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MACLAURIN’S SERIES EXPANSIONS OF REAL POWERS OF INVERSE

(HYPERBOLIC) COSINE AND SINE FUNCTIONS WITH APPLICATIONS

FENG QI

Dedicated to people facing and battling COVID-19

Abstract. In the paper, by means of the Faà di Bruno formula, with the help of explicit formulas

for special values of the Bell polynomials of the second kind with respect to a specific sequence, and
by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author
establishes Maclaurin’s series expansions for real powers of the inverse cosine (sine) function and the
inverse hyperbolic cosine (sine) function. By applying different series expansions for the square of the
inverse cosine function, the author not only finds infinite series representations of the circular constant
Pi and its square, but also derives two combinatorial identities involving central binomial coefficients.
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1. Motivations

The classical Euler gamma function Γ(z) can be defined [26, Chapter 3] by

Γ(z) = lim
m→∞

m!mz

∏m
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

The modified Bessel function of the first kind Iν(z) can be represented [1, p. 375, 9.6.10] by

Iν(z) =
∞
∑

n=0

1

n!Γ(ν + n+ 1)

(

z

2

)2n+ν

, z ∈ C.

The rising factorial, or say, the Pochhammer symbol, of α ∈ C is defined [12, p. 7497] by

(α)n =

n−1
∏

k=0

(α+ k) =

{

α(α+ 1) · · · (α+ n− 1), n ≥ 1;

1, n = 0.
(1.1)

In [27, p. 377, (3.5)] and [28, pp. 109–110, Lemma 1], it was obtained that

Iµ(x)Iν(x) =
1

Γ(µ+ 1)Γ(ν + 1)

∞
∑

n=0

(µ+ ν + n+ 1)n
n!(µ+ 1)n(ν + 1)n

(

x

2

)2n+µ+ν

.
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In [4, p. 310], there exists the power series expansion

[Iν(z)]
2 =

∞
∑

k=0

1

[Γ(ν + k + 1)]2

(

2k + 2ν

k

)(

z

2

)2k+2ν

.

More generally, the series expansions of the functions [Iν(z)]
r for ν ∈ C \ {−1,−2, . . . } and r, z ∈ C have

been surveyed and investigated in [3, 4, 13, 14, 16]. One of the reasons why ones investigated the series
expansions of the functions [Iν(z)]

r is that the products of the (modified) Bessel functions of the first
kind appear occasionally in problems of statistical mechanics and plasma physics [2, 17, 18].

In the articles [5, 6, 11, 12, 20, 24, 25], Maclaurin’s series expansions of the powers

sinm z, cosm z, tanm z, cotm z, secm z, cscm z, (arctan z)m, (arctanh z)m,
(

arcsin z

z

)m

,
(arcsin z)m√

1− z2
,

(

arcsinh z

z

)m

,
(arcsinh z)m√

1 + z2

for m ≥ 2 and their history were reviewed, established, discussed, and applied. Now we recite several
nice series expansions as follows.

Theorem 1.1 ([11, Theorem 2.1]). For m ∈ N and |x| < 1, the function
(

arcsin x
x

)m
, whose value at

x = 0 is defined to be 1, has the nice Maclaurin series expansion

(

arcsinx

x

)m

= 1+

∞
∑

k=1

(−1)k
(

m+2k
m

)

[

2k
∑

ℓ=0

(

m+ ℓ− 1

m− 1

)

s(m+2k−1,m+ ℓ−1)

(

m+ 2k − 2

2

)ℓ
]

(2x)2k

(2k)!
, (1.2)

where s(n, k) denotes the first kind Stirling numbers which can be analytically computed by

|s(n+ 1,m+ 1)| = n!

n
∑

ℓ1=m

1

ℓ1

ℓ1−1
∑

ℓ2=m−1

1

ℓ2
· · ·

ℓm−2−1
∑

ℓm−1=2

1

ℓm−1

ℓm−1−1
∑

ℓm=1

1

ℓm
, n ≥ m ≥ 1. (1.3)

Theorem 1.2 ([11, Theorem 5.1]). For m ∈ N and |x| < ∞, the function
(

arcsinh x
x

)m
, whose value at

x = 0 is defined to be 1, has the nice Maclaurin series expansion

(

arcsinhx

x

)m

= 1+

∞
∑

k=1

1
(

m+2k
m

)

[

2k
∑

ℓ=0

(

m+ ℓ− 1

m− 1

)

s(m+2k−1,m+ℓ−1)

(

m+ 2k − 2

2

)ℓ
]

(2x)2k

(2k)!
, (1.4)

where s(n, k) stands for the first kind Stirling numbers generated by (1.5). where s(n,m) denotes the

Stirling numbers of the first kind which can be analytically generated by

[ln(1 + x)]m

m!
=

∞
∑

n=m

s(n,m)
xn

n!
, |x| < 1. (1.5)

In [11, 12], the series expansion (1.2) was applied to

(1) derive closed-form formulas for special values of the Bell polynomials of the second kind, these
closed-form formulas were asked in [19] when studying Grothendieck’s inequality and completely
correlation preserving functions;

(2) establish series representations of the generalized logsine function, these series representations
were considered in [9, 15].

The formula (1.3) is a reformulation of [21, Corollary 2.3] and the generating function (1.5) can be
found in [26, p. 20, (1.30)].

The series expansions (1.2) and (1.4) in Theorems 1.1 and 1.2 were also recovered in [23, Section 3].

Theorem 1.3 ([23, Theorem 4.1]). For |x| < 1, we have

(arccosx)2

2!
=

∞
∑

m=0

m!

(2m+ 1)!!

(1− x)m+1

m+ 1
(1.6)

and

(arccoshx)2

2!
= −

∞
∑

m=0

m!

(2m+ 1)!!

(1− x)m+1

m+ 1
. (1.7)
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For k ≥ 2 and |x| < 1, we have

(arccosx)2k

(2k)!
=

∞
∑

m=0

(−1)m

[

2m
∑

ℓ=0

(

ℓ+ 2k − 1

2k − 1

)

s(2m+2k− 1, ℓ+2k− 1)(m+ k− 1)ℓ

]

[2(1− x)]m+k

[2(m+ k)]!
(1.8)

and

(arccoshx)2k

(2k)!
=

∞
∑

m=0

(−1)m+k

[

2m
∑

ℓ=0

(

ℓ+ 2k − 1

2k − 1

)

s(2m+2k−1, ℓ+2k−1)(m+k−1)ℓ

]

[2(1− x)]m+k

[2(m+ k)]!
. (1.9)

The series expansions (1.6), (1.7), (1.8), and (1.9) in Theorem 1.3 are Taylor’s series expansions around
the point x = 1 of even powers of the inverse cosine function arccosx and the inverse hyperbolic cosine
function arccoshx in terms of the Stirling numbers of the first kind s(n,m).

What are Maclaurin’s series expansions around the point x = 0 for the power functions (arccosx)α

and (arccoshx)α with α ∈ R? In Section 3 of this paper, we will answer this interesting and significant
question. Besides this, we also

(1) establish explicit formulas for special values of the Bell polynomials of the second kind with
respect to the specific sequence 1, 0, 1, 0, 9, 0, 225, . . . ; see Theorem 2.1 below;

(2) apply two different series expansions of the square function (arccosx)2, including Taylor’s series
expansion (1.6) in Theorem 1.3, to find infinite series representations of π and π2 respectively;
see Theorem 5.1 below;

(3) apply two different series expansions of (arccosx)2 to derive two combinatorial identities involving
central binomial coefficients, see Theorem 6.1 below.

2. Explicit formulas for special values of Bell polynomials of second kind

In [7, Definition 11.2] and [8, p. 134, Theorem A], the Bell polynomials of the second kind, denoted
by Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
ℓi∈{0}∪N

∑
n−k+1

i=1
iℓi=n

∑
n−k+1

i=1
ℓi=k

n!
∏n−k+1

i=1 ℓi!

n−k+1
∏

i=1

(

xi

i!

)ℓi

.

The Faà di Bruno formula [7, Theorem 11.4] and [8, p. 139, Theorem C] can be described in terms of
Bk,ℓ(x1, x2, . . . , xk−ℓ+1) by

dk

dxk
f ◦ h(x) =

k
∑

ℓ=1

f (ℓ)(h(x)) Bk,ℓ

(

h′(x), h′′(x), . . . , h(k−ℓ+1)(x)
)

, k ∈ N. (2.1)

To establish Maclaurin’s series expansions around the point x = 0 for real powers of the inverse cosine
function arccosx and the inverse hyperbolic cosine function arccoshx, we need the following explicit
formulas for special values of the Bell polynomials of the second kind with respect to the sequence

1, 0, 1, 0, 9, 0, 225, 0, . . . , 0, [(2r − 3)!!]2, 0, [(2r − 1)!!]2, . . . (2.2)

for r ≥ 0.

Theorem 2.1. For r, k ∈ N, we have

B2r+k,k

(

1, 0, 1, 0, 9, 0, 225, 0, . . . , [(2r − 3)!!]2, 0, [(2r − 1)!!]2
)

= (−1)r22r
2r
∑

ℓ=0

(

k + ℓ− 1

k − 1

)

s(k + 2r − 1, k + ℓ− 1)

(

k + 2r − 2

2

)ℓ

(2.3)

and

B2r+k−1,k

(

1, 0, 1, 0, 9, 0, 225, 0, . . . , [(2r − 3)!!]2, 0
)

= 0, (2.4)

where (−1)!! = 0!! = 1.
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Proof. In [10, p. 60, 1.641], there is the series expansion

arccosx =
π

2
−

∞
∑

ℓ=0

(2ℓ− 1)!!

(2ℓ)!!

x2ℓ+1

2ℓ+ 1
, |x| < 1. (2.5)

The series expansion (2.5) means that

(arccosx)(2ℓ)
∣

∣

x=0
= 0 and (arccosx)(2ℓ−1)

∣

∣

x=0
= −[(2ℓ− 3)!!]2 (2.6)

for ℓ ∈ N.
At the end of [8, p. 133], there is the formula

1

k!

(

∞
∑

m=1

xm

tm

m!

)k

=
∞
∑

n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
(2.7)

for k ≥ 0. Making use of the formula (2.7) yields

Bn+k,k(x1, x2, . . . , xn+1) =

(

n+ k

k

)

lim
t→0

dn

d tn

[

∞
∑

m=0

xm+1

(m+ 1)!
tm

]k

, n ≥ k ≥ 0. (2.8)

Taking xm = (arccosx)(m)
∣

∣

x=0
for m ≥ 1 in (2.8), employing the values in (2.6), and utilizing the series

expansion (1.2) in Theorem 1.1 give

Bn+k,k

(

(arccosx)′
∣

∣

x=0
, (arccosx)′′

∣

∣

x=0
, . . . , (arccosx)(n+1)

∣

∣

x=0

)

= Bn+k,k

(

−1, 0,−1, 0,−9, 0,−225, . . . ,−1− (−1)n+1

2
[(n− 1)!!]2

)

=

(

n+ k

k

)

lim
t→0

dn

d tn

[

∞
∑

m=0

(arccosx)(m+1)
∣

∣

x=0

(m+ 1)!
tm

]k

= (−1)k
(

n+ k

k

)

lim
t→0

dn

d tn

[

1

t

∞
∑

m=1

(arcsinx)(m)
∣

∣

x=0

m!
tm

]k

= (−1)k
(

n+ k

k

)

lim
t→0

dn

d tn

(

arcsin t

t

)k

= (−1)k
(

n+ k

k

)

lim
t→0

dn

d tn

∞
∑

q=1

(−1)q
(

k+2q
k

)

[

2q
∑

ℓ=0

(

k + ℓ− 1

k − 1

)

s(k + 2q − 1, k + ℓ− 1)

(

k + 2q − 2

2

)ℓ
]

(2t)2q

(2q)!

= (−1)k
(

n+ k

k

)

lim
t→0

∞
∑

q=1

(−4)q
(

k+2q
k

)

[

2q
∑

ℓ=0

(

k + ℓ− 1

k − 1

)

s(k + 2q − 1, k + ℓ− 1)

(

k + 2q − 2

2

)ℓ
]

⟨2q⟩n
t2q−n

(2q)!

=











(−1)k+r22r
2r
∑

ℓ=0

(

k + ℓ− 1

k − 1

)

s(k + 2r − 1, k + ℓ− 1)

(

k + 2r − 2

2

)ℓ

, n = 2r

0, n = 2r − 1

for r ∈ N, where the falling factorial ⟨z⟩k of z ∈ C is defined by

⟨z⟩k =
k−1
∏

ℓ=0

(z − ℓ) =

{

z(z − 1) · · · (z − k + 1), k ≥ 1;

1, k = 0.
(2.9)

Further employing the identity

Bn,k

(

abx1, ab
2x2, . . . , ab

n−k+1xn−k+1

)

= akbn Bn,k(x1, x2, . . . , xn−k+1) (2.10)

for n ≥ k ≥ 0 and a, b ∈ C in [7, p. 412] and [8, p. 135] and simplifying result in the formulas (2.3)
and (2.4). The proof of Theorem 2.1 is complete. □
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3. Maclaurin’s series expansions for real powers of inverse cosine function

In his section, by means of the Faà di Bruno formula (2.1), with the help of explicit formulas (2.3)
and (2.4) in Theorem 2.1, and by virtue of two combinatorial identities in [23, Lemmas 2.1 and 2.2], we
establish Maclaurin’s series expansions at the point x = 0 for (arccosx)α and (arccoshx)α with α ∈ R.

Theorem 3.1. For α ∈ R and |x| < 1, we have

(

2 arccosx

π

)α

= 1 +
⟨α⟩2
π2

(2x)2

2!

+
∞
∑

r=2

(−1)r

[

r
∑

ℓ=1

(−1)ℓ
⟨α⟩2ℓ
π2ℓ

2r−2ℓ
∑

q=0

(

2ℓ+ q − 1

2ℓ− 1

)

s(2r − 1, 2ℓ+ q − 1)(r − 1)q

]

(2x)2r

(2r)!

+

∞
∑

r=1

(−1)r

[

r
∑

ℓ=1

(−1)ℓ−1 ⟨α⟩2ℓ−1

π2ℓ−1

2r−2ℓ
∑

q=0

(

2ℓ+ q − 2

2ℓ− 2

)

s(2r − 2, 2ℓ+ q − 2)

(

2r − 3

2

)q
]

(2x)2r−1

(2r − 1)!
,

(3.1)

where ⟨α⟩r for α ∈ R and r ∈ N stands for the falling factorials defined by (2.9) and s(n,m) for n ≥ m ≥ 0
denotes the Stirling numbers of the first kind generated in (1.5).

Proof. Let u = u(x) = arccosx. It is clear that u = u(x) = arccosx → π
2 as x → 0. By means of the Faà

di Bruno formula (2.1) and the values in (2.6), we obtain

dk[(arccosx)α]

dxk
=

k
∑

ℓ=1

dℓ(uα)

duℓ
Bk,ℓ

(

(arccosx)′, (arccosx)′′, . . . , (arccosx)(k−ℓ+1)
)

=

k
∑

ℓ=1

⟨α⟩ℓuα−ℓ Bk,ℓ

(

(arccosx)′, (arccosx)′′, . . . , (arccosx)(k−ℓ+1)
)

→
k
∑

ℓ=1

⟨α⟩ℓ
(

π

2

)α−ℓ

Bk,ℓ

(

−1, 0,−1, 0,−9, . . . ,−1− (−1)k−ℓ+1

2
[(k − ℓ− 1)!!]2

)

as x → 0 for k ∈ N.
When k = 2r and r ≥ 2, it follows that

lim
x→0

d2r[(arccosx)α]

dx2r
=

2r
∑

ℓ=1

⟨α⟩ℓ
(

π

2

)α−ℓ

B2r,ℓ

(

−1, 0,−1, 0,−9, . . . ,−1− (−1)1−ℓ

2
[(2r − ℓ− 1)!!]2

)

=

r
∑

ℓ=1

⟨α⟩2ℓ
(

π

2

)α−2ℓ

B2r,2ℓ

(

1, 0, 1, 0, 9, 0, 225, . . . , 0, [(2r − 2ℓ− 1)!!]2
)

=

r
∑

ℓ=1

(−1)r−ℓ⟨α⟩2ℓπα−2ℓ22r−α

2r−2ℓ
∑

q=0

(

2ℓ+ q − 1

2ℓ− 1

)

s(2r − 1, 2ℓ+ q − 1)(r − 1)q,

(3.2)

where we used the identity (2.10) and Theorem 2.1.
It is easy to see that

lim
x→0

d2[(arccosx)α]

dx2
= (α− 1)α

(

π

2

)α−2

. (3.3)

When k = 2r − 1 for r ≥ 2, it follows that

lim
x→0

d2r−1[(arccosx)α]

dx2r−1
=

2r−1
∑

ℓ=1

(−1)ℓ⟨α⟩ℓ
(

π

2

)α−ℓ

B2r−1,ℓ

(

1, 0, 1, 0, 9, . . . ,
1− (−1)ℓ

2
[(2r − ℓ− 2)!!]2

)

= −
r
∑

ℓ=1

⟨α⟩2ℓ−1

(

π

2

)α−2ℓ+1

B2r−1,2ℓ−1

(

1, 0, 1, 0, 9, . . . , [(2r − 2ℓ− 1)!!]2
)

=

r
∑

ℓ=1

(−1)r−ℓ−1⟨α⟩2ℓ−1π
α−2ℓ+122r−α−1

2r−2ℓ
∑

q=0

(

2ℓ+ q − 2

2ℓ− 2

)

s(2r − 2, 2ℓ+ q − 2)

(

2r − 3

2

)q

,

(3.4)

where we used the identity (2.10) and Theorem 2.1.
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It is easy to see that

lim
x→0

d[(arccosx)α]

dx
= −α

(

π

2

)α−1

. (3.5)

Combining these four limits (3.2), (3.3), (3.4), and (3.5) and simplifying yield the series expansion (3.1).
The proof of Theorem 3.1 is complete. □

Corollary 3.1. For |x| < 1, we have

(

2 arccosx

π

)2

= 1− 4

π

∞
∑

r=1

[(2r − 3)!!]2
x2r−1

(2r − 1)!
+

8

π2

∞
∑

r=1

[(2r − 2)!!]2
x2r

(2r)!
. (3.6)

Proof. Setting α = 2 in the series expansion (3.1) in Theorem 3.1 arrives at

(

2 arccosx

π

)2

= 1 +
2

π2

(2x)2

2!
+

∞
∑

r=2

(−1)r+1

[

2

π2

2r−2
∑

q=0

(q + 1)s(2r − 1, q + 1)(r − 1)q

]

(2x)2r

(2r)!

+

∞
∑

r=1

(−1)r

[

2

π

2r−2
∑

q=0

s(2r − 2, q)

(

2r − 3

2

)q
]

(2x)2r−1

(2r − 1)!
.

Further using the identities

2k
∑

ℓ=0

(ℓ+ 1)s(2k + 1, ℓ+ 1)kℓ = (−1)k(k!)2, k ∈ N (3.7)

and
2k
∑

ℓ=0

s(2k, ℓ)

(

k − 1

2

)ℓ

= (−1)k
[

(2k − 1)!!

2k

]2

, k ∈ N (3.8)

in [23, Lemmas 2.1 and 2.2], we acquire

(

2 arccosx

π

)2

= 1 +
2

π2

(2x)2

2!
+

2

π2

∞
∑

r=2

[(r − 1)!]2
(2x)2r

(2r)!
− 2

π

∞
∑

r=1

[

(2r − 3)!!

2r−1

]2
(2x)2r−1

(2r − 1)!
.

The series expansion (3.6) follows. The proof of Corollary 3.1 is complete. □

Corollary 3.2. For k ∈ N and |x| < 1, we have

(

2 arccoshx

π

)2

= −1 +
4

π

∞
∑

r=1

[(2r − 3)!!]2
x2r−1

(2r − 1)!
− 8

π2

∞
∑

r=1

[(2r − 2)!!]2
x2r

(2r)!
(3.9)

and

(−1)k
(

2 arccoshx

π

)2k

= 1 +
⟨2k⟩2
π2

(2x)2

2!

+

∞
∑

r=2

(−1)r

[

r
∑

ℓ=1

(−1)ℓ
⟨2k⟩2ℓ
π2ℓ

2r−2ℓ
∑

q=0

(

2ℓ+ q − 1

2ℓ− 1

)

s(2r − 1, 2ℓ+ q − 1)(r − 1)q

]

(2x)2r

(2r)!

+

∞
∑

r=1

(−1)r

[

r
∑

ℓ=1

(−1)ℓ−1 ⟨2k⟩2ℓ−1

π2ℓ−1

2r−2ℓ
∑

q=0

(

2ℓ+ q − 2

2ℓ− 2

)

s(2r − 2, 2ℓ+ q − 2)

(

2r − 3

2

)q
]

(2x)2r−1

(2r − 1)!
,

(3.10)

where the falling factorials ⟨2k⟩r for k, r ∈ N are defined by (2.9).

Proof. This follows from substituting the relation arccosx = − i arccoshx into the series expansions (3.6)
and (3.1) for α = 2k. □
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4. Maclaurin’s series expansions for real powers of inverse sine function

Theorem 4.1. For k, n ≥ 0 such that 2n+ 1 ≥ k ≥ 0, we have

B2n+1,k

(

(

arcsinx

x

)′∣
∣

∣

∣

x=0

,

(

arcsinx

x

)′′∣
∣

∣

∣

x=0

, . . . ,

(

arcsinx

x

)(2n−k+2)∣
∣

∣

∣

x=0

)

= 0. (4.1)

For k, n ∈ N such that 2n ≥ k ∈ N, we have

B2n,k

(

(

arcsinx

x

)′∣
∣

∣

∣

x=0

,

(

arcsinx

x

)′′∣
∣

∣

∣

x=0

, . . . ,

(

arcsinx

x

)(2n−k+1)∣
∣

∣

∣

x=0

)

= (−1)n+k (4n)!!

(2n+ k)!

k
∑

q=1

(−1)q
(

2n+ k

k − q

) 2n
∑

ℓ=0

(

q + ℓ− 1

q − 1

)

s(2n+ q − 1, q + ℓ− 1)

(

2n+ q − 2

2

)ℓ

, (4.2)

where s(n, k) denotes the first kind Stirling numbers generated by (1.5).

Proof. It is well-known that

arcsinx =

∞
∑

ℓ=0

(2ℓ− 1)!!
x2ℓ+1

(2ℓ+ 1)!
, |x| < 1.

Then

arcsinx

x
=

∞
∑

ℓ=0

(2ℓ− 1)!!

2ℓ+ 1

x2ℓ

(2ℓ)!
, |x| < 1.

Therefore, for ℓ ∈ N, we have

(

arcsinx

x

)(ℓ)∣
∣

∣

∣

x=0

=







0, ℓ = 2m+ 1

(2m− 1)!!

2m+ 1
, ℓ = 2m

for m ≥ 0. Then it is easy to see that

Bn,k

(

(

arcsinx

x

)′∣
∣

∣

∣

x=0

,

(

arcsinx

x

)′′∣
∣

∣

∣

x=0

, . . . ,

(

arcsinx

x

)(n−k+1)∣
∣

∣

∣

x=0

)

= Bn,k

(

0,
1

3
, 0,

9

5
, 0,

225

7
, 0, 1225, 0, . . . ,

1 + (−1)n−k+1

2

[(n− k)!!]2

n− k + 2

)

.

Consequently, from [11, Theorem 3.1] and [12, Theorem 1.1], we can turn out the formulas (4.1) and (4.2).
The proof of Theorem 4.1 is complete. □

Theorem 4.2. For α ∈ R and |x| < 1, we have

(

arcsinx

x

)α

= 1 +

∞
∑

n=1

(−1)n(4n)!!

[

2n
∑

k=1

(−1)k
⟨α⟩k

(2n+ k)!

k
∑

q=1

(−1)q
(

2n+ k

k − q

)

×
2n
∑

ℓ=0

(

q + ℓ− 1

q − 1

)

s(2n+ q − 1, q + ℓ− 1)

(

2n+ q − 2

2

)ℓ
]

x2n

(2n)!
.

Proof. By the Faà di Bruno formula (2.1), it follows that

dn

dxn

[(

arcsinx

x

)α]

=

n
∑

k=0

⟨α⟩k
(

arcsinx

x

)α−k

×Bn,k

(

(

arcsinx

x

)′

,

(

arcsinx

x

)′′

, . . . ,

(

arcsinx

x

)(n−k+1)
)

→
n
∑

k=0

⟨α⟩k Bn,k

(

(

arcsinx

x

)′∣
∣

∣

∣

x=0

,

(

arcsinx

x

)′′∣
∣

∣

∣

x=0

, . . . ,

(

arcsinx

x

)(n−k+1)∣
∣

∣

∣

x=0

)
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as x → 0. Consequently, we figure out that
(

arcsinx

x

)α

=

∞
∑

n=0

lim
x→0

d2n

dx2n

[(

arcsinx

x

)α]
x2n

(2n)!

= 1 +

∞
∑

n=1

[

2n
∑

k=1

⟨α⟩k B2n,k

(

(

arcsinx

x

)′∣
∣

∣

∣

x=0

,

(

arcsinx

x

)′′∣
∣

∣

∣

x=0

, . . . ,

(

arcsinx

x

)(2n−k+1)∣
∣

∣

∣

x=0

)]

x2n

(2n)!

= 1 +
∞
∑

n=1

(−1)n(4n)!!

[

2n
∑

k=1

(−1)k
⟨α⟩k

(2n+ k)!

k
∑

q=1

(−1)q
(

2n+ k

k − q

) 2n
∑

ℓ=0

(

q + ℓ− 1

q − 1

)

×s(2n+ q − 1, q + ℓ− 1)

(

2n+ q − 2

2

)ℓ
]

x2n

(2n)!
.

The proof of Theorem 4.2 is complete. □

5. Infinite series representations related to Pi and its square

By means of comparing the series expansion (1.6) in Theorem 1.3 with the series expansion (3.6) in
Corollary 3.1, we can find the following infinite series representations of π and π2.

Theorem 5.1. For r ∈ N, the constants π and π2 can be represented by

π =
22r−1

(

2r−2
r−1

)

∞
∑

m=2r−1

2m

m

(

m−1
2r−2

)

(

2m
m

) (5.1)

and

π2 = 8
∞
∑

m=1

2m

m2

1
(

2m
m

) . (5.2)

Proof. Maclaurin’s series expansion (3.6) can be reformulated as

(arccosx)2 =
π2

4
− π

∞
∑

r=1

[(2r − 3)!!]2
x2r−1

(2r − 1)!
+ 2

∞
∑

r=1

[(2r − 2)!!]2
x2r

(2r)!
, |x| < 1. (5.3)

The series expansion (1.6) in Theorem 1.3 can be rearranged as

(arccosx)2

2!
= 1− x+

∞
∑

m=1

m!

(2m+ 1)!!(m+ 1)

m+1
∑

ℓ=0

(−1)ℓ
(

m+ 1

ℓ

)

xℓ

=

∞
∑

m=0

m!

(2m+ 1)!!(m+ 1)
−
[

∞
∑

m=0

m!

(2m+ 1)!!

]

x+

∞
∑

m=1

m!

(2m+ 1)!!(m+ 1)

m
∑

ℓ=1

(−1)ℓ+1

(

m+ 1

ℓ+ 1

)

xℓ+1

=

∞
∑

m=0

m!

(2m+ 1)!!(m+ 1)
−
[

∞
∑

m=0

m!

(2m+ 1)!!

]

x+

∞
∑

ℓ=2

(−1)ℓ

[

∞
∑

m=ℓ

(m− 1)!

(2m− 1)!!m

(

m

ℓ

)

]

xℓ

=

∞
∑

m=0

2m+1

(m+ 1)2
1

(

2m+2
m+1

) +

∞
∑

ℓ=1

(−1)ℓ

[

∞
∑

m=ℓ

2m

m

(

m−1
ℓ−1

)

(

2m
m

)

]

xℓ

ℓ
.

Accordingly, we obtain

(arccosx)2 = 2
∞
∑

m=0

2m+1

(m+ 1)2
1

(

2m+2
m+1

) + 2
∞
∑

ℓ=1

(−1)ℓ

[

∞
∑

m=ℓ

2m

m

(

m−1
ℓ−1

)

(

2m
m

)

]

xℓ

ℓ
. (5.4)

Comparing the series expansion (5.4) with the series expansion (5.3) produces

2

∞
∑

m=0

2m+1

(m+ 1)2
1

(

2m+2
m+1

) =
π2

4
,

2(−1)2r−1

[

∞
∑

m=2r−1

2m

m

(

m−1
2r−2

)

(

2m
m

)

]

x2r−1

2r − 1
= −π[(2r − 3)!!]2

x2r−1

(2r − 1)!
,
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and

2(−1)2r

[

∞
∑

m=2r

2m

m

(

m−1
2r−1

)

(

2m
m

)

]

x2r

2r
= 2[(2r − 2)!!]2

x2r

(2r)!
(5.5)

for r ∈ N. The second equation can be rewritten as

∞
∑

m=2r−1

2m

m

(

m−1
2r−2

)

(

2m
m

) =
π

2

[(2r − 3)!!]2

(2r − 2)!
= π

(

2r−2
r−1

)

22r−1

for r ∈ N. The series representations (5.1) and (5.2) follows. The proof of Theorem 5.1 is complete. □

By taking the special value x = 1
2 on both sides of (3.1) in Theorem 3.1, we can obtain the following

interesting series representation.

Theorem 5.2. For α ∈ R, we have

(

2

3

)α

= 1+

∞
∑

ℓ=1

(−1)ℓ

{

∞
∑

r=ℓ

(−1)r

(2r)!

[

s(2r−1, 2ℓ−1)+

2r−2ℓ
∑

q=1

(

2ℓ+ q − 1

2ℓ− 1

)

s(2r−1, 2ℓ+q−1)(r−1)q

]}

⟨α⟩2ℓ
π2ℓ

+

∞
∑

ℓ=1

(−1)ℓ−1

[

∞
∑

r=ℓ

(−1)r

(2r − 1)!

2r−2ℓ
∑

q=0

(

2ℓ+ q − 2

2ℓ− 2

)

s(2r − 2, 2ℓ+ q − 2)

(

2r − 3

2

)q
]

⟨α⟩2ℓ−1

π2ℓ−1
. (5.6)

Proof. This follows from taking the special value x = 1
2 on both sides of (3.1) in Theorem 3.1 and

interchanging the orders of sums. The proof of Theorem 5.2 is complete. □

Corollary 5.1. The circular constant π can be represented as

π

6
=

∞
∑

r=1

[(2r − 3)!!]2

(4r − 2)!!
. (5.7)

Proof. From taking α = 1 on both sides of (5.6) in Theorem 5.2 and simplifying, we doscover

π

3
=

∞
∑

r=1

(−1)r−1

(2r − 1)!

2r−2
∑

q=0

s(2r − 2, q)

(

2r − 3

2

)q

.

Further making use of the identity (3.8) and simplifying, we conclude the series representation (5.7). The
proof of Corollary 5.1 is complete. □

Corollary 5.2 ([23, Theorem 5.1]). The constant π2 satisfies

π2

18
=

∞
∑

r=1

[(r − 1)!]2

(2r)!
. (5.8)

Proof. The series representation (5.9) comes from taking α = 2 on both sides of (5.6) in Theorem 5.2
and simplifying give

4

9
= 1− 2

π2

∞
∑

r=1

(−1)r

(2r)!

[

s(2r − 1, 1) +

2r−2
∑

q=1

(q + 1)s(2r − 1, q + 1)(r − 1)q

]

+
2

π

∞
∑

r=1

(−1)r

(2r − 1)!

2r−2
∑

q=0

s(2r − 2, q)

(

2r − 3

2

)q

.

Further using the formula s(r, 1) = (−1)r−1(r − 1)! for r ∈ N, employing the identities (3.7) and (3.8),
and simplifying, we acquire

4

9
= 1− 2

π2

∞
∑

r=1

(−1)r

(2r)!
(−1)r−1[(r − 1)!]2 +

2

π

∞
∑

r=1

(−1)r

(2r − 1)!
(−1)r−1

[

(2r − 3)!!

2r−1

]2

,

that is,

4

9
= 1− 4

π

∞
∑

r=1

[(2r − 3)!!]2

(4r − 2)!!
+

2

π2

∞
∑

r=1

[(r − 1)!]2

(2r)!
. (5.9)
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Substituting (5.7) in Corollary 5.1 into (5.9) reveals

4

9
= 1− 4

π

π

6
+

2

π2

∞
∑

r=1

[(r − 1)!]2

(2r)!
.

The series representation (5.8) is thus obtained. The proof of Corollary 5.2 is complete. □

6. Two combinatorial identities

Squaring on both sides of the equation (2.5) and comparing with Maclaurin’s series expansion (3.6)
in Corollary 3.1, as well as rewriting the equation (5.5), we can derive the following two combinatorial
identities.

Theorem 6.1. For r ∈ N, we have

r−1
∑

q=0

(

2q
q

)

2q + 1

(

2r−2q−2
r−q−1

)

2r − 2q − 1
=

24r−3

r2
(

2r
r

) (6.1)

and
∞
∑

m=2r

2m

m

(

m−1
2r−1

)

(

2m
m

) =
22r−2

2r − 1

1
(

2r−2
r−1

) . (6.2)

Proof. From the series expansion (2.5) and Cauchy’s product, we conclude that

(arccosx)2 =

[

π

2
−

∞
∑

r=0

(2r − 1)!!

(2r)!!

x2r+1

2r + 1

]2

=

(

π

2

)2

− π

∞
∑

r=0

(2r − 1)!!

(2r)!!

x2r+1

2r + 1
+ x2

[

∞
∑

r=0

(2r − 1)!!

(2r)!!

x2r

2r + 1

]2

=

(

π

2

)2

− π

∞
∑

r=0

(2r − 1)!!

(2r)!!

x2r+1

2r + 1
+

∞
∑

r=0

[

r
∑

q=0

(2q − 1)!!

(2q)!!(2q + 1)

(2r − 2q − 1)!!

(2r − 2q)!!(2r − 2q + 1)

]

x2r+2

=

(

π

2

)2

− π

∞
∑

r=1

(2r − 3)!!

(2r − 2)!!

x2r−1

2r − 1
+

∞
∑

r=1

[

r−1
∑

q=0

(2q − 1)!!

(2q)!!(2q + 1)

(2r − 2q − 3)!!

(2r − 2q − 2)!!(2r − 2q − 1)

]

x2r.

Comparing this with (5.3), equating coefficients of the factors x2r, and simplifying reveal the combinatorial
identity (6.1).

The equation (5.5) can be simplified as

∞
∑

m=2r

2m

m

(

m−1
2r−1

)

(

2m
m

) =
[(2r − 2)!!]2

(2r − 1)!
=

22r−2

2r − 1

1
(

2r−2
r−1

) , r ∈ N.

The combinatorial identity (6.2) is thus proved. The proof of Theorem 6.1 is complete. □

7. Remarks

Finally, we give several remarks related to our main results.

Remark 7.1. It is trivial that Bk,k(x) = xk and Bk+1,0(x1, x2, . . . , xk+2) = 0 for k ≥ 0. Consequently, we
considered in Theorem 2.1 all nontrivial cases of Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 with respect to
the sequence listed in (2.2), which is equivalent to the sequence

(arcsinx)(k)
∣

∣

x=0
= −(arccosx)(k)

∣

∣

x=0
, k ∈ N.

Using the formulas (2.3) and (2.4) in Theorem 2.1, we can compute Maclaurin’s series expansions at
x = 0 for the kind of composite functions f(arccosx) and f(arcsinx), such as (arcsinx)α for α ∈ R and
|x| < 1, if the derivatives of f is explicitly computable.
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Remark 7.2. In the series expansion (3.1), if 00 is assumed to be 1, the term ⟨α⟩2
π2

(2x)2

2! can be combined
into the first sum in Theorem 3.1. Then the series expansion (3.1) can be reformulated as
(

2 arccosx

π

)α

= 1 +

∞
∑

r=1

(−1)r

[

r
∑

ℓ=1

(−1)ℓ
⟨α⟩2ℓ
π2ℓ

2r−2ℓ
∑

q=0

(

2ℓ+ q − 1

2ℓ− 1

)

s(2r − 1, 2ℓ+ q − 1)(r − 1)q

]

(2x)2r

(2r)!

+

∞
∑

r=1

(−1)r

[

r
∑

ℓ=1

(−1)ℓ−1 ⟨α⟩2ℓ−1

π2ℓ−1

2r−2ℓ
∑

q=0

(

2ℓ+ q − 2

2ℓ− 2

)

s(2r − 2, 2ℓ+ q − 2)

(

2r − 3

2

)q
]

(2x)2r−1

(2r − 1)!

for α ∈ R and |x| < 1. Similarly, the series expansion (3.10) in Corollary 3.2 can be reformulated as

(−1)k
(

2 arccoshx

π

)2k

= 1 +
∞
∑

r=2

(−1)r

[

r
∑

ℓ=1

(−1)ℓ
⟨2k⟩2ℓ
π2ℓ

×
2r−2ℓ
∑

q=0

(

2ℓ+ q − 1

2ℓ− 1

)

s(2r − 1, 2ℓ+ q − 1)(r − 1)q

]

(2x)2r

(2r)!

+

∞
∑

r=1

(−1)r

[

r
∑

ℓ=1

(−1)ℓ−1 ⟨2k⟩2ℓ−1

π2ℓ−1

2r−2ℓ
∑

q=0

(

2ℓ+ q − 2

2ℓ− 2

)

s(2r − 2, 2ℓ+ q − 2)

(

2r − 3

2

)q
]

(2x)2r−1

(2r − 1)!

for k ∈ N and |x| < 1.

Remark 7.3. Maclaurin’s series expansion (3.9) can be reformulated as

(arccoshx)2 = −π2

4
+ π

∞
∑

r=1

[(2r − 3)!!]2
x2r−1

(2r − 1)!
− 2

∞
∑

r=1

[(2r − 2)!!]2
x2r

(2r)!
, |x| < 1. (7.1)

The series expansions (5.3) and (7.1) are more beautiful and concise in form.

Remark 7.4. The relations

arccosx = 2arctan

√

1− x

1 + x
, −1 < x ≤ 1

and
arcsinx = 2arctan

x

1 +
√
1− x2

, |x| ≤ 1

can be utilized to derive series expansions of powers of the inverse tangent function arctanx from series
expansions (1.6), (1.8), (3.1), (3.6), and (5.3) of powers of the inverse cosine function arccosx.

Remark 7.5. As for the infinite series representations (5.1) and (5.2) in Theorem 5.1 and the series repre-
sentation (5.7) in Corollary 5.1, we would like to mention the first unsolved problem posed by Herbert Wilf
on December 13, 2010 at https://www2.math.upenn.edu/~wilf/website/UnsolvedProblems.pdf, see
Figure 1.

Remark 7.6. This paper is a slightly revised version of the preprint [22].
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Figure 1. Series for π
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