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Abstract

Background
Although immunotherapy has shown clinical activity in lung adenocarcinoma (LUAD), LUAD prognosis
has been a perplexing problem. We aimed to construct an immune-related lncRNA pair (IRLPs) score for
LUAD and identify the best drugs to treat immune-related adverse events (ir AEs).

Methods
Based on The Cancer Genome Atlas (TCGA) LUAD dataset, IRLPs were identified to construct an IRLPs
scoring system by Cox regression and were validated in the Gene Expression Omnibus (GEO) dataset.
Next, immune and molecular characteristics were explored in different IRLP subgroups. The “pRRophetic”
package was used to predict the sensitivity of drugs used to treat ir AEs.

Results
A total of 477 LUAD patients in TCGA with gene expression and mutation data with complete
clinicopathological features were found in our study and used as a training set. The study also included
318 patients from three GEO datasets. The IRLPs score was constructed based on eight IRLPs, and
patients with a high IRLP risk score had a better overall survival (OS). Immune score (Cor=-0.18893,
P<0.001), stoma score (Cor=-0.24804, P<0.001), and microenvironment score (Cor=-0.22338, P<0.001)
were significantly decreased in the patients with the highest IRLP risk score. The high-risk group was
found enriched in molecular changes in DNA and chromosomes, and in this group the tumor mutation
burden (TMB) was higher than in the low-risk group (P=0.0015). Immunosuppressor methotrexate
sensitivity was higher in the high-risk group (P=0.0052), whereas parthenolide (P<0.001) and rapamycin
(P=0.013) sensitivity were lower in the high-risk group.

Conclusions
Our study established an IRLPs scoring system as a biomarker to help in the prognosis, the identification
of molecular and immune characteristics, and the patient-tailored selection of the most suitable drugs for
ir AEs therapy.

1. Background
Lung cancer is one of the most common malignant tumors globally, with a high incidence of 11.4% in
2020. Approximately 40% of the primary lung tumors are lung adenocarcinomas (LUAD) (1, 2). LUAD,
which is common in females and non-smokers, is characterized by high mortality and metastasis rates
(3). Although great improvement has been made in the clinical diagnosis and treatment, the 5-year
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survival rate in LUAD patients is only 18% (4). Therefore, the identification of new biomarkers to help in
the prognosis of LUAD is of great significance. Recently, the emergence of immunotherapy has brought
unprecedented levels of survival to lung cancer patients, especially those with advanced or metastatic
LUAD (5, 6). However, immunotherapy brings not only considerable therapeutic effects but also immune-
related adverse events (ir AEs). In addition, although the incidence of ir AEs is lower than the incidence of
the adverse effects of chemotherapy, due to the mechanism of action of immune drugs, ir AEs may occur
in all of the body (7, 8). Furthermore, ir AEs may even lead to systemic infections and death, and an
increase in fatal events has been reported(9). Corticosteroid therapy can successfully treat most ir AEs,
but a combination of immunosuppressors is needed to combat more serious adverse reactions (10, 11).
However, since it is unclear whether a patient can undergo immunosuppressive therapy of ir AEs safely,
there is an urgent need to find some biomarkers to predict the drug sensitivity of immunosuppressors.

LUAD is an immune-sensitive cancer. Studies have shown that the immunotherapy response may be
predicted by tumor-immune cell infiltration and an immune score(12). Long non-coding RNAs (lncRNAs)
are RNAs without protein-coding capacity and greater than 200 nucleotides in length(13). Studies showed
that lncRNAs can regulate the immune response and immune cell development(14, 15). Several studies
have proposed immune-related lncRNA signatures to help in the prognostic of LUAD. However, the results
cannot be directly generalized to all patients due to the use of different chip sequencing protocols,
different platforms, and different testing times for gene expression (16–18). These shortcomings could
be overcome by combining two or more biomarkers, which work better than a single prediction criterion in
cancer prediction models, and immune-related gene pairs (IRGPs) were reported to have accurately
predicted the LUAD prognoses (19, 20). However, these studies have focused on mRNAs rather than
lncRNAs, which play an important role in the immune system. Therefore, the clinical relevance and
prognostic significance of immune-related lncRNAs pairs (IRLPs) are currently unclear.

In this study, we constructed an individualized signature of IRLPs that works as an independent and
predictive factor of overall survival (OS) for LUAD patients. Furthermore, the IRLP model also helps
distinguishing the LUAD patients responsive to immunotherapy and predicts the sensitivity of drugs used
in ir AEs therapy.

2. Materials And Methods

2.1 Data source
The RNA-seq data of 515 LUAD cases (including 535 tumor samples and 59 normal samples) and 569
LUAD cases of genetic alteration data were downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) (October 10th, 2020). In addition, the normalized data of RNA expression
matrix of GSE30219, GSE37745, and GSE50081 were downloaded from Gene Expression Omnibus (GEO
https://www.ncbi.nlm.nih.gov/geo/); the platform of these datasets was GPL570 (Affymetrix Human
Genome U133 Plus 2.0 Array). The relevant clinical characteristics of patients were also downloaded, and
the patients without the information on survival time and survival status were excluded from our study.
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2.2 Identification of immune-related lncRNAs
Two thousand four hundred ninety-eight immune-related genes were downloaded from the ImmPort
Portal (https://www.immport.org/). Then, immune-related lncRNAs were identified by Pearson’s
correlation analysis between immune-related genes and lncRNA expression levels (|correlation coefficient|
> 0.6 and p < 0.001).

2.3 Construction of a prognostic IRLP signature
To ensure that the immune-related lncRNAs could be measured on all platforms included in this study, the
intersect function was used to identify the common immune-related lncRNAs in the TCGA and GEO
datasets. We only selected the lncRNAs with a relatively high variation in expression levels (median
absolute deviation >0.5). Next, the immune-related lncRNAs were paired randomly to construct a
collection of lncRNA pairs. For each LUAD sample, the IRLPs were computed by pairwise comparison of
the expression level. The output is one if the expression of the first lncRNA is higher than that of the
second one; otherwise, the output is zero. After removing IRLPs with small variation and imbalanced
distribution (MAD=0), the remaining ones were selected as candidate IRLPs. Finally, lasso Cox
proportional with 10-fold cross-validation (glmet, caret, and survival package) was used to establish the
final model of an IRLP risk score to predict the prognosis of LUAD in the TCGA dataset.

2.4 Validation of IRLPs signature in the GEO data set
The IRLP model was further evaluated in the LUAD patients from the GEO dataset by the log-rank test. We
also accessed the prognosis value of the IRLP risk score based on other clinical factors in univariate and
multivariate Cox regression analysis.

2.5 Comprehensive analysis of immune characteristic and
molecular variation in different IRLP risk score subgroups
Data on the infiltration of immune cells found in the TCGA dataset were downloaded from TIMER2.0
(http://timer.comp-genomics.org). Spearman’s correlation analysis was performed to analyze the
relationship between the immune cell infiltrates and the IRLPs risk score. In addition, Student’s t-test was
used to compare the different levels of immune cell infiltrates between the high-risk and low-risk groups
defined by the IRLP risk score.

Differential expression analysis was performed on all genes between the high-risk group and low-risk
group of TCGA samples. In addition, enrichment analysis was used to determine the signaling pathways
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene set
(GSEA software).

In the gene mutation analysis, gene mutation quantity and quality were analyzed in two subgroups of
LUAD patients (Maftools package). In addition, we also analyzed the relationship between tumor
mutation burden (TMB) and IPLP risk score subgroup using a Student’s t-test.
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2.6 Predicting the drug sensitivity of the
immunosuppressors
To identify which ir AEs drugs might be useful, we used the “pRRophetic” R package to predict drug
sensitivity from tumor gene expression levels (21).

2.7 Statistical analysis
All statistical analyses were performed in the R 4.0.5 software. Student’s t-test was used to compare the
differences between two subgroups. The Kaplan-Meier method was used to analyze the differences in
survival curves using the log-rank test.

3. Results

3.1 Dataset of LUAD patients
After excluding the patients for whom the survival status and survival time were missing, a total of 795
patients (TCGA: 477 cases; GEO: 318 cases) were included in our study. The flow diagram of this study
was shown in Fig. 1.

3.2 Construction and validation of a prognostic IRLP
signature
A total of 105 immune-related lncRNAs were found in all platforms of the dataset, and 773 IRLPs were
paired. First, univariate Cox regression identified 53 IRLPs that were related to the OS of LUAD patients in
the TCGA train dataset (P<0.01). Then, the Least Absolute Shrinkage and Selection Operator (LASSO)
regression analysis with iteration=1000 selected 18 IRLPs (Fig. 2a) for the multivariate Cox regression
analysis, and, finally, eight IRLPs were identified to calculate the IRLP risk score (Fig. 2b). Furthermore, we
compared the survival curves of the TCGA train dataset (P<0.001), TCGA test dataset (P=0.017), and GEO
dataset (P=0.027) (Fig. 3a–c). These results all showed that high-risk LUAD patients exhibited a poorer
prognosis than low-risk LUAD patients.

3.3 Assessing the value of the IRLP signature to predict the
prognostic of overall survival
We took advantage of the univariate and multivariate Cox regression model to analyze the predictive
value of IRLP risk score and clinical parameters. The univariable Cox regression analysis indicated that
the IRLPs risk score was an important factor for patients’ prognosis (TCGA total dataset: HR=1.077 (95%
CI: 1.047–1.107), P<0.001; TCGA train dataset: HR=1.428 (95% CI: 1.312–1.555), P<0.001; TCGA test
dataset: HR=1.054 (95% CI: 1.014–1.097), P=0.009; GEO dataset: HR=1.095 (95% CI: 1.053–1.140),
P<0.001; Fig. 4a–d). The multivariable Cox regression indicated that the IRLPs risk score was an
independent predictive indicator for the OS of LUAD patients (TCGA total dataset: HR=1.078 (95%
CI=1.045–1.112), P<0.001; TCGA train dataset: HR=1.380 (95% CI=1.265–1.507), P<0.001; TCGA test
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dataset: HR=1.050 (95% CI=1.001–1.100), P=0.043; GEO dataset: HR=1.070 (95% CI=1.023–1.119),
P=0.003; Fig. 4a-d). The ROC curves also revealed that the IRLPs risk score plays an important role in
predicting LUAD prognosis (TCGA total dataset: AUC=0.733; TCGA train dataset: AUC=0.777; TCGA test
dataset: AUC=0.685; GEO dataset: AUC=0.680. Fig. 5a–d).

3.4 Relationship between the IRLP subgroups and clinical
characteristics
We evaluated the correlation between the IRLP subgroups and clinical characteristics by heatmap. The
results showed that the distributions of gender, stage, T stage, and N stage were significantly different
between the high-risk and low-risk groups of the TCGA total dataset (Fig. 6a), and the GEO dataset
showed that the distributions of the T and M stage were significantly different (Fig. 6b).

3.5 Relationship between the IRLPs and immune cell
infiltrates
Spearman’s rank correlation analysis showed that the immune score (Cor=-0.18893, P<0.001), stoma
score (Cor=-0.24804, P<0.001), and microenvironment score (Cor=-0.22338, P<0.001) were significantly
decreased in the group with the higher IRLP risk score (Fig. 7). The distributions of immune cell infiltrates
were different in the two IRLP subgroups (Fig. 8).

3.6 Molecular characteristics of different IRLP subgroups
The gene sets of the high-IRLP subgroup were most enriched in KEGG_DNA_REPLICATION (enrich
score=0.76), GOBP_ATTACHMENT_OF_MITOTIC_SPINDLE_MICROTUBULES_TO_KINETOCHORE (enrich
score=0.92), GOMF_SINGLE_STRANDED_DNA_HELICASE_ACTIVITY (enrich score=0.86), and
GOCC_CONDENSED_NUCLEAR_CHROMOSOME_KINETOCHORE (enrich score=0.83) (Fig. 9a). The gene
sets of low-IRLPs subtype were most enriched in KEGG_ASTHMA (enrich score=0.70),
GOMF_ATP_DEPENDENT_MICROTUBULE_MOTOR_ACTIVITY_MINUS_END_DIRECTED (enrich
score=0.81), GOCC_AXONEMAL_DYNEIN_COMPLEX (enrich score=0.79), and
GOBP_SODIUM_ION_EXPORT_ACROSS_PLASMA_MEMBRANE (enrich score=0.76) (Fig. 9b). GO analysis
showed that the differentially expressed genes between the IRLP subgroups were enriched in neutrophil
activation involved in immune response (BP), the cell-cell junction (CC), and metal ion transmembrane
transporter activity (MF; Fig. 9c-e). KEGG analysis showed that the differentially expressed genes were
enriched in Herpes simplex virus 1 infection (Fig. 9f). Then, we analyzed gene mutations to gain further
biological insight into the immunological nature of the IRLPs subgroups. The high-risk group had the
highest mutation rate (the top 20 genes), and missense variations were the most common mutation type
in the two subgroups (Fig. 10a and b). The TTN mutation was the highest in the high-risk group. Next, we
explored the relationship between the TTN mutation and IRLP subgroups. The TTN mutation was
significantly more frequent in the high-risk group (Fig. 10c). Finally, we compared the tumor mutation
burden (TMB) between these two subgroups. As a result, TMB was higher in the IRLPs of the high-risk
group (Fig. 10d).
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3.7 Prediction of drug sensitivity to ir AEs therapy
We identified three immunosuppressors (methotrexate, parthenolide, and rapamycin) in the “pRRophetic”
R package. Methotrexate had higher sensitivity in the IRLP high-risk group (P=0.0052, Fig. 11a), whereas
parthenolide (P<0.001) and rapamycin (P=0.013) showed lower sensitivity in IRLP high-risk group
(Fig. 11b and c).

4. Discussion
With the development of sequencing technology, more and more attention in cancer research has been
paid to bioinformatics methods. In our present study, we constructed a risk scoring system based on
eight IRLPs in the TCGA dataset, and the patients were divided into high-risk and low-risk groups
according to the cut-off of risk score. Survival analysis showed that the high-risk group had a poor
prognosis. The IRLP-risk score was an independent risk factor in our Cox regression analysis combined
with clinical characteristics (age, gender, and stage). These results were also proven in the GEO dataset.
Furthermore, our results also showed that the IRLP risk score was related to immune cell infiltration. Next,
we explored the gene functional enrichment and gene mutation in two IRLPs subgroups. The high-risk
group was found to be enriched in molecular changes in DNA and chromosomes, and to have a higher
TMB than the low-risk group. Finally, the drug sensitivity of immunosuppressors was predicted to find the
most suitable ir AEs therapy for each group.

The tumor microenvironment (TME) is correlated with cancer prognosis, supports cancer cells to
replicative proliferation, and affects the malignant phenotypes (22, 23). Many immune cells are present in
the TME, modulating tumor cell migration, invasion, metastasis, and anticancer drug sensitivity(24). The
relationship between the IRLP score and infiltrating immune cells was analyzed in our study, and we
found that they were significantly correlated. These results indicated that our IRLP risk score might allow
the prognosis of LUAD by being sensitive to the functional status of immune cells. The immune score
reflected the infiltration of immune cells in the tumor tissue based on the algorithm. A study found that
patients with medium and high immune scores had a longer OS time than those in the low immune score
group in lung cancer(25). This means that a higher immune score may be beneficial for survival in lung
cancer patients. The IRLP risk score was found to be negatively correlated with the immune score in our
current results. These results demonstrated that a high immune activity might play an important role in
the increased survival time of LUAD patients.

To gain further biological insight into the IRLP subgroups, we studied the functional enrichment and gene
mutations in these two subgroups. Functional enrichment analysis found that molecular changes in DNA
and chromosomes were most enriched in the high-risk subgroup. As previously reported, our results also
showed that missense mutations are the most common type of mutations in LUAD(26). The TTN
mutation was found to be more frequent in the high-risk group than in the low-risk group and showed a
significant difference between the high-risk and low-risk groups. The TTN mutation was reported as a
potential biomarker associated with a better response to immune checkpoint blockade in solid
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tumors(27). A study based on the TCGA dataset reported that the TTN missense mutation correlates with
favorable prognosis in lung squamous cell carcinoma (LUSC) but not in LUAD(28). Our results are also in
agreement with the notion that TTN mutation plays a different role in LUAD.

Next, the relationship between the IRLP score and TMB was explored. Not only a high TMB was found to
reflect worse clinical outcomes in non-small cell lung cancer(29), but also patients with high TMB (TMB-
H) achieved good results in immunotherapy of solid tumors(30). In this study, the high-risk subgroup had
the highest TMB. Thus, the TMB may explain why IRLPs are correlated with the prognosis of LUAD, and
the IRLP score may also help explain the immunotherapy response. However, other possible mechanisms
involved in this relationship still need to be further studied.

Nowadays, there is evidence that immune checkpoint inhibitors effectively improve the OS time in various
cancers(31). However, immunotherapy-mediated ir AEs such as pneumonitis and thyroid dysfunction
were frequently reported because of their specificity and severity(32, 33). Most mild ir AEs can be treated
with glucocorticoids, while immunosuppressors treat severe ir AEs(34, 35). In the clinic, the management
of ir AEs is still difficult because they may occur at any time during the therapy but also at the end of
treatment (36). Hence, we explored the drug sensitivity of three immunosuppressors: methotrexate,
parthenolide, and rapamycin. Methotrexate sensitivity was higher in the high-risk group, whereas the
parthenolide and rapamycin sensitivity was lower in the high-risk group. Methotrexate is usually used for
autoimmune disease therapy, and a single-center analysis reported that methotrexate has a good curative
effect in rheumatic ir AEs(10). Parthenolide is one of the biologicals that play an anti-inflammatory role
by inhibiting nuclear factor kappa B (NF-κB) and cytokine tumor necrosis factor (TNF)-α(37, 38). The
same pharmacological effect in inhibiting TNF-α was found in infliximab and could be helpful in the
treatment of steroid-refractory ir AEs(39). These immunosuppressors (methotrexate, parthenolide, and
rapamycin) have a different mechanism of action, and patients also had different drug sensitivities.
Thus, our IRLPs scores may help identify the patients who would benefit from ir AEs therapy, but the
mechanisms of drug action in these two subgroups still need to be clarified.

Although we have constructed an IRLP risk scoring system that showed a good predictive performance
for LUAD patients and overcame the inconsistent sequencing platforms, there were still some noteworthy
limitations. First, the patients included in the training set were downloaded from TCGA, which mainly
includes white race patients. Thus, other ethnic groups still need to be evaluated. However, the results
showed that the IRLP score constructed in TCGA also applies to the Asian GEO dataset. Second, we
intersected the lncRNAs from two public datasets to overcome the differences in the sequencing
platforms, and some important lncRNAs may have been ignored or contributed to selection bias. Third,
our prediction on drug sensitivities was not validated in an immunotherapy cohort. There is no complete
cohort data on ir AEs at present because of the difficulty in collecting ir AEs data and treatment
outcomes. Finally, we used the “pRRophetic” R package to explore the drug sensitivity of
immunosuppressors, which includes a limited set of drugs and did not allow us to address the sensitivity
of many commonly used drugs.
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5. Conclusion
In summary, we built a risk model based on IRLPs. This signature had a good predictive accuracy and
effectiveness for LUAD. Furthermore, our IRLPs score significantly correlated with TME and TMB,
indicating that these molecular changes might explain the different clinical outcomes. Importantly, our
IRLPs may enhance the identification of the patients who can benefit from ir AEs therapy.
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Immunotherapy has shown clinical activity in lung adenocarcinoma (LUAD), but immunotherapy-
mediated ir AEs such as pneumonitis and thyroid dysfunction were frequently reported because of their
specificity and severity. Based on The Cancer Genome Atlas (TCGA) LUAD dataset, IRLPs were identified
to construct an IRLPs scoring system by Cox regression and were validated in the Gene Expression
Omnibus (GEO) dataset. Next, immune and molecular characteristics were explored in different IRLP
subgroups. The “pRRophetic” package was used to predict the sensitivity of drugs used to treat ir AEs.
Our study established an IRLPs scoring system as a biomarker to help in the prognosis, the identification
of molecular and immune characteristics, and the patient-tailored selection of the most suitable drugs for
ir AEs therapy.
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Figures

Figure 1

The flow diagram of this study
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Figure 2

Construction of a IRLPs signature in the TCGA train set (a) “Leaveone-out-cross-validation” for parameter
selection in LASSO (b) The forest map of multivariate Cox regression analysis in TCGA train dataset
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Figure 3

Survival curves between IRLPs high-risk and low-risk group (a) in the TCGA train dataset, (b) in the TCGA
test dataset. (c) in the GEO dataset



Page 17/24

Figure 4

Cox regression analysis of IRLPs risk score and clinical characteristics for the prognosis of LUAD patients
(a) in the TCGA train dataset, (b) in the TCGA test dataset. (c) in the TCGA total dataset, (d) in the GEO
dataset
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Figure 5

ROC curves of the IRLPs risk score and other clinical characters (a) in the TCGA train dataset, (b) in the
TCGA test dataset. (c) in the TCGA total dataset, (d) in the GEO dataset
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Figure 6

Relationship between IRLPs subgroups and clinical characters (a) in the TCGA total dataset. (b) in the
GEO dataset
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Figure 7

Relationship between the IRLPs risk score and immune cells infiltration



Page 21/24

Figure 8

Relationship between the IRLPs subgroups and immune cells infiltration of CIBERSORT
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Figure 9

The enrichment of the IRLPs subgroups and different expression gene set between IRLPs subgroups (a)
KEGG analysis of high-risk IRLPs subgroup, (b) KEGG analysis of low-risk IRLPs subgroup, (c) GO-BP
analysis of different expression gene set between IRLPs subgroups, (d) GO-CC analysis of different
expression gene set between IRLPs subgroups, (e) GO-MF analysis of different expression gene set
between IRLPs subgroups, (f) KEGG analysis of different expression gene set between IRLPs subgroups
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Figure 10

Gene mutations of different IRLPs subgroups (a) Top 20 genes mutation of high-risk IRLPs subgroup, (b)
Top 20 genes mutation of low-risk IRLPs subgroup, (c) relationship between TTN mutation and IRLPs
subgroups, (d) relationship between TMB and IRLPs subgroups
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Figure 11

Prediction of drug sensitivity on immunosuppressors of IRLPs subgroups (a) methotrexate, (b)
parthenolide, (c) rapamycin


