[1] Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69-77.
[2] Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63-8.
[3] Lu YF, Mauger DM, Goldstein DB, Urban TJ, Weeks KM, Bradrick SS. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep. 2015;5:16037.
[4] Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41:1105-9.
[5] Fukuhara T, Taketomi A, Motomura T, et al. Variants in IL28B in liver recipients and donors correlate with response to peg-interferon and ribavirin therapy for recurrent hepatitis C. Gastroenterology. 2010;139:1577-85, 1585.e1-3.
[6] Thomas DL, Thio CL, Martin MP, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461:798-801.
[7] Rauch A, Kutalik Z, Descombes P, et al; Swiss Hepatitis C Cohort Study; Swiss HIV Cohort Study. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology. 2010;138:1338-45, 1345.e1-7.
[8] Ito K, Higami K, Masaki N, et al. The rs8099917 polymorphism, when determined by a suitable genotyping method, is a better predictor for response to pegylated alpha interferon/ribavirin therapy in Japanese patients than other single nucleotide polymorphisms associated with interleukin-28B. J Clin Microbiol. 2011;49:1853–60.
[9] Prokunina-Olsson L, Muchmore B, Tang W, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45:164-71.
[10] Murakawa M, Asahina Y, Nakagawa M, et al. Impaired induction of interleukin 28B and expression of interferon λ 4 associated with nonresponse to interferon-based therapy in chronic hepatitis C. J Gastroenterol Hepatol. 2015;30:1075-84.
[11] Ferraris P, Chandra PK, Panigrahi R, et al. Cellular mechanism for impaired hepatitis C virus clearance by interferon associated with IFNL3 gene polymorphisms relates to intrahepatic interferon-λ expression. Am J Pathol. 2016;186:938-51.
[12] Price AA, Tedesco D, Prasad MR, et al. Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype. Proc Natl Acad Sci U S A. 2016;113:10678-83.
[13] Keshvari M, Alavian SM, Behnava B, Pouryasin A, Sharafi H. The interferon lambda 4 rs368234815 predicts treatment response to pegylated-interferon alpha and ribavirin in hemophilic patients with chronic hepatitis C. J Res Med Sci. 2016;21:72.
[14] Aka PV, Kuniholm MH, Pfeiffer RM, et al. Association of the IFNL4-ΔG allele with impaired spontaneous clearance of hepatitis C virus. J Infect Dis. 2014;209:350-4.
[15] Bibert S, Roger T, Calandra T, et al; Swiss Hepatitis C Cohort Study. IL28B expression depends on a novel TT/-G polymorphism which improves HCV clearance prediction. J Exp Med. 2013;210:1109-16.
[16] Franco S, Aparicio E, Parera M, Clotet B, Tural C, Martinez MA. IFNL4 ss469415590 variant is a better predictor than rs12979860 of pegylated interferon-alpha/ribavirin therapy failure in hepatitis C virus/HIV-1 coinfected patients. AIDS. 2014;28:133-6.
[17] O'Brien TR, Pfeiffer RM, Paquin A, et al. Comparison of functional variants in IFNL4 and IFNL3 for association with HCV clearance. J Hepatol. 2015;63:1103-10.
[18] Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100-4.
[19] Xie X, Zhang L, Chen YZ. Association between IFNL4 rs368234815 polymorphism and sustained virological response in chronic hepatitis C patients undergoing PEGylated interferon/ribavirin therapy: A meta-analysis. Hum Immunol. 2016;77:609-15.
[20] Grzegorzewska AE, Jodłowska E, Mostowska A, Jagodziński P. Effect of interferon λ3 gene polymorphisms, rs8099917 and rs12979860, on response to hepatitis B virus vaccination and hepatitis B or C virus infections among hemodialysis patients. Pol Arch Med Wewn. 2015;125:894-902.
[21] Dzekova-Vidimliski P, Nikolov IG, Matevska-Geshkovska N, Mena S, Rostaing L, Dimovski A, Sikole A. Single nucleotide polymorphisms near IL28B gene and response to treatment of chronic hepatitis C in hemodialysis patients. Ren Fail. 2015;37:1180-4.
[22] Grzegorzewska AE, Winnicka H, Warchoł W, Marcinkowski W, Mostowska A, Jagodziński PP. Effects of interferon-λ3 gene polymorphic variants in response to HBV vaccination and outcome of HBV and HCV infections in hemodialysis patients. In: Hemodialysis Abstracts from the 39th Annual Dialysis Conference (Dallas). Hemodial Int. 2019;23(1):A17-8.
[23] Yu ML, Dai CY, Huang CF, et al; FORMOSA-LIKE group. High hepatitis B virus surface antigen levels and favorable interleukin 28B genotype predict spontaneous hepatitis C virus clearance in uremic patients. J Hepatol. 2014;60:253-9.
[24] Rukov JL, Gravesen E, Mace ML, et al. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA-sequencing. Am J Physiol Renal Physiol. 2016;310, F477-91.
[25] Pouryasin M, Sharafi H, Behnava B, Alavian SM, Keshvari M, Pouryasin A. A simple PCR-RFLP method for genotyping of IFNL4 rs368234815 polymorphism in patients with chronic hepatitis C. Lab Med. 2017;48:51-6.
[26] Rosenbloom KR, Sloan CA, Malladi VS, et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013;41, D56-63.
[27] Kulakovskiy IV, Vorontsov IE, Yevshin IS, et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res. 2016;44:D116-25.
[28] Mathelier A, Fornes O, Arenillas DJ, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110-5.
[29] Weirauch MT, Yang A, Albu M, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158:1431-43.
[30] Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017-8.
[31] Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 2005;33:D34-8.
[32] UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204-12.
[33] Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-5.
[34] Vaziri ND, Pahl MV, Crum A, Norris K. Effect of uremia on structure and function of immune system. J Ren Nutr. 2012;22:149-56.
[35] Świątek-Kościelna B, Kałużna E, Strauss E, et al. Prevalence of IFNL3 rs4803217 single nucleotide polymorphism and clinical course of chronic hepatitis C. World J Gastroenterol. 2017;23:3815-24.
[36] de Castellarnau M, Aparicio E, Parera M, Franco S, Tural C, Clotet B, Martínez MA. Deciphering the interleukin 28B variants that better predict response to pegylated interferon-α and ribavirin therapy in HCV/HIV-1 coinfected patients. PLoS One. 2012;7:e31016.
[37] Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002;12:996-1006.
[38] Lasfar A, Zloza A, Silk AW, Lee LY, Cohen-Solal KA. Interferon lambda: Toward a dual role in cancer. J Interferon Cytokine Res. 2019;39:22-9.
[39] PLAG1 like zinc finger 1 [ Homo sapiens (human) ]. Available at: https://www.ncbi.nlm.nih.gov/gene/5325. Accessed 24 November 2019.
[40] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J R Stat Soc B. 1995;57:289–300.