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Abstract
The move towards open access and re-use of scienti�c research data is rapidly being embraced by the
research community as best practice. Many research institutions are adopting a set of global data policy
guiding principles to make data Findable, Accessible, Interoperable and Reusable (FAIR). This study is
product of good research data stewardship of open access and re-use. We explored the use and
application of advanced data science with machine learning tools and algorithms on historical data of
insect morphometrics that were previously analyzed using conventional statistical methods, principal
component analysis and canonical variate analysis. Herein, we assess the predictive performance of four
machine learning classi�ers; K-nearest neighbor (KNN), random forest (RF), support vector machine (the
linear, polynomial and radial kernel SVMs) and arti�cial neural networks (ANNs) on the historical data of
fruit �y morphometrics. KNN and RF performed poorly with overall model accuracy lower than “no-
information rate” (NIR) (p-value>0.1). The SVM models had a predictive accuracy of >95% and Kappa
>0.78 with accuracy signi�cantly higher than NIR, p<0,001; while ANN model had a predictive accuracy of
96% and Kappa of 0.83 with accuracy also greater than NIR. We conclude that SVM and ANN models
could be used to discriminate fruit �y species based on wing vein and tibia length measurements or any
other morphologically similar pest taxa. These algorithms could be used as candidates for developing an
integrated and smart application software for insect discrimination and identi�cation.

Introduction
The move towards open access and re-use of structured or unstructured data has rapidly gained traction in
all forms of research; health, social sciences; natural resources sciences. This need has progressed and led
to the development of principles to govern research data stewardship referred to as FAIR data principles
meaning research data must be Findable, Accessible, Interoperable and Re-usable1,2. More and more
research institutions are subscribing to these principles as gatekeepers such as funding organizations are
tying public research funds to effective data management and stewardship. In addition, scholarly
publishers are rewarding efforts of those who document and avail quality re-usable data for public use,
leaving researchers with no option but to adopt the FAIR principles as good research practice. Besides,
research data sharing is important for the following reasons; (1) data collected in research provide an
invaluable research tool for researchers desiring to conduct investigations in similar �eld, (2) one can
extract information from data generated over time and perform meta analysis, (3) data can be used to
conduct previously unanticipated analyses for new research insights and (4) data can be used as a
training tool for new generations of researchers3. The present study is a product of good research data
stewardship of open access and data sharing that makes use of historical data collected on fruit �y
morphometrics to explore the performance of novel data science tools and algorithms.

Analysis of landmark-based morphometric measurements taken on body parts of insects have been a
taxonomic approach alongside DNA barcoding in detecting morphological differences to discriminate
closely related species, justify synonyms, demonstrate morphological variation across landscapes,
altitudinal or geo-graphical gradients and propose new species4–6. The measurements are usually of
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multivariate nature requiring multi-variate analysis techniques to be able to classify each specimen to a
speci�c group. Analysis of morphometric measurements have been deemed as a viable alternative to the
complicated and time-consuming taxonomic skills required in insect identi�cation. Many studies have
measured wing characteristics such as wing venation5,7 and wing geometry8–10 as landmark for
identi�cation of insects. Morphometrics data have in many cases produced results congruent with
phylogenetic groupings from DNA sequencing and hence morphometrics have gained popularity.

Conventional classi�cation analysis approaches have been used to analyse morphometric measurements
namely principal components analysis (PCA), discriminant analysis (DA), canonical variate analysis (CVA),
cluster analysis (CA) just to mention a few. Hernández-Ortiz et al11 used DA and CA on morphometrics
variables of the acuelans¸ wing and menosotum to distinguish populations of Anastrepha fraterculus
complex. Billah et al12 analyzed morphometric measurements of allopatric populations of fruit �y
parasitoids from coffee �elds using PCA and CVA where results showed that the relationship between the
populations was corroborated by genetic evidence from ampli�ed fragment length polymorphism (AFLP)
data. A study by Khamis et al5 used PCA and CVA to distinguish Bactrocera species collected from various
countries to establish whether B. invadens samples collected from Africa could be distinguished from
Asian Bactrocera species based on wing vein and tibia length morphometrics alongside DNA barcoding.
The study showed some level of concordance between molecular and morphometric results. While
conventional machine learning methods such as k-means cluster analysis13, PCA5,6, discriminant
analysis9, canonical variate analysis8, have been widely used, modern machine learning techniques are
gradually gaining popularity for morphometrics in insect science. For instance, the k-nearest neighbors14,
arti�cial neural network15 and random forest16 algorithms were recently used for morphometrics of
insects. While conventional methods are largely parametric in nature allowing distributional assumptions,
modern machine learning techniques are mainly non-parametric, thus they do not make assumptions
about the kind of mapping functions between output and input variables. Consequently, the novel
algorithms are more robust in their performance. The objective of the present study is therefore to assess
the predictive performance of four modern machine learning classi�ers; K-nearest neighbor (KNN), random
forest (RF), support vector machine (SVM) and arti�cial neural network (ANN) on morphometric
measurements on fruit �y, Bactrocera spp. Such information would be useful for the development of an
integrated and smart application software for insect discrimination and identi�cation.

Results

The K-nearest Neighbor Classi�er
The optimal value for the tuning parameter k for kNN classi�cation model was selected based on highest
model accuracy on training data for a range of k values. Model accuracy reduced with increasing k values.
Accuracy was highest for k = 5 (Table 1).
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Table 1
Values of the tuning
parameter, k and the

corresponding accuracy and
kappa statistics for the kNN

model on the training
dataset

k Accuracy Kappa

5 0.927 0.639

7 0.924 0.615

9 0.915 0.564

11 0.908 0.510

13 0.904 0.483

15 0.897 0.430

17 0.893 0.399

19 0.889 0.367

21 0.887 0.348

23 0.884 0.324

The kNN classi�er model with k=5 had a predictive accuracy rate of 0.932 [95% CI: 0.889, 0.957] and “no-
information rate” (NIR) of 0.929 with p-value (accuracy > NIR) = 0.991, thus there is no evidence accuracy
is higher than NIR, suggesting that the predictive performance of the kNN classi�er on the data is not any
better than random guessing. We cannot use this model to predict for new data.

The Rf Classi�er
The RF hyperparameter, mtry was evaluated for the RF model using repeated cross-validation and mtry
equal to 6 was optimal. This means that the RF classi�er used 6 predictors to split the tree. Graphical
presentation of the results on accuracy against randomly selected predictors is as shown in Figure 1.

The RF classi�er model had an overall accuracy of 0.911 [95% CI: 0.874, 0.939], kappa statistic of 0.54 and
NIR of 0.929 with p-value (accuracy > NIR) = 0.916 suggesting a poor model. We therefore do not pursue
the confusion matrix.

Support Vector Machine Classi�er (Svm)
Three SVM classi�er models were implemented; linear kernel SVM, polynomial kernel SVM and radial basis
function SVM and here we provide the predictive performance of these models respectively.
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Linear kernel SVM
The linear SVM model attained highest accuracy with cost “C” of 5.75. This cost parameter was obtained
using repeated cross-validation whose results are shown in Figure 2.

The linear kernel SVM classi�cation model (C = 5.75) had overall accuracy of 0.957 [95% CI: 0.929,0.976].
The corresponding NIR was 0.886 with p-value < 0.0001 (accuracy > NIR), thus accuracy score was
signi�cantly higher than NIR which implies that the classi�er model performed better than one could do by
always predicting the most common class. The model had a Kappa of 0.811 signifying substantial
strength of agreement between the model’s predictions and the actual labels of classes while controlling
for accuracy of a random classi�er. Table 2 displays the classi�er predictions on the test dataset and
classi�er metrics based on the confusion matrix. From the predictions, it is clear all samples of B. oleae
(Bol), and B. zonata (Bzo) in the test dataset have been classi�ed into their respective observed group.
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Table 2
Classi�cation results for the SVM classi�ers on test dataset of morphometric measurements of Bactrocera
spp., with observed species a�liation in the rows and predicted species allocation in the columns. Correct

classi�cation rate appears along the diagonal in bold.
Classi�er Observed Predicted (%) Sensitivity Speci�city

    Bco Bcu Bdo BI Bka Bol Bzo    

SVM - L Bco 80.0 0 0 20.0 0 0 0 1.000 0.997

  Bcu 0 100 0 0 0 0 0 0.818 1.000

  Bdo 0 0 25.0 75.0 0 0 0 0.500 0.981

  BI 0 0.7 0.7 98.6 0 0 0 0.965 0.892

  Bka 0 0 0 37.5 62.5 0 0 1.000 0.991

  Bol 0 0 0 0 0 100 0 1.000 1.000

  Bzo 0 0 0 0 0 0 100 1.000 1.000

SVM - R Bco 80.0 0 0 20.0 0 0 0 1.000 0.997

  Bcu 0 88.9 0 11.1 0 0 0 1.000 0.997

  Bdo 0 0 37.5 62.5 0 0 0 1.000 0.984

  BI 0 0 0 100 0 0 0 0.956 1.000

  Bka 0 0 0 75.0 25.0 0 0 1.000 0.981

  Bol 0 0 0 0 0 100 0 1.000 1.000

  Bzo 0 0 0 0 0 0 100 1.000 1.000

SVM - P Bco 80.0 0 0 20.0 0 0 0 0.800 0.997

  Bcu 0 88.9 0 11.1 0 0 0 0.889 0.997

  Bdo 0 0 50.0 50.0 0 0 0 1.000 0.988

  BI 0.35 0.35 0 98.2 1.1 0 0 0.962 0.865

  Bka 0 0 0 62.5 37.5 0 0 0.500 0.984

  Bol 0 0 0 0 0 100 0 1.000 1.000

  Bzo 0 0 0 0 0 0 100 1.000 1.000

Bco - B. Correcta, Bcu - B. cucurbitae, Bdo - B. dorsalis, BI - B. invadens, Bka - B. kandiensis, Bol - B.
oleae, Bzo - B. zonata; SVM-L: linear kernel SVM, SVM-R: radial kernel SVM, SVM-P: polynomial kernel
SVM.

The linear kernel SVM model achieved sensitivity rate of above 80% for all species except for B. dorsalis
(Bdo) while speci�city ranged from 89–100%.



Page 7/20

Radial kernel SVM classi�er
Selection of optimal model for radial kernel SVM require determination of the optimal values of tuning
parameters namely gamma (γ) and cost (C). We tested different values of γ ranging from 0.01 to 0.1 with
step 0.01 while C was in range 0.01 to 10.0 with step 0.25 and obtained the values that minimize the
classi�cation error for the 10-fold cross-validation. The optimal model was obtained with γ = 0.06 and C =
9.51. Using these parameters, the radial kernel SVM model had accuracy of 0.96 [95% CI: 0.933, 0.978],
Kappa statistic of 0.810 and NIR of 0.91 with p-value (accuracy > NIR) = 0.0002. NIR being signi�cantly
lower than accuracy suggests the radial kernel SVM model is superior to random guessing.

Just as with the linear kernel SVM model, the sensitivity and speci�city for B. oleae (Bol), and B. zonata
(Bzo) was 100%. (Table 2).

Polynomial SVM classi�er model
The polynomial SVM model attained optimal accuracy at a degree of 2, scale of 2 and cost of 0.1. Using
the test dataset, the classi�er model yielded predictive accuracy of 0.951 [95% CI: 0.921, 0.972], Kappa
statistic of 0.784 and NIR of 0.886 with p-value (accuracy > NIR) < 0.0001, suggesting a good model. The
sensitivity for B. oleae (Bol), B. zonata (Bzo) and B. dorsalis (Bdo) was 100% respectively, while the model
had smallest sensitivity on B. kandiensis (Bka) (Table 2).

Arti�cial Neural Network Classi�er
The optimal ANN model was selected based on the accuracy obtained by varying the number of nodes of
the network. The ANN model was optimal at 17 nodes and decay of 0.042. We �tted a feedforward (15-17-
7) network, thus a model with 15 input neurons, 17 hidden neurons and 7 input neurons. The predictive
accuracy for this model was 0.96 [95% CI: 0.933, 0.979], Kappa statistic of 0.833 and NIR of 0.873 with p-
value (accuracy > NIR) < 0.0001. Thus, the neural network was superior to NIR. The classi�cation results of
the ANN classi�er on test dataset and the estimated metrics are presented in Table 3.
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Table 3
Classi�cation results for the ANN classi�er on test dataset of morphometric measurements of
Bactrocera spp., with observed species a�liation in the rows and predicted species allocation

in the columns. Correct classi�cation rate appears along the diagonal in bold.
Observed Predicted (%) Sensitivity Speci�city

  Bco Bcu Bdo BI Bka Bol Bzo    

Bco 100 0 0 0 0 0 0 1.000 1.000

Bcu 0 88.9 0 11.1 0 0 0 0.889 0.997

Bdo 0 0 50.0 50.0 0 0 0 0.667 0.987

BI 0 0.35 0.35 98.2 1.1 0 0 0.975 0.878

Bka 0 0 12.5 25.0 62.5 0 0 0.625 0.991

Bol 0 0 0 0 0 100 0 1.000 1.000

Bzo 0 0 0 0 0 0 100 1.000 1.000

Bco - B. Correcta, Bcu - B. cucurbitae, Bdo - B. dorsalis, BI - B. invadens, Bka - B. kandiensis, Bol - B. oleae,
Bzo - B. zonata

The metrics for ANN classi�er show that sensitivity was lowest for B. dorsalis (Bdo) and B. kandiensis
(Bka) while the sensitivity and speci�city for B. Correcta (Bco), B. oleae (Bol) and B. zonata (Bzo) was
100%, respectively (Table 3).

Finally, a summary of performance metrics namely accuracy, Kappa, no-information rate and associated p-
value of all the ML classi�ers under study are presented in Table 4.

Table 4
Summary of performance metrics for all the machine learning classi�ers under

study

        p-value

Classi�er Model Accuracy [95% CI] Kappa NIR (Acc > NIR)

k-Nearest Neighbor 0.932 [0.899, 0.957] 0.648 0.929 0.469

Random Forest 0.912 [0.874, 0.939] 0.536 0.929 0.916

SVM        

Linear kernel 0.957 [0.929, 0.976] 0.811 0.886 < 0.0001

Radial kernel 0.960 [0.933, 0.979] 0.810 0.908 0.0002

Polynomial kernel 0.951 [0.921, 0.972] 0.784 0.886 < 0.0001

ANN 0.960 [0.933, 0.979] 0.827 0.883 < 0.0001
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Discussion
Accessibility of research data has great potential for scienti�c progress as the data can be re-used17,18.
This paper demonstrates the value of open access and data sharing by making use of secondary data to
evaluate novel analysis techniques, herein machine learning tools and algorithms were used to discover
new insight from data that was previously analysed using conventional statistical methods. Although
conventional classi�cation methods are very popular in agricultural sciences8,13, advancement in data
science and computing power provide an opportunity to harness and integrate the novel and robust
machine learning tools as analytics routine on insect science research as demonstrated by this example on
morphometrics.

The study evaluated four machine learning models KNN, RF, SVM and ANN for classi�cation of fruit �y
species based on morphometric measurements on wing veins and tibia length. KNN and RF classi�ers
performed poorly with ‘no-information rate’ being higher than overall accuracy with p-value >0.05, thus the
models were no better than random guessing in the classi�cation of Bactrocera spp. Millard and
Richardson19 showed that random forest models improve with larger training datasets. The RF classi�er
must have suffered even more from the small training samples of the minority classes leading to poor
predictive performance. SVM and ANN models were superior to KNN and RF in that all the SVM models,
namely linear kernel SVM, Polynomial kernel SVM and Radial kernel SVM, had overall accuracy of above
95% and ANN had overall accuracy of 96% with ‘no-information rate’ signi�cantly lower than accuracy for
both ANN and the SVMs. The superiority of SVM in terms of accuracy was also shown in a study by
Smoliński et al20 in which two traditional machine learning classi�ers (linear and quadratic discriminant
classi�ers) and four modern machine learning classi�ers; kNN, Classi�cation and regression trees, RF and
SVM were used to discriminate stocks of �sh species based on otolith shape.

Among the three forms of the SVM models, the linear kernel SVM (accuracy 95.7%) and radial kernel SVM
model (accuracy 96.0%) had kappa values higher than the polynomial kernel (accuracy 95.1%). This study
makes a very narrow distinction on predictive performance among the three SVM models while Nguyen21

who compared linear, polynomial and radial kernel SVM regression models concluded that the radial basis
function was more appropriate than linear and polynomial kernel functions in predicting blast-induced
ground vibration in an open-pit coal mine.

The data used in this study were initially analysed using principal component analysis (PCA) and
canonical variate analysis (CVA) alongside DNA barcoding in 5. We therefore compare the classi�cation of
our best models with that obtained by DNA barcoding. Our best-chosen models, SVM and ANN predicted B.
oleae and B. zonata as distinct groups while misclassi�cation was largely among the three species B.
kandiensis, B. invadens and B. dorsalis. These �ndings concur with results of DNA barcoding in Khamis et
al5 and supported by mahalanobis squared distance which was smallest between B. invadens and B.
dorsalis (11.4) and B. invadens and B. kandiensis (8.1) as Khamis et al compared to distance between B.
invadens and B. zonata (43.1) and B. invadens and B. oleae (45.1).
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PCA is a linear transformation of data from multiple axis to principal component axis. The method has a
good number of application areas such as data exploration and the reduction of biases in the data.
However, PCA cannot provide the same level of accuracy as advanced machine learning techniques used
in the present study. This superiority is well pronounced when the data available are balanced with the type
analytics, and it is usually recommended to select an algorithm based on the available datasets. In other
words, the poor predictions observed with KNN and RF are not directly resulting from the predictive ability
of the algorithms, but it is rather a result of the type and quantity of dataset. Techniques such as RF is non-
linear and known to perform extremely well with large and noisy datasets. Often, it is advisable to �rst
apply PCA to clean the data prior to running this algorithm. PCA has the advantage that it is easy to
implement and is purely descriptive.

SVM and ANN algorithms achieved the highest predictive accuracy for the fruit �y morphometric
measurements with NIR lower than accuracy and thus our choice of classi�ers for these data. However, we
recommend that discrimination studies should test a range of machine learning classi�ers because the
selection of the best-performing algorithms can be case-speci�c and depends, for instance, on the number
of classes, similarity between groups, or type and number of variables in the dataset 22. We subjected our
ML models to multi-class imbalanced data. In as much as SVM and ANN produced good results, we
recommend the use of data generation mechanisms to generate synthetic samples to boost samples for
the minority classes.

The �ndings of our study suggest that SVM and ANN algorithms are a good alternative to conventional
statistical classi�ers and can be used to discriminate fruit �y species based on wing vein measurements
and tibia length or any other morphologically similar pest taxa. These algorithms could be used as
candidates for developing an integrated and smart application software for insect discrimination and
identi�cation.

Materials And Methods
Description of the data

The data used in this study are measurements of wing vein and tibia length of fruit �y Bactrocera spp.5.
Male samples of Bactrocera invadens were collected from Kenya, Uganda and Nigeria; Bactrocera correcta
from Sri Lanka; Bactrocera cucurbitae from Kenya-Nairobi; Bactrocera dorsalis from Hawaii; Bactrocera
kandiensis from Sri Lanka – Kandy; Bactrocera oleae from Kenya – Bugeret forest and Bactrocera zonata
from Mauritius. Measurements were taken on the wing veins of the right wing and the right hind tibia.
Fourteen wing vein distances between 15 selected landmarks on the wing were measured to characterize
the shape and size of the wing for differentiation. The summarized data on wing vein measurements and
tibia length (mm) are in Table 5.

Machine learning algorithms
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We describe the four machine learning algorithms; KNN, RF, SVM and ANN to be used for classi�cation of
Bactrocera spp based on morphometrics data.

K-Nearest Neighbor

KNN is one of the simplest non-parametric distance-based machine learning algorithms for classi�cation.
KNN algorithm assumes the similarity between the new case/data and available cases and put the new
case into the category that is most similar to the available categories23. KNN selects the number k of the
neighbors and calculates a distance measure, commonly Euclidian distance and then assigns the
unknown observation to a class based on class majority of the k closest neighbors14,24. Thus, k plays an
important role in the performance of kNN algorithm and is a key tuning parameter of the model. Herein, the
parameter k was determined through cross validation technique, in which different values of k were
subjected to the kNN algorithm and the selected k corresponded to the value with the highest accuracy of
the model.

Random forest

Random Forest is a tree-based machine learning technique that leverages the power of multiple decision
trees considered as forest in an assemble paradigm for making predictions25. A decision tree is a tree-
structured classi�er, where internal nodes represent the features of a dataset, branches represent the
decision rules, and each leaf node represents the outcome. A decision tree has essentially two nodes;
decision node and leaf node25,26. Decision nodes are used to make decision and have multiple branches,
whereas leaf nodes are the output of those decisions and do not contain any further branches. The
decisions are performed based on features of the given dataset. The best feature for the root node and for
sub-nodes is determined using attribute selection measure. A decision tree simply asks a question and
based on the answer (Yes/No), it further splits the tree into subtrees. Random forest, as the name suggests,
is a “forest” of randomly created decision trees. Each node in the decision tree works on a random subset
of features/input variables to calculate the output. The random forest then combines the output of
individual decision trees to generate the �nal output. To implement the random forest, there are two tuning
parameters, the number of trees (ntree) and the number of features, the input variables in each split (mtry).
To �nd the optimal RF model, a range of values for mtry parameter were tested and evaluated using
repeated cross-validation and the optimal value was selected for which the model accuracy was highest,
ntree was held constant as 2000.

Support Vector Machine algorithm

The goal of Support Vector Machine (SVM) algorithm is to establish the best line or decision boundary that
can segregate n-dimensional space into classes that can easily put new subjected data points in the
correct category in the future. This best decision boundary is called a hyperplane. SVM chooses the
extreme points/vectors that help in creating the hyperplane27,28. These extreme cases are referred to as
support vectors, and hence the algorithm is termed as support vector machine. There are different kernel
functions used in SVM and selecting an appropriate kernel function is crucial for the performance of the
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SVM. We evaluated the SVM with the simplest kernel, the linear kernel SVM, and two non-linear kernels; the
polynomial kernel and the radial basis kernel 29. Non-linear kernel functions are necessary where samples
cannot be separated linearly. There are two parameters that need to be tuned when implementing SVM
classi�er, thus the optimum parameters of cost, C and the kernel width parameter, gamma (γ). The C
parameter decides the size of misclassi�cation allowed for non-separable training data, which makes the
adjustment of the rigidity of training data possible. The gamma (γ) affects the smoothing of the shape of
the class-dividing hyperplane. In this study, C was evaluated using a range of values from 0.01 to 10.0 with
step size of 0.25 while γ had values from 0.01 to 0.1 with step size of 0.01. The linear kernel SVM has only
one parameter. Optimal values were chosen corresponding to model with highest accuracy.

Arti�cial neural network

Arti�cial neural networks, as the name implies, are inspired from their biological counterparts, the
biological brain, and the nervous system. In arti�cial intelligence, an ANN is based on a collection of
connected units or nodes called arti�cial neurons, which loosely model the neurons in a biological brain30.
ANN can be applied in supervised and unsupervised training. We use ANN as supervised learning algorithm
which means that we provide the input data containing the independent variables and the output data that
contains the dependent variable31,32. A feed-forward neural network with three layers: input layer, hidden
layer and output layer is used (Figure 3). The back-propagation algorithm, the mostly used optimization
technique for the training of feed forward neural networks is used33. During data processing, predictions
are made in ANN based on the values in the input nodes and the weights, one weight for each input
feature. The nodes in the input layer are connected with the output layer via the weight parameters. In the
output layer, the values in the input nodes are multiplied with their corresponding weights and are added
together. A bias term is added to the sum to improve the level of robustness of the neural network. The
sum is passed through an activation function, usually sigmoid activation function:

The result of the activation function is basically the predicted output for the input features. The back-
propagation optimization technique provides the means to adjust the free parameters of the network to
minimize error between actual and predicted outcome. In this study, the input layer consists of 15 neurons,
the wing vein and tibia length variables and the output layer has 7 neurons, the fruit �y species. The
number of neurons for the hidden layer was determined by trial and error.
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The data comprise of 1091 observations on 15 morphometric measurements. The output variable are the
seven fruit �y species namely; B. correcta (Bcor), B. cucurbitae (Bcu), B. dorsalis (Bdo), B. invadens (BI), B.
kandiensis (Bka), B. oleae (Bol) and B. zonata (Bzo) (Table 5).

Table 5
Mean measurements of wing vein distances and tibia length (mm) of fruit �y (Bactrocera spp.) specimen

collected from African countries and Asia

  Bactrocera spp.

Variable Bco Bcu Bdo BI Bka Bol Bzo

Vein 1 4.086 5.115 4.211 4.748 4.947 3.585 4.334

Vein 2 0.631 0.871 0.719 0.746 0.749 0.612 0.641

Vein 3 1.022 1.382 1.175 1.284 1.343 0.876 1.195

Vein 4 0.503 0.548 0.517 0.545 0.605 0.316 0.616

Vein 5 1.265 1.584 1.351 1.497 1.591 1.018 1.510

Vein 6 0.384 0.504 0.412 0.444 0.488 0.291 0.399

Vein 7 1.761 2.150 1.891 2.067 2.156 1.549 1.943

Vein 8 0.621 0.865 0.706 0.772 0.789 0.544 0.679

Vein 9 0.701 0.913 0.770 0.878 0.907 0.653 0.727

Vein 10 0.962 1.332 1.094 1.191 1.263 0.844 0.981

Vein 11 2.160 2.726 2.291 2.489 2.641 1.940 2.306

Vein 12 1.120 1.356 1.151 1.229 1.270 1.114 1.116

Vein 13 1.078 1.340 1.051 1.150 1.251 0.938 1.186

Vein 14 2.054 2.500 2.156 2.362 2.409 1.689 2.165

Tibia length 1.471 1.728 1.522 1.679 1.721 1.153 1.506

Bco - B. Correcta (n = 18), Bcu - B. cucurbitae (n = 31), Bdo - B. dorsalis (n = 28), BI - B. invadens
(n=940), Bka - B. kandiensis (n = 28), Bol - B. oleae (n = 28), Bzo - B. zonata (n=18).

The classi�cation algorithms K-Nearest Neighbor, Random Forest, Support Vector Machine (SVM), and
Arti�cial Neural Network (ANN) were trained on 70% of the fruit �y morphometric dataset while 30% of the
data was used as test set.

Each model’s performance was evaluated based on accuracy score, Kappa and ‘no- information rate’ (NIR)
derived using confusion matrix. A confusion matrix is a table de�ning the predictive performance of a
classi�er on a set of test data for which the true values are known. The accuracy is the proportion of
samples accurately classi�ed. Kappa statistic reveals how well the model’s predictions match the actual
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labels of classes while controlling for accuracy of a random classi�er. Landis and Koch34 classi�ed Kappa
statistics within the range of 0.00 and 0.20 as implying poor agreement between classi�er’s predictions
and the actual labels of the classes; 0.21 – 0.40 imply fair strength of agreement; 0.41 – 0.60 imply
moderate agreement; 0.61- 0.80 imply substantial strength of agreement while 0.81 – 1.00 imply an
almost perfect agreement. NIR is the score realized by classi�er model in predicting the classes when the
information beyond the overall distribution of the classes being predicted is unknown. A model with higher
NIR than accuracy implies poor performance35.

Other model diagnostic metrics on individual outcome classes include sensitivity and speci�city.
Sensitivity is the rate at which true positives are correctly classi�ed while speci�city is the rate at which
true negatives are correctly classi�ed.

All statistical analyses were conducted using the R software version 4.0.436. The classi�cation models
were implemented using the caret package37. In addition, the SVM classi�er
required kernlab package38 and e1071 package39 while ANN classi�er
required neuralnet package40 and nnet package41. The ggplot2 package42 was used for graphical
visualisations. The models were constructed using 5-fold cross validation with the hold out fold used to
measure the accuracy of each model.
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Figure 1

Variation in accuracy for randomly selected predictor variables (mtry) for the random forest classi�er.
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Figure 2

The linear SVM model accuracy (y-axis) for values of the cost parameter (x-axis) obtained from the
repeated cross-validation of the training sample data. Cost “C” = 5.75 gives the optimal model.
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Figure 3

A schematic diagram illustrating the structure of a simple multilayer neural network. Arrows represent the
direction that values are passed. At the end of the network, the output layer provides the probability that the
specimen in question belongs to a given species.


