1. Sweeney, H.L. & Holzbaur, E.L.F. Motor Proteins. Cold Spring Harbor perspectives in biology 10 (2018).
2. Walczak, C.E., Gayek, S. & Ohi, R. Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol 29, 417-441 (2013).
3. Lawrence, C.J. et al. A standardized kinesin nomenclature. J Cell Biol 167, 19-22 (2004).
4. Miki, H., Okada, Y. & Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15, 467-476 (2005).
5. Wickstead, B. & Gull, K. A "holistic" kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17, 1734-1743 (2006).
6. Meluh, P.B. & Rose, M.D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029-1041 (1990).
7. McDonald, H.B. & Goldstein, L.S. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61, 991-1000 (1990).
8. Endow, S.A., Henikoff, S. & Soler-Niedziela, L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345, 81-83 (1990).
9. Reddy, A.S.N. & Day, I.S. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2, 2 (2001).
10. Richardson, D.N., Simmons, M.P. & Reddy, A.S. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7, 18 (2006).
11. Guo, L. et al. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot 103, 387-402 (2009).
12. Tomei, E.J. & Wolniak, S.M. Transcriptome analysis reveals a diverse family of kinesins essential for spermatogenesis in the fern Marsilea. Cytoskeleton (Hoboken) 73, 145-159 (2016).
13. Shen, Z., Collatos, A.R., Bibeau, J.P., Furt, F. & Vidali, L. Phylogenetic analysis of the kinesin superfamily from Physcomitrella. Frontiers in plant science 3, 230. doi: 210.3389/fpls.2012.00230 (2012).
14. Lawrence, C., Morris, N., Meagher, R. & Dawe, R. Dyneins have run their course in plant lineage. Traffic 2, 362-363 (2001).
15. Ambrose, J.C., Li, W., Marcus, A., Ma, H. & Cyr, R. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16, 1584-1592 (2005).
16. Mitsui, H., Yamaguchishinozaki, K., Shinozaki, K., Nishikawa, K. & Takahashi, H. Identification of a gene family (Kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol Gen Genet 238, 362-368 (1993).
17. Oppenheimer, D.G. et al. Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94, 6261-6266 (1997).
18. Reddy, A.S.N., Safadi, F., Narasimhulu, S.B., Golovkin, M. & Hu, X. A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271, 7052-7060 (1996).
19. Bowser, J. & Reddy, A.S.N. Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12, 1429-1437 (1997).
20. Smirnova, E.A., Reddy, A.S., Bowser, J. & Bajer, A.S. Minus end-directed kinesin-like motor protein, KCBP, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskeleton 41, 271-280 (1998).
21. Preuss, M.L., Delmer, D.P. & Liu, B. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132, 154-160 (2003).
22. Tian, J. et al. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 4 (2015).
23. Buschmann, H. et al. Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J Cell Sci 128, 2033-2046 (2015).
24. Chen, C.B. et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129, 2401-2409 (2002).
25. Marcus, A.I., Li, W., Ma, H. & Cyr, R.J. A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Molecular biology of the cell 14, 1717-1726 (2003).
26. Preuss, M.L. et al. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136, 3945-3955 (2004).
27. Klotz, J. & Nick, P. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol 193, 576-589 (2012).
28. Yamada, M. & Goshima, G. The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in Physcomitrella patens. Plant Cell 30, 1496-1510 (2018).
29. Tseng, K.F. et al. The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor. Nat Commun 9, 1067 (2018).
30. Buschmann, H. & Zachgo, S. The evolution of cell division: from Streptophyte algae to land plants. Trends Plant Sci 21, 872-883 (2016).
31. Nishiyama, T. et al. The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell 174, 448-464 e424 (2018).
32. Bowman, J.L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287-304 e215 (2017).
33. Banks, J.A. et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960-963 (2011).
34. Galindo-Trigo, S., Grand, T.M., Voigt, C.A. & Smith, L.M. A malectin domain kinesin functions in pollen and seed development in Arabidopsis. J Exp Bot 71, 1828-1841 (2020).
35. O'Connell, M.J., Meluh, P.B., Rose, M.D. & Morris, N.R. Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a Gene Encoding a kar3-related kinesin-like protein in Aspergillus nidulans. J Cell Biol 120, 153-162 (1993).
36. Suetsugu, N. et al. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107, 8860-8865 (2010).
37. Moody, L.A. The 2D to 3D growth transition in the moss Physcomitrella patens. Curr Opin Plant Biol 47, 88-95 (2019).
38. Lee, Y.J., Qiu, W. & Liu, B. Kinesin motors in plants: from subcellular dynamics to motility regulation. Curr Opin Plant Biol 28, 120-126 (2015).
39. Vanstraelen, M., Inze, D. & Geelen, D. Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11, 167-175 (2006).
40. Xu, J., Lee, Y.J. & Liu, B. Establishment of a mitotic model system by transient expression of the D-type cyclin in differentiated leaf cells of tobacco (Nicotiana benthamiana). New Phytol 226, 1213-1220 (2020).
41. Li, H. et al. Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol 215, 187-201 (2017).
42. She, Z.Y. & Yang, W.X. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 130, 2097-2110 (2017).
43. Schallus, T. et al. Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19, 3404-3414 (2008).
44. Franck, C.M., Westermann, J. & Boisson-Dernier, A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. Annual Review of Plant Biology, Vol 69 69, 301-328 (2018).
45. Hata, S. et al. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nature Cell Biology 21, 1138-+ (2019).
46. Smirnova, E.A. & Bajer, A.S. Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm. Cell Motil Cytoskeleton 40, 22-37 (1998).
47. Lee, Y.J. & Liu, B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. New Phytol 222, 1705-1818 (2019).
48. Miao, H.Y. et al. The g-tubulin complex protein GCP6 is crucial for spindle morphogenesis but not essential for microtubule reorganization in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 116, 27115-27123 (2019).
49. Bajer, A. The elusive organization of the spindle and kinetochore fiber: a conceptual retrospect. Advances in Cell Biology 3, 65-93 (1990).
50. Sawin, K.E. & Mitchison, T.J. Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112, 925-940 (1991).
51. Heald, R. & Khodjakov, A. Thirty years of search and capture: The complex simplicity of mitotic spindle assembly. J Cell Biol 211, 1103-1111 (2015).
52. Brown, R.C. & Lemmon, B.E. Minispindles and cytoplasmic domains in microsporogenesis of Orchids. Protoplasma 148, 26-32 (1989).
53. Zhang, D.H. & Nicklas, R.B. The impact of chromosomes and centrosomes on spindle assembly as observed in living cells. Journal of Cell Biology 129, 1287-1300 (1995).
54. Bajer, A.S. & Mole-Bajer, J. Microtubules modify kinetochore fiber organization and function: a new aspect of mitosis. Progress in clinical and biological research 318, 171-184 (1989).
55. Wadsworth, P., Lee, W.L., Murata, T. & Baskin, T.I. Variations on theme: spindle assembly in diverse cells. Protoplasma 248, 439-446 (2011).
56. Zhang, D.H. & Nicklas, R.B. 'Anaphase' and cytokinesis in the absence of chromosomes. Nature 382, 466-468 (1996).
57. She, Z.Y., Wei, Y.L., Lin, Y., Li, Y.L. & Lu, M.H. Mechanisms of the Ase1/PRC1/MAP65 family in central spindle assembly. Biological reviews of the Cambridge Philosophical Society 94, 2033-2048 (2019).
58. Jiang, C.J. & Sonobe, S. Identification and preliminary characterization of a 65-Kda higher-plant microtubule-associated protein. J Cell Sci 105, 891-901 (1993).
59. Ho, C.M., Lee, Y.R., Kiyama, L.D., Dinesh-Kumar, S.P. & Liu, B. Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. Plant Cell 24, 2071-2085 (2012).
60. Simunic, J. & Tolic, I.M. Mitotic spindle assembly: building the bridge between sister K-fibers. Trends in Biochemical Sciences 41, 824-833 (2016).
61. Ho, C.M. et al. Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23, 2909-2923 (2011).
62. Zhu, C.J. & Jiang, W. Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis. Proc Nat Acad Sci USA 102, 343-348 (2005).
63. Kong, Z. et al. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant 8, 1011-1023 (2015).
64. de Keijzer, J., Kieft, H., Ketelaar, T., Goshima, G. & Janson, M.E. Shortening of Microtubule Overlap Regions Defines Membrane Delivery Sites during Plant Cytokinesis. Curr Biol 27, 514-520 (2017).
65. Carmena, M., Wheelock, M., Funabiki, H. & Earnshaw, W.C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13, 789-803 (2012).
66. Komaki, S. et al. Functional Analysis of the Plant Chromosomal Passenger Complex. Plant Physiol 183, 1586-1599 (2020).
67. Adriaans, I.E. et al. MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger Complex during Anaphase. Curr Biol 30, 2628-2637 e2629 (2020).
68. Kops, G. & Gassmann, R. Crowning the kinetochore: the fibrous corona in chromosome segregation. Trends Cell Biol 30, 653-667 (2020).
69. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28, 2731-2739 (2011).
70. Sasabe, M., Kosetsu, K., Hidaka, M., Murase, A. & Machida, Y. Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6, 743-747 (2011).
71. Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104, 34-41 (2007).
72. Kijima, S.T. et al. Arabidopsis vegetative actin isoforms, AtACT2 and AtACT7, generate distinct filament arrays in living plant cells. Scientific reports 8, 4381 (2018).
73. Ravi, M. & Chan, S.W. Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615-618 (2010).
74. Hotta, T. et al. Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. Plant Cell 24, 1494-1509 (2012).