring cell carcinoma. (b) all CT examinations were implemented within two weeks before surgeries. (c)
in addition to the tumor occurring in the rectum, the tumors originated from the rectum to the adjacent colon sigmoideum were also
recruited. The exclusion criteria were as follows: (a) patients received preoperative therapy including radiation, chemotherapy, or
chemoradiotherapy. (b) patients with metachronous or recurrent cancer. (c) the lesion occurred in the ascending, descending, and sigmoid
colon. In addition, cancers that originated from the junction of the rectosigmoid belonged to upper rectum carcinoma. (d) patients without
MSI evaluation.
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Finally, a total of 788 patients with 97 MSI-H and 691 MSS were retrospectively enlisted in this analysis.

Clinical and pathological characteristics of RC patients
The baseline clinical variables for analysis included age, gender, body mass index (BMI), CT-displayed long diameter, tumor location (low RC
refers to the lesion within 5cm from anal margin, middle RC refers to the lesion is 5-10cm from anal margin, high RC refers to the lesion is
more than 10cm away from the anal margin), carcinoembryonic antigen (CEA) with threshold values of 5.0µg/L, carbohydrate antigen 19-9
(CA19-9) with threshold values of 37.0 U/mL, the history of smoking, drinking, diabetes, and hypertension. In addition, the tumor originated
from the junction of the rectosigmoid region, and the distance to the anal margin greater than 10cm was classi�ed as high RC.

The pathological variables included gross type (protuberant, in�ltrating, and ulcerative), histological type (classical adenocarcinoma,
mucous adenocarcinoma, and signet-ring cell carcinoma), tumor differentiation degree (well, moderate, and poor), Ki-67-positive cells
expression (67%), T/N/M stage, vascular invasion, perineural invasion, lymph node count (LN), positive lymph node count (PLN), lymph
node metastasis ratio (LNR, LNR=PLN/LN*100%), and liver metastasis.

Evaluation of MSI status
The method of immunohistochemistry was used to test MMR proteins including MLH1, MSH2, MSH6, and PMS2. Tumors displaying a lack
of one or more MMR proteins were collectively classi�ed as defective mismatch repair (dMMR) and expected to be MSI-H, while those with
intact MMR proteins were considered as pro�cient mismatch repair (pMMR) and estimated to be MSS or MSI-L. After referring to the revised
Bethesda guideline for MSI, for clinical purposes, the MSI-L type for CRCs was be revised and categorized as MSS tumors[14]. Therefore, our
study divided all the RC patients into two groups based on the MMR proteins: the MSI-H cohort and the MSS cohort.

CT examination
All the 789 RC patients were conducted three-phase examinations using 64/128 slices CT (Siemens, Somatom De�nition AS). The three-
phase (unenhanced phase, arterial phase, and venous phase) CT examination was achieved by the method of computer-aid bolus tracking
with a dose of 1.3 mL/kg contrast media (iomeperol 350, GE Healthcare) at a rate of 3.0 mL/s via a high-pressure injector. The arterial
phase was scanned after 35s of injection of iomeperol, and the venous phase was followed after 25s of arterial phase. The speci�c
parameters were as follows: 120 Kv of tube voltage, 200 mA of tube current, 360mm �eld of view, 64*0.625mm of collimation, 0.75s of the
rotation time, 5mm of slice and interval thickness, and 300HU of window width, 40HU of window level.

Tumor segmentation and radiomics features selection
All the three-phase CT images were received from our picture archiving and communication system in DICOM format. After the
standardization of original images using the software of “A.K. 3.0.0” (Arti�cial Intelligence Kit, GE Healthcare), the volume of interests (VOIs)
were manually segmented in the software of “itk-SNAP 3.4.0” (http://www.itksnap.org/) by two radiologists with 7 and 10 years of
experience, respectively (Figure 1a,b). The regions of necrosis, intraluminal air, non-invaded rectal wall, vessel, and peri-rectal fat were
eliminated from contours of VOIs.

Then the radiomic features of tumors were automatically calculated by A.K. software. The intraclass correlation coe�cients (ICCs) of
radiomic features from two radiologists were calculated, all the ICCs of radiomics features were greater than 0.75, which was interpreted as
of good agreement between different observers[15]. Therefore, the mean values of radiomic features from two radiologists were calculated
for later research. Since the two sets of sample sizes were not balanced, the method of synthetic minority over-sampling technique (SMOTE)
was used to balance them. SMOTE is a straightforward approach used for regulating the ratio between the unbalanced groups[16]. The
cohort (97 MSI-H and 691 MSS) was randomly partitioned into a training set (68 MSI-H and 484 MSS) and a validation set (29 MSI-H and
207 MSS) with a proportion of 7:3. Hereafter, the methods of variance or Mann-Whitney U-test (ANOVA or MW), correlation analysis, and
least absolute shrinkage and selection operator (LASSO) were performed to select optimal radiomic features. A 10-fold cross validation
approach was used in both the training and validation cohorts to construct the model with the best performance. The detail of tumor
segmentation and radiomics features selection were expounded in Supplement Material.

Clinical, pathological, and radiomics models construction
After radiomic features selection, this corresponding logistic model (LM-Radio) was constructed by the selected radiomic features and the
radiomic score was acquired. The clinical and pathological characteristics were �rstly analyzed by independent t-test or chi-square test.
Then the clinical logistic model (LM-Clin) and pathological logistic model (LM-Patho) by corresponding signi�cant variables were
developed, respectively. The area under curves (AUCs) of the receiver operator curve (ROC) calculated by the Delong test were applied to
assess the e�ciency of all logistic models. Finally, an integrative clinical-pathological-radiomic nomogram (LM-Nomo) with radiomic score,
signi�cant clinical characteristics, and pathological parameters was constructed to evaluate the MSI-H status.
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Statistical analysis
The methods for radiomics features selection including ANOVA or MW, correlation analysis, and LASSO were proceeded in R software
(https://www.r-project.org/). The analysis of clinical and pathological characteristics was executed in SPSS software (https://spss-
64bits.en.softonic.com/) using the independent t-test or chi-square test. The ICCs were utilized to assess the consistency of VOI
segmentation between two radiologists. The logistic models of LM-Clin, LM-Patho, and LM-Nomo with the method of entrance were
developed in R software. The Delong test was carried out in MedCalc software (https://www.medcalc.org/), the corresponding AUC, 95%
con�dence interval (CI) was recorded. A Hosmer-Lemeshow test was used to evaluate the goodness-of-�t and accuracy of the model. A two-
tailed p value<0.05 indicated a statistical difference.

Results

Baseline clinical and pathological characteristics
The baseline clinical and pathological characteristics were outlined in Table 1. To the analysis of clinical characteristics, the variables of
CEA (p=0.043), history of smoking (p=0.049), drinking (p=0.026), and hypertension (p=0.036) showed signi�cant differences. The MSI-H
cohort tended to have normal CEA (71.1%) and was accompanied by the history of smoking (26.8), drinking (22.7%), and hypertension
(45.4%) compared with MSS cohort. And there was statistical signi�cance in the pathological characteristics of gross type (p=0.048), T
stage (p=0.013), and LNR (p=0.041). The MSI-H cohort was more likely to occur in the T2/4 stage, to appear ulcerative type, and to have
higher LNR than the cohort of MSS.
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Table 1
The baseline clinical and pathological characteristics.

  MSI-H cohort(n=97) MSS cohort(n=691) p

Clinical characteristics      

Age (mean±SD) 64.04±11.01 63.32±11.52 0.564

Gender (female/male) 33/64 256/435 0.562

BMI (mean±SD, kg/m2) 22.93±3.01 22.93±3.32 0.987

Long diameter (mean±SD, mm) 3.92±1.48 3.77±1.47 0.336

Location, n(%)

(low/middle/high)

21(21.6%)/40(41.2%)/36(37.1%) 160(23.2%)/266(38.5%)/265(38.4%) 0.868

CEA (normal/abnormal), n(%) 69(71.1%)/28(28.9%) 418(60.5%)/273(39.5%) 0.043

CA19-9 (normal/abnormal), n(%) 85(87.6%)/12(12.4%) 606(87.7%)/85(12.3%) 0.984

Smoking, n(%) 26(26.8%) 17(2.5%) 0.049

Drinking, n(%) 22(22.7%) 97(14.0%) 0.026

Diabetes, n(%) 9(9.3%) 83(12.0%) 0.432

Hypertension, n(%) 44(45.4%) 238(34.4%) 0.036

Pathological characteristics, n(%)      

Gross type
(protuberant/in�ltrating/ulcerative)

28(28.9%)/7(7.2%)/62(63.9%) 287(41.5%)/47(6.8%)/357(51.7%) 0.048

histological type

(classical/mucous/signet-ring cell
)

92(94.8%)/5(5.2%)/0(0%) 665(96.2%)/25(3.6%)/1(0.1%) 0.476

Differentiation
(well/moderate/poor)

17(18.5%)/70(76.1%)/5(5.4%) 74(11.1%)/563(84.7%)/28(4.2%) 0.093

Ki-67% (mean±SD) 70.11±22.60 68.70±20.99 0.539

T stage, n(%)

(T1/T2/T3/T4)

9(9.3%)/22(22.7%)/56(57.7%)/10(10.3%) 67(9.7%)/151(21.9%)/453(65.6%)/20(2.9%) 0.013

N stage, n(%)

(N0/N1/N2)

55(56.7%)/25(25.8%)/17(17.5%) 407(58.9%)/206(29.8%)/78(11.3%) 0.202

M stage (M0/M1), n(%) 92(94.8%)/5(5.2%) 654(94.6%)/37(5.4%) 1.000

Vascular invasion, n(%) 34(35.1%) 240(34.7%) 0.951

Perineural invasion, n(%) 22(22.9%) 161(23.3%) 0.934

LN (mean±SD) 14.16±6.28 14.22±6.47 0.934

PLN (mean±SD) 1.77±3.28 1.22±2.82 0.119

LNR (mean±SD) 13.51±22.14 8.67±16.44 0.041

Liver metastasis, n(%) 1(1.0%) 28(4.1%) 0.242

The measurement data of age, BMI, long diameter, Ki-67%, LN, PLN, and LNR were analyzed by the method of independent t-test. The
counting data of gender, location, CEA, CA19-9, smoking, drinking, diabetes, hypertension, gross type, histological type, differentiation,
T/N/M stage, and liver metastasis were analyzed by the method of chi-square test. A two-tailed p value<0.05 indicated a statistical
difference.

Performance of the clinical and pathological model
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The LM-Clin and LM-Patho with signi�cant clinical and pathological characteristics were constructed, respectively. The detailed parameters
of models were reported in Table 2. Finally, the LM-Clin (Hosmer-Lemeshow test: X2=1.238, df=5, p=0.941) had two signi�cant clinical
characteristics of CEA and a history of hypertension, the equation was LM-Clin=2.106+0.474*CEA-0.438*hypertension. And the LM-Patho
(Hosmer-Lemeshow test: X2=2.731, df=7, p=0.909) had two signi�cant pathological characteristics of gross type and LNR, the equation was
LM-Patho=2.533-0.272*gross-0.012*LNR. The AUCs of relevant ROCs was 0.584 (95%CI, 0.549-0.619, p=0.004) for the LM-Clin and was
0.585 (95%CI, 0.550-0.619, p=0.007) for the LM-Patho. The predictive e�cacy of clinical and pathological models was pretty much
equivalent and disappointing.

Table 2
The simple logistic models of LM-Clin, LM-Patho, and LM-Nomo.

  B S.E. Wald df Sig Exp(B) 95%Exp(B)

LM-Clin              

CEA 0.474 0.239 3.930 1 0.047 1.607 1.005-2.568

Smoking -0.317 0.297 1.139 1 0.286 0.729 0.407-1.303

Drinking -0.325 0.317 1.049 1 0.306 0.723 0.388-1.346

Hypertension -0.438 0.221 3.918 1 0.048 0.645 0.418-0.996

Constant 2.106 0.174 147.145 1 0.000 8.214  

LM-Patho              

Gross -0.272 0.130 4.382 1 0.036 0.762 0.591-0.983

T 0.063 0.179 0.125 1 0.724 1.065 0.750-1.513

LNR -0.012 0.005 4.996 1 0.025 0.988 0.977-0.999

Constant 2.533 0.464 29.755 1 0.000 12.592  

LM-Nomo              

Radiomic score 1.264 0.180 49.270 1 0.000 3.541 2.488-5.040

LNR -0.013 0.006 4.844 1 0.028 0.987 0.976-0.999

CEA 0.638 0.256 6.224 1 0.013 1.892 1.147-3.123

Hypertension -0.535 0.236 5.136 1 0.023 0.585 0.368-0.930

Gross -0.251 0.128 3.781 1 0.052 0.779 0.606-1.002

Constant 0.198 0.461 0.184 1 0.668 1.219  

The LM-Clin included signi�cant clinical variables of CEA and hypertension. The LM-Patho included signi�cant pathological variables of
gross and LNR. The integrative nomogram of LM-Nomo included variables of LNR, CEA, hypertension, and radiomic score.

Performance of the radiomics and combined nomogram
After the 12 radiomic features from three-phase CT images were extracted (Figure 2), the LM-Radio was developed. The AUC was 0.737
(95%CI, 0.675-0.799) in the training set and was 0.709 (95%CI, 0.617-0.801) in the validation set. Then the corresponding coe�cients (Figure
3) were evaluated and the radiomic score was calculated.

The signi�cant clinical and pathological characteristics integrated with radiomic score constituted the clinical-pathological-radiomic
nomogram (Figure 4). The equation was LM-Nomo=0.198+1.264*radiomic score-0.013*LNR+0.638*CEA-0.535*hypertension. The AUC of
LM-Nomo was 0.757 (95%CI, 0.726-0.787, p<0.001). The non-signi�cant Hosmer-Lemeshow test (Hosmer-Lemeshow test: X2=6.664, df=8,
p=0.573) showed the goodness-of-�t of the model.

Discussion
Unlike MSS CRCs, the MSI-H CRCs have been proved to be associated with abundant lymphocyte in�ltration, poor differentiation pattern,
longer postoperative survival, predominantly occurred in the proximal colon[17], and mucous or signet-ring cell component[18]. They may
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have a mildly better prognosis and could not bene�t from 5-FU-based chemotherapy compared with patients with MSS[19]. Very few
published studies have evaluated the clinical, pathological, and radiomic difference between MSI-H and MSS status in RCs. Hence, the
preoperative prediction of MSI status from these �elds in RCs is promising to facilitate adjuvant therapy strategies, follow-up monitoring,
and management. In this analysis, we merely focused on RCs to reduce the bias between ascending, descending, and sigmoid colon.
Heterogeneity of clinical and pathological manifestation of MSI-H in RCs is the rule rather than the contingency. The clinical characteristics
of CEA, smoking, drinking, and hypertension history, as well as the pathological variables of gross type, T stage, and LNR had statistical
differences. The LNR of MSI-H RC (13.51±22.14%) was signi�cantly higher than that of MSS (8.67±16.44%), in line with previous �ndings of
a�uent lymphocyte in�ltration in CRCs. And the RCs of MSI-H were founded to be easier to have a history of smoking, drinking, and
hypertension. It emphasized the importance of medical history. However, they differ dramatically with CRCs, the characteristics of the
location, histological type, differentiation pattern were not statistically different.

This article aimed to investigate the e�ciency of the logistic models of clinic, pathology, radiomics, and the integrative nomogram to
evaluate the MSI-H status. To elucidate which factors contribute to a more favorable prediction of MSI-H tumors, clinical and pathological
characteristics as well as the radiomic features were analyzed in 788 patients with 97 MSI-H and 691 MSS. Since radiological images were
closely connected with its pathological characteristics[20], the quantitative radiomic features showed the potential to predict the MSI-H
status of RCs in our study. Interestingly, the predictive e�cacy of simple LM-Clin and LM-Patho was almost equivalent and disappointing
with AUCs of 0.584 and 0.585 compared with simple LM-Radio with AUCs of 0.737 in the training set and 0.709 in the validation set,
probably because the simple LM-Clin and LM-Patho could hardly discriminate MSI-H from MSS.

Therefore, an integrative nomogram including clinical characteristics, pathological characteristics, and radiomics became the most
important modality to predict the MSI-H status of RCs, noninvasively. Previous studies almost exclusively focused on the evaluation of the
MSI-H phenotype of CRCs, ignoring a specialized analysis of RCs. Data from the study of YT Cao et al[20] suggested that the radiomics
signature of triphasic enhanced CT was a reliable method to predict MSI in CRCs, and the clinical-radimoics nomogram including age,
location, CEA, and radiomics has shown promising prediction. Our integrative clinical-pathological-radiomic nomogram including CEA,
hypertension, LNR, and radiomic score was the most meaningful model in predicting MSI-H phenotype of RCs with- the highest AUC of
0.757 (95%CI, 0.726-0.787) than that of simple LM-Clin, LM-Patho, and LM-Radio. The p values of Hosmer-Lemeshow tests of all models
were non-signi�cant, indicated the goodness-of-�t of models.

Despite some inspiring strengths, there were several limitations. First, this retrospective analysis existed several biases including single-
center design, unbalanced sample size, and limited universality. Thus, a future multi-center supplement is necessary to validate and improve
the performance of the predictive nomogram. Second, we only evaluated the tumoral radiomics to predict the MSI-H phenotype of RCs, the
peri-tumoral radiomics was neglected. While peri-tumoral radiomics should be emphasized by providing additional information to better
predict the MSI-H status. Third, due to the irregular shape of RCs, the bias between manual segmentation may affect the radiomic analysis,
though the ICCs were calculated to reduce the intra-observer difference. An automatic approach to segment the RCs for radiomic analysis
needed to be further explored.

Conclusion
In conclusion, an integrative clinical-pathological-radiomic nomogram including a history of hypertension, CEA, LNR, and radiomic score
demonstrated an encouraging performance in predicting MSI-H status of RCs.

Abbreviations
Microsatellite instability: MSI

Rectal carcinoma: RC

High MSI status: MSI-H

Microsatellite stable status: MSS

The logistic model of clinical characteristics: LM-Clin

The logistic model of pathological characteristics: LM-Patho

The logistic model of radiomic features: LM-Radio



Page 8/13

The logistic model of a integrative nomogram: LM-Nomo
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Figures

Figure 1

The VOIs were manually segmented in the software of “itk-SNAP”. Figure 1a showed the VOIs segmentation in the axial image. Figure 1b
showed the VOIs segmentation in the sagittal image.
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Figure 2

To the radiomic analysis, after the method of LASSO, there were 12 radiomic features extracted.
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Figure 3

The coe�cients of 12 optimal radiomic features in LM-Radio were listed.

Figure 4

The integrative clinical-pathological-radiomic nomogram including variables of CEA, hypertension, LNR, and radiomic score was developed.
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