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Abstract 21 

Profiling tumors at single-cell resolution provides an opportunity to understand complexities underpinning 22 

lymph-node metastases in head and neck squamous-cell carcinoma. Single-cell RNAseq (scRNAseq) analysis of 23 

cancer-cell trajectories identified a sub-population of pre-metastatic cells, driven by actionable pathways 24 

including AXL and AURK. Blocking these two proteins blunted tumor invasion in patient-derived cultures. 25 

Furthermore, scRNAseq analyses of tumor-infiltrating CD8+ T-lymphocytes showed two distinct trajectories to 26 

T-cell dysfunction, corroborated by their clonal architecture based on single-cell T-cell receptor sequencing. By 27 

determining key modulators of these trajectories, followed by validation using external datasets and functional 28 

experiments, we uncovered a novel role for SOX4 in mediating T-cell exhaustion. Finally, interactome-analyses 29 

between pre-metastatic tumor-cells and CD8+ T-lymphocytes uncovered a putative role for the Midkine 30 

pathway in immune-modulation; this was confirmed by scRNAseq of tumors from humanized mice. Aside from 31 

specific findings, this study demonstrates the importance of tumor heterogeneity analyses in identifying key 32 

vulnerabilities during early metastasis. 33 

  34 
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Introduction 35 

In most solid tumors development of lymph node metastasis portends poor outcomes, pre-dating distant 36 

metastasis1-3. In head and neck squamous cell cancers (HNSCC), these patients are treated with curative intent 37 

by surgery and radiation therapy with the prime objective of eradicating existing and future disease by depleting 38 

clones with a metastatic potential4,5. Metastasis is a continuum of phenotypes ranging from pre-metastatic 39 

features (eg lympho-vascular invasion), circulating tumor cells/emboli, microscopic lymph node deposits, gross 40 

nodal involvement and adjacent soft-tissue invasion, oligo-metastasis and finally, full blown distant metastasis6. 41 

Most studies focus on the terminal event, highlighting the role of definitive epithelial-mesenchymal transition 42 

(EMT); however bulk analyses in HNSCC suggests that EMT does not appear to be a pre-requisite for lymph node 43 

dissemination7-11. Recent studies have also highlighted that EMT itself exists as a spectrum, and tumor cells 44 

exhibit a significant amount of plasticity which may account for the range of clinical manifestations observed12,13. 45 

Single-cell analyses have the ability to resolve both issues: identification of rare clones with true metastatic 46 

potential and identifying pathways and vulnerabilities that can be exploited in the clinical setting to prevent 47 

further dissemination of these. 48 

The role of the immune system during the metastatic cascade is gaining clinical relevance with current 49 

advancements in checkpoint blockade therapies14. This is especially pertinent in the context of lymph node 50 

metastasis, as lymph nodes are believed to be the main organ for T-cell priming, expansion and trafficking15. 51 

Understanding the mechanisms by which tumors evade immune-based killing within lymph nodes is critical to 52 

target early metastases16-19. Again, this can be addressed by single-cell analyses by defining the immune 53 

landscape, and in-depth dissection of interactions involved during immune evasion at the primary and nodal 54 

sites. 55 

Here, we profiled primary and early (nodal) metastatic HNSCC tumors using single-cell RNAseq (scRNAseq) and 56 

TCRseq (scTCRseq) with two major objectives: to identify metastatic tumor subpopulations and identification of 57 

targetable vulnerabilities, and to determine the evolutionary trajectory of tumor-targeting T-cells as well as 58 

dissecting pathways employed by tumors to evade immune destruction during nodal dissemination.   59 

  60 
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Results 61 

Single-cell transcriptional states of primary and lymph node metastasis in HNSCC 62 

To delineate ‘whole-tumor’ single-cell landscapes in primary tumors and lymph node metastases, we developed 63 

a protocol to rapidly process freshly resected tissue for single-cell RNA sequencing (scRNAseq) and establishing 64 

primary cultures (Figure 1A)20,21. Tumors were harvested from fourteen treatment-naïve patients with locally 65 

advanced, HPV-negative HNSCC from primary and cervical lymph nodes (Supplementary Table S1 and S2). Seven 66 

pairs were processed for scRNAseq and single-cell T-cell receptor sequencing (scTCRseq), while primary cultures 67 

were successfully established for seven.  68 

scRNAseq data for fresh tumors describes 53,459 cells (3,553–11,308 per patient) and 23,148 genes, with a 69 

median of 776 genes per cell (details on quality controls steps in Methods and Supplementary Figure 1A-B). 70 

Using Seurat v3.0, the data was normalized, pooled, and clustered (Figure 1B). Canonical markers were used to 71 

broadly annotate these populations into: epithelial (KRT7, KRT17), salivary (STATH), fibroblasts (COL1A2), 72 

endothelial (PECAM) and immune (PTPRC) cells (Figure 1B and Supplementary Figure 1C). Fibroblasts were 73 

further subdivided into cancer associated fibroblasts (CAFs; MMP2) and myofibroblasts (ACTA2), while immune 74 

cells were organized into T- (CD3E, NKG7), NK- (NKG7, XCL2), B- (CD79A), plasma- (IGHG1), mast- (TPSAB1), 75 

conventional (LAMP3) and plasmacytoid (LILR4) dendritic cells, as well as macrophages/monocytes (CD163). 76 

These were well-distributed across samples from all patients, apart from salivary cells, which were only observed 77 

in one patient, likely due to harvest of adjacent parotid gland tissue (HN263). However, there were differences 78 

in composition between primary and metastatic sites (Figure 1C), with higher proportions of CAFs and TAMs in 79 

the primary tumor, versus more B-cells, plasma cells and dendritic cells at the metastatic sites, typical of a lymph 80 

node. These were similar to cellular composition proportions derived from bulk data from TCGA (Supplementary 81 

Figure 1D). Inferred copy number variant analyses on the epithelial population showed that aneuploidy was 82 

evident in >95 % of cells validating that this population comprised cancer cells (Figure 1D and Supplementary 83 

Figure 1E). Copy number alterations (CNAs) were further analyzed using the CopyKat algorithm22, and identified 84 

those frequently observed in HNSCC23, including gains across chromosomes 7 and 8q and loss of 3p and 5q 85 

(Supplementary Figure 1F). Significant overlap of CNAs was also noted between the primary and metastatic 86 

sites in each patient (Supplementary Figure 1G). 87 

 88 

Tumor cells demonstrate varying degree of epithelial-mesenchymal transition during metastasis 89 

We next focused on tumor cells (total of 6,115 cells & 17,784 genes) by extracting only the epithelial population 90 

with aneuploidy. Using Seurat 3.0, we pooled and re-analysed this subset, visualized as distinct clusters for each 91 

individual patient, with varying degree of overlap across cells from primary and nodal sites (Figure 2A and 92 

Supplementary 2A). Tumor cell data can be accessed and interrogated as an interactive web application via the 93 

following Shiny app (http://hnc.ddnetbio.com/). Tumors from patients HN242, HN257 and HN272 show 94 
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significant overlap in tumor cells derived from both sites, while patients HN251 and HN279 show distinct site-95 

specific sub-clusters. When comparing EMT gene markers in primary vs nodal metastases populations, nodal 96 

tumor cells had higher EMT scores compared to the primary in all patients except HN257 (Figure 2B).  97 

To identify the pre-nodal metastases subpopulation in primary tumors, we built trajectories using Monocle 2.0, 98 

and labelled the origin and direction based on the ground truth of site (ie primary tumor presumed to pre-date 99 

nodal disease), incorporating EMT-scores, and CytoTRACE (see Methods). The latter is a tool to determine 100 

degrees of differentiation, assuming de-differentiation co-occurs with the metastatic phenotype24,25. This 101 

approach was effective in identifying pre-nodal cells in patients HN242, HN251, HN272 and HN279 (Figure 2C-D 102 

and Supplementary Figure 2C, 2G and 2H). For patients HN251 and HN279, pseudo-time ordering demonstrated 103 

an ordered, progressive, step-wise transition from primary to nodal disease. Nodal tumor cells largely dominate 104 

the end of the trajectory with higher CytoTrace scores. Major pathways over-represented across pseudotime 105 

include epithelial de-differentiation, oxidative phosphorylation and EMT (Figure 2E). Even in more complex 106 

trajectories such as HN272, the same approach was used to determine the likely trajectory to lymph node 107 

metastases, and identify sub-populations of primary cells (pre-nodal cells) that are similar to and likely gave rise 108 

to the metastatic phenotype (Supplementary Figure 2C). We next applied GeneSwitches26 to identify actionable 109 

genes associated with the trajectory from primary to pre-nodal cells; these identified AXL, Aurora kinase, TYMS 110 

and STAT2 at potentially critical genes in this process (Figure 2F and Supplementary Figure 2D-F). This approach 111 

was validated on an external dataset comprising scRNAseq data from 5 tumors from primary and nodal sites 112 

available for analyses (2076 cells) (Supplementary Figure 2H-P)12. In three of these (p25, p26 and p28), EMT was 113 

higher in nodal tumor cells compared to the primary, hence could be resolved using the method described to 114 

identify a pre-nodal subpopulation (Supplementary Figure 2P-R). Several actionable genes identified through 115 

GeneSwitches appear to be implicated in this dataset as well: AXL (p25, p26, P28), STAT2 (p25, p26) and AURK 116 

(p26, p28) (Supplementary Figure 2U). 117 

In contrast, analyses of patient HN257 was more complicated as the primary tumor had higher EMT scores than 118 

nodal tumor cells, and tumor trajectories were haphazard with no directionality (Supplementary Figure 2H). 119 

Cytotrace showed a distinct de-differentiated sub-population in the primary tumor that had high EMT scores 120 

and expression of SNAI2 (Figure 2G and Supplementary Figure 2I-J). We hypothesized that this was an 121 

aggressive, rapidly evolving tumor subpopulation. Differential expression analyses identified a panel of 132 up-122 

regulated and 45 down-regulated genes in this subpopulation involved in oxidative phosphorylation and tumor 123 

metabolism, and immune evasion, respectively (Figure 2H, Supplementary Table S3). Based on these gene sets, 124 

tumors in TCGA with the same signature (based on RNAseq data) had significantly poorer outcomes (Figure 2I 125 

and Supplementary Figure 2K). In the validation scRNAseq dataset above, two of the tumors (p5 and p20) also 126 

showed a similar trend, with specific subpopulations in the primary tumor with high EMT scores (Supplementary 127 

Figure 2S-T). Therefore, we postulate that in these tumors, distinct sub-populations in the primary tumor 128 

showed a more aggressive phenotype, that likely evolved after nodal dissemination had occurred. 129 

 130 
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Identifying vulnerabilities to target pre-metastatic tumor cells  131 

We then proceed to test whether targets identified in this manner presented an opportunity for therapeutic 132 

intervention. scRNAseq using the C1 platform was performed on patient-derived cultures (PDCs) from primary 133 

and nodal metastatic sites (n=7 pairs). The data was processed using Seurat 3.0 and PAGODA (pathway and gene 134 

set overdispersion analysis) (Figure 3A and Supplementary Figure 3A-B). We derived scRNAseq data for a total 135 

of 1,317 cells and 55,216 genes. Similar to above, tumor-cell clusters were based on individual patients. 136 

However, PDCs demonstrated distinct separation between primary and metastatic cells, with EMT as one of the 137 

major differentiating principal component pathways (Figure 3B and Supplementary Figure 3A-B). Here, pre-138 

nodal cells in HN137, HN159 and HN220 were identified as small primary subpopulations that clustered with 139 

metastatic cells.  140 

Differential expression analyses for these pre-nodal populations identified AXL (in HN137) and AURKB (in HN159 141 

and HN220) as putative actionable targets (Figure 3C and Supplementary Table S4-6). Expression of these genes 142 

was validated using immunohistochemistry or immunofluorescence in both PDCs and respective tumor tissue, 143 

and this was recapitulated on flow cytometry for AXL (HN137) and AURK (HN159 and HN220), respectively 144 

(Figure 3D and Supplementary Figure 3C-D). In HN137, expression of protein and transcript AXL was detected 145 

in a majority of metastatic cells compared with only a small sub-population of primary cells. Similarly, for HN159 146 

and HN220, AURKB expression was significantly lower in metastatic cells, compared to primary cells. We focused 147 

on AXL and AURKB because both have specific inhibitors: BGB324 targeting cells with high AXL expression, and 148 

barasertib (pan-AURK inhibitor) targeting cells with limiting AURKA/AURKB levels. There were no differences in 149 

clonogenicity between primary and metastatic cultures from patient HN137 treated with BGB324, nor HN159 150 

and HN220 treated with barasertib (Supplementary Figure 3E-G). In contrast, all three metastatic lines HN137, 151 

HN159 and HN220 (treated with their respective drugs) demonstrated lower cell migration/invasion compared 152 

to untreated cultures, measured by scratch and Boyden chamber invasion assays (Figure 3E-G): AXL-inhibition 153 

significantly reduced invasive potential of both primary and metastatic cells of HN137 (Figure 3E) while AURK-154 

inhibition significantly reduced the invasive potential of only metastatic cells of HN159 and HN220 (Figure 3F 155 

and G). As AXL is a surface membrane protein, primary cells were sorted into AXL low-, medium- and high-156 

expressing cells. As predicted, BGB324 specifically inhibited invasion only in the AXL-high primary subpopulation 157 

compared to AXL-low cells (Figure 3H). These data indicate AXL and AURKB play major roles in invasion and 158 

provide an opportunity for specific anti-metastatic therapy. 159 

 160 

Evolution of CD8+ T-cells derived from analysis of primary tumor and lymph node metastasis 161 

CD3+ T-cells form one of the major subpopulations sequenced at both primary and nodal sites. Data from 10,168 162 

cells (covering 13,729 genes) were pooled, analyzed using Seurat, and visualized as ten distinct T-cell clusters 163 

(Figure 4A). The identity of each cluster was delineated based on differential gene expression of known T-cell 164 

markers (Figure 4B and Supplementary Figure 4A-B). Some were distinct for CD4+ cells (Tregs and Tfh) and CD8+ 165 

cells (Pre-dysfunctional, Dysfunctional, Proliferative), while others comprise both CD4+ and CD8+ lineages 166 
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(Naïve-like and Transitional). Majority of naïve-like cells were derived from nodal tissue while the remaining 167 

clusters appear to have equal representation from the primary and nodal metastatic sites (Figure 4B and 168 

Supplementary Figure 4C).  169 

CD8+ T-cells (total of 3,387 cells, 11,847 genes) were extracted from this pooled T-cell dataset and re-analyzed 170 

after regression for cell cycle-driven artefacts to identify lineage-based clusters. CD8+ T-cell data can be accessed 171 

and interrogated as an interactive web application using the following Shiny app (http://hnc.ddnetbio.com/). 172 

Six distinct clusters were labelled as naïve, transitional, tissue-resident memory, pre-dysfunctional, proliferative 173 

and late dysfunctional based on canonical markers (Figure 4C-D). Using Slingshot, we performed trajectory 174 

analyses on the CD8+ T-cells using the CXCL13-high, LAYN-high exhausted/senescent population as the end-175 

point27, and this identified two convergent trajectories (Figure 4E). Expression plots across Trajectory 1 showed 176 

a progressive loss of naïve markers, gradual gain of dysfunctional (and senescent) markers and an intervening 177 

proliferative ‘burst’, that likely reflects expanding clones of tumor targeting CD8+ cells (Figure 4F). Specifically, 178 

this lineage suggests a scenario where naïve CD8+ T-cells from lymph nodes or circulation were trafficking into 179 

the primary tumor with loss of circulating markers KLF2, SELL and CCR7, gain of tissue resident marker 180 

CD103/ITGAE, progressive decline in the expression of naïve genes TCF7, IL7R, CCR7, and gradual gain of 181 

dysfunctional markers (TIM3, CTLA4, TIGIT, CXCL13, LAYN) with an intermediary proliferative burst with high 182 

levels of MKI67, TOP2A, TYMS (Figure 4B, 4E-F). This is also reflected by progressive increase from GZMK to 183 

GZMB, PRF1, and IFNG in pre-dysfunctional to dysfunctional cells. In contrast, the trajectory of tissue-resident 184 

memory (TRM) to dysfunctional cells (Trajectory 2) shows fewer genes being activated as the expression level 185 

of many of the tissue resident (ITGAE), dysfunctional (CTLA4) and granzymes (GZMs) genes were already 186 

upregulated (Figure 4B). The Geneswitches algorithm was applied to trajectory 1 (naïve-to-dysfunction) to 187 

predict key gene expression changes across pseudotime and identify factors that could account for these (Figure 188 

4G)26. Our results indicate the major nodes appear to be an early loss of KLF2, intermediate increase in NKG7 189 

and late increase in SOX4, DUSP4 and RBPJ (Figure 4G-H).  190 

 191 

Modulating genes driving tumor-targeting cells dysfunction/exhaustion  192 

Based on the data above, expression of SOX4, DUSP4 and RBPJ appears to coincide with the transition between 193 

dysfunction and exhaustion, but whether these genes modulate the process remains untested. We attempted 194 

to validate these findings in two separate datasets. Re-analysis of data from Puram et al (scRNAseq from 542 195 

CD8+ T cells) showed that expression levels of SOX4 and RBPJ were higher in dysfunctional CD8 cell populations, 196 

while DUSP4 expression was more generalized (Figure 5A and Supplementary Figure 5A-C)12. The second 197 

scRNAseq dataset comprised T-cells obtained from cutaneous squamous-cell carcinoma patients before and 198 

after treatment with PD1-blockade (Supplementary Figure 5D)28. Here, all three genes showed higher 199 

expression in the exhausted CD8 subpopulation in this dataset (Figure 5B and Supplementary Figure 5E). 200 

However, only levels of SOX4 and DUSP4 were reduced after PD1 blockade, where there is expected re-201 

activation of tumor-targeting clones and reduction in the exhaustion phenotype (Figure 5C). Combining these 202 
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results, SOX4 appears to be the most likely gene associated during the transition between pre-dysfunction to 203 

dysfunction/exhaustion. To test whether SOX4 plays a causative role in T-cell dysfunction, we performed RNAi-204 

based knock-down on activated PBMCs. Cells were transfected with Accell pooled siRNA against SOX4, DUSP4 205 

or non-targeting siRNA as controls, activated with anti-CD3/CD28 microbeads and harvested for flow cytometry. 206 

Remarkably, SOX4 knockdown resulted in a reduction in senescent CD57+ and dysfunctional PD1+ and CD39+ 207 

populations, compared to DUSP4 and control siRNAs (Figure 5D and Supplementary Figure 5F-G). Taken 208 

together, these data provide functional validation for our CD8+ T-cell trajectory mapping and implicates SOX4 209 

as an important driver of T-cell dysfunction/exhaustion. 210 

 211 

Establishing clonal architecture in CD8+ T-cells using single-cell T-cell receptor sequencing 212 

Clonal identifiers obtained by TCR analysis allows for elucidation of CDR3 sequences as well as providing a unique 213 

dataset to infer the lineage structure of T-cells. Specifically, our current dataset can be used to model clonal 214 

selection and amplification across the CD8+ T-cell subpopulations and trajectories. We recovered productive 215 

TCR-alpha and TCR-beta sequences from 1,461 and 1,948 cells, respectively, and identified 1,590 unique TCR 216 

sequences. No shared clones were found between patients, with unique TCRs for each patient. Clonal expansion 217 

was seen in 17.39% of CD8+cells, and clone size ranged from 2 to 60 cells per clone (Figure 5E, Supplementary 218 

Figure 5H and 5I). Clonal overlap between the two different sites for each tumor (primary and lymph node) was 219 

demonstrated in patients HN257 and HN272 (Figure 5F). There was a progressive increase in clonality across the 220 

dysfunctional gradient, with evidence of single naïve or TRM-derived clones subsequently expanding to give rise 221 

to multiple dysfunctional clones that span these trajectories (Figure 5F and 5G).  222 

There appeared to be patient-specific biases for one trajectory over the other. For example, there are CD8+ T-223 

cell clones in patient HN272 that followed a naïve-dysfunction trajectory (Trajectory 1), with expansion of lymph 224 

node derived naïve clonotypes, migrating to the primary site and captured there along a dysfunctional gradient 225 

(pre-dysfunctional, proliferative and then late-dysfunction) (Figure 5F). This supports a previous observation 226 

which suggests that circulation is one of the major sources of tumor-targeting dysfunctional cells, which in this 227 

case is the regional lymphatics draining nodal tissue28. In contrast, in patient HN263 and selected CD8+ T-cell 228 

clones in patient HN272, the dysfunctional gradient appears to comprise of tissue resident memory (TRM) cells 229 

derived from the primary tumor, which amplified into putative tumor-targeting clonotypes (Figure 5F). This is 230 

consistent with a model of ongoing differentiation and proliferation of dysfunctional T-cells at the tumor site 231 

itself29. It is likely that both mechanisms contribute to the dysfunction gradient, sometimes even within the same 232 

patient. For example, lineage tracing in HN257 and HN272 demonstrates extensive trafficking and interplay 233 

between the primary site and lymph node: there is evidence of lymph node-derived naïve cells expanded in the 234 

primary site as expected, but also surprisingly TRM cells expanding and subsequently migrating to the lymph 235 

node (Figure 5F and 5G). This scTCR data adds intriguing complexity to concepts of clonal expansion and lineage 236 

structure in a treatment naïve setting. 237 

 238 
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Pre-nodal cells and immune micro-environment 239 

Our analyses identified a pre-nodal sub-population in primary tumors with intrinsic properties of invasion and 240 

migration. However, metastasis also requires acquisition of an immune evasion phenotype. To test whether the 241 

pre-nodal cells identified above demonstrated specific immune-modulatory phenotypes, we subjected three 242 

tumors (from our study) and two tumors (from the Puram dataset) each with a minimum RNAseq dataset to 243 

interactome analyses using Cellchat. To do this, we divided primary tumor cells into two subpopulations (primary 244 

and pre-nodal) and analyzed the interactions of these two tumor subpopulations with CD8+, CD4+ and T-reg 245 

lymphocytes and TAMs. For HN251, HN272 and HN279, the analysis showed similar trends in primary to pre-246 

nodal malignant cells, with increasing interactions between the pre-nodal subpopulation and T-lymphocytes, 247 

specifically with CD8+ cells (Figure 6A). The analyses implicated a number of pathways that were differentially 248 

modulated by primary versus pre-nodal populations on T-lymphocytes (Supplementary Figure 6A-C). In 249 

particular, the interaction between Midkine (MDK, secreted by tumor cells) and a number of MDK-receptors 250 

(ITGA4, ITGA6, ITGB1, NCL, LRP1) on CD8+ T-cells appears to be a recurrent immunosuppressive pathway seen 251 

across all three patients (Figure 6B). Applying the same approach to the external dataset also implicated the 252 

MDK pathway as being differentially activated by the pre-nodal population in one (p17) out of two tumors tested 253 

(Figure 6B and Supplementary Figure 6D-E). 254 

Recent published data suggest that MDK-driven modulation is important for immune evasion in melanomas with 255 

activation of NFKB and its downstream pathways30. To test whether MDK-driven immune suppression dampens 256 

the effect of immune checkpoint blockade (ICB) therapy, we developed a humanized mouse model engrafted 257 

with pre-nodal cells from the tumor of patient HN279, and treated these with PD1-blockade. As expected, the 258 

majority of cancer-cells expressed MDK (Figure 6C-6D and Supplementary Figure 6F-G), together with a number 259 

of genes associated with the pre-nodal phenotype (eg SNAI2, AXL, STAT2) that were unaffected by ICB (Figure 260 

6E and Supplementary Figure 6H). In contrast, expression of AURKB and TOP2A (cell cycle genes) in cancer cells 261 

was significantly downregulated after pembrolizumab treatment (Figure 6E), indicating a reduction in cancer 262 

cell proliferation.  263 

Analyses of the CD8+ T-cell fraction revealed naïve, TRM, transitional, proliferative and dysfunctional/exhausted 264 

subpopulations, with an additional cytotoxic populations (likely bystander) (Figure 6F and Supplementary Figure 265 

6I). CD8+ cells from mice treated with pembrolizumab showed reduction in naïve, dysfunctional and memory 266 

with concomitant increase in proliferative, cytotoxic/bystander, tissue resident subpopulations compared to 267 

untreated mice (Figure 6G). These changes suggest a re-invigoration and re-activation of dysfunctional and 268 

memory, respectively, into tumor-targeting cells29. Remarkably, analyses of MDK receptor-expressing CD8 cells 269 

(ITGA4, ITGB1, NCL) showed the opposite trend, with an increase in dysfunctional and reduction in the 270 

proliferative (tumor-targeting) populations (Figure 6H and Supplementary Figure 6J). These findings suggest 271 

MDK-signaling promotes immune-suppression, that abrogates re-invigoration by PD1-blockade. Indeed, these 272 

changes were also associated with NFKB1 activation which is significantly higher in the dysfunctional CD8 273 

population after pembrolizumab treatment (Figure 6I). Moreover, plotting the expression levels of several MDK-274 

receptors (ITGA4, ITGB1, NCL) with NFKB1 show a good correlation in gene expression in CD8+ T-cells where the 275 
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RNA could be quantified (Figure 6J). Taken together, these results implicate MDK-signaling as a pathway through 276 

which pre-nodal cells evade CD8-mediated immune-editing. 277 

 278 

 279 

 280 

281 
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Discussion 282 

Currently available algorithms analyzing single-cell data have the ability to construct evolutionary trajectories, 283 

which are especially powerful in studying specific events in space (eg relationships between different tumor 284 

sites, eg primary vs lymph node metastasis) and time (eg pre- and post- treatment analysis)12,28. Here, we applied 285 

these to explore early lymph node metastasis across tumor and immune sub-compartments within the tumor. 286 

Analysis of tumor cells shows that nodal metastasis is an early event, where canonical epithelial-to-287 

mesenchymal transition is less apparent than postulated. Our findings support previous studies that suggest 288 

EMT is not an all-or-none phenomenon, but instead occurs in graded levels 31,32. This is in contrast to in vitro 289 

systems (including our own) where cultured tumor cells from lymph nodes display more canonical features of 290 

EMT33. Despite overlap between tumor cells derived from primary and nodal sites, trajectory mapping could 291 

define evolutionary pathways at individual tumor levels, although this process require a combination of 292 

trajectory algorithms, scoring for aggressiveness (based on EMT and stemness) and knowledge of the ground 293 

truth. These have expanded the results of previous studies in the identification of a pre-nodal or metastatic 294 

population 12, and importantly identified actionable drivers of that could be targeted for anti-metastatic therapy, 295 

in this case AXL and AURK. Targeting AXL would not only prevent pathways involved in dissemination, but 296 

presumably reduce tumor heterogeneity by targeting the specific clones34. The role of aurora kinases is less 297 

clear; rather than impacting the metastatic process, it is possible that this vulnerability reflects a generalized 298 

reduction in cell cycling that occurs during EMT with a concomitant sensitivity to all cell cycle inhibitors. We 299 

recently demonstrated the same phenomenon during drug resistance:  reduction in cell proliferation, limited 300 

AURK expression and sensitivity to inhibitors of AURK and other cell cycle targets35. Nevertheless, the ability to 301 

profile tumors and identify vulnerabilities in metastasis-inducing clones is an attractive notion, with increasing 302 

interest in low-dose, long term anti-metastatic therapy. 303 

Alignment of CD8+ T lymphocyte populations is driven by existing knowledge on T-cell maturation. The fact that 304 

we could pool data across different patients increased the number of cells available and in itself was a form of 305 

validation. The alignment was further supported by single-cell VDJ sequencing, which reinforced trajectories 306 

from naïve or memory populations, towards clonally expanded, dysfunctional  and potentially tumor targeting 307 

CD8+ subpopulations These supported the notion that both naïve CD8+ cells from adjacent lymph nodes and 308 

tissue resident CD8+ T-cells were sources of expanded tumor-infiltrating CD8+ T cells, and trafficking was 309 

bidirectional. Strikingly, this trajectory could be used to identify novel modulators of T-cell dysfunction by 310 

studying gene expression changes along pseudotime, and was used to identify SOX4 as novel driver of 311 

dysfunction in CD8 cells. Interactome analyses performed to identify signaling networks within CD8+ T cells 312 

during early metastasis converged onto the MDK pathway. Remarkably, in a humanized mouse model, MDK 313 

signaling was associated with a reduced ability to reinvigorate exhausted T-cells. This is supported by a recent 314 

publication which identified that the MDK pathway could abrogate immune reactivation by ICB therapy in 315 

melanoma, and this could be reversed using MDK-specific inhibitors30. In a similar context, MDK-inhibition could 316 

be explored in the prevention and treatment of tumor metastasis in HNSCC and add synergy to PD1-blockade 317 

which is the current standard of care in metastatic HNSCC.  318 



12 

 

In conclusion, we applied single-cell genomics to uncover pathways and mechanisms that mediate early nodal 319 

metastasis in HNSCC. The data presented here shows that early metastasis is a much more nuanced process 320 

than previously presumed. Collectively these indicate the discovery potential of single cell studies and existing 321 

computational tools, when applied to specific clinical contexts and questions. Future studies will focus on more 322 

specific tumor subpopulations including CD8+ cells and the impact of treatment on tumor recurrence and 323 

metastasis. 324 

 325 

  326 
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Methods 327 

Tumor collection and processing 328 

Patient tumors were harvested in the operating room and transported to the lab for processing within 30 329 

minutes. Tumors were a priori confirmed histologically to be HNSCC and patients were consented prior to 330 

surgery. This study is approved by SingHealth Centralized Institutional Review Board (CIRB: 2014/2093, 331 

2018/2512, 2016/2757). All tumors were dissociated using the gentleMACS™ Octo system (Miltenyi Biotech, 332 

Bergisch Gladbach, Germany) as described in manufacturer’s protocol. These were subjected to filtration, 333 

washing and magnetic bead separation, where required, prior to single cell capturing (details in Supplementary 334 

methods). 335 

 336 

Patient-derived cell cultures 337 

Cultures were established as previously described20,21. Cells were maintained in complete RPMI (C/RPMI) 338 

containing 10% FBS, 1% pen-strep, 1% anti-mycotic and a humidified incubator at 37 °C with 5% CO2. All lines 339 

were tested and confirmed to be free of mycoplasma using an EZ-PCR Mycoplasma Detection Kit (Biological 340 

Industries, Kibbutz Beit Haemek, Israel) at the time of experiments. Cells were processed for scRNAseq and for 341 

immunostaining as described in Supplementary methods. Invasion assays cells were treated with or without 342 

0.25 µM of bemcentinib (BGB324) or 0.25 µM of barasertib (both from Selleck Chem, Houston, TX), then seeded 343 

on an 8µm filter membrane within a 24-well transwell insert (Corning, New York City, NY), with C/RPMI at 344 

bottom of wells of 24-well Falcon TC Companion Plate (Corning, New York City, NY). After 72hrs, the bottom of 345 

each inserts was fixed and stained for quantification of invaded cells. Cell invasion area was determined by 346 

quantifying the area with crystal violet staining using the ImageJ software. 347 

 348 

Humanized mouse model 349 

Sixteen NOG-EXL (hGM-CSF/hIL-3 NOG) mice (hNOG-EXL), pre-engrafted with human CD34+ hematopoietic 350 

stem cells, were procured from CIEA-SIgN. At 16 weeks post-engraftment, mice were injected subcutaneously 351 

with cells from HN279, and treated intraperitoneally with 12.5mg/kg of pembrolizumab or with phosphate 352 

buffered saline (PBS) on day 17, 19, 21 and 24. Mice were euthanized on day 25 and tumors harvested for 353 

dissociation and preparation for scRNAseq as described. 354 

 355 

Small-interfering RNA knock-down of SOX4 and DUSP4 356 

Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured at a density of 0.5-1 x 106 357 

cells/ml in 24-well plate (Corning, New York City, NY), containing TexMACS Medium and T-Cell TransAct (both 358 

from Miltenyi Biotech, Bergisch Gladbach, Germany) at 1:200 dilution. A final concentration of 1µM of Accell 359 

pooled small-interfering RNA (siRNA) targeting human SOX4 (Gene ID 6659) or DUSP4 (Gene ID 1846), or non-360 
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targeting siRNA (all from Dharmacon, Lafayette, CO) was added into respective wells. After 5 days of incubation, 361 

cells were harvested for flow cytometry. 362 

 363 

Flow cytometry 364 

For AXL surface staining, trypsinized cells were stained with fluorochrome-conjugated antibody recognizing AXL 365 

(#108724; R&D systems, Minneapolis, MN) or with mouse IgG1 isotype antibody (MOPC-21; BD Biosciences, 366 

Franklin Lakes, NJ). For intracellular AURKB staining, trypsinized cells were fixed and permeabilized with a 367 

Foxp3/Transcription Factor Staining Buffer Set (eBioscience, San Diego, CA) according to the manufacturer 368 

protocol. After fixation, cells were stained with primary antibody recognizing AURKB (clone RM278; Invitrogen, 369 

Carlsbad, CA) or rabbit IgG1 isotype antibody (DA1E; R&D systems, Minneapolis, MN), and subsequently with 370 

goat anti-rabbit IgG secondary antibody conjugated to Alex Fluor 647 (#A32733; Waltham, MA). For siRNA 371 

knock-down PBMC experiments, harvested cells were stained with fluorochrome-conjugated antibodies 372 

recognizing CD57 (HNK-1), LAG3 (11C3C65), CD39 (A1) and CD4 (OKT4) all from Biolegend, San Diego, CA; PD1 373 

(J105) and CD8 (SK1) from eBioscience, San Diego, CA; and CD4 (SK3) from BD Biosciences, Franklin Lakes, NJ. 374 

These cells were stained for 30mins on ice in the dark with 2% BSA in PBS. Live/dead cells were distinguished 375 

using a Fixable Live Dead Blue Dead Cell Stain Kit (Thermofisher, Waltham, MA). Cells were acquired and 376 

analyzed using a BD FACSCanto II instrument and FlowJo v10.5.3 software (both from BD Biosciences, Franklin 377 

Lakes, NJ) respectively.  378 

 379 

Generation of single cell gene expression and TCR libraries by droplet-based (10x system) and microfluidic-based 380 

technologies 381 

The 5’ gene expression (GEX) and TCR single cell RNA libraries from tumors were prepared using the 10x 382 

Chromium Single Cell V(D)J Reagent Kits (10x Genomics, Pleasanton, CA), as described in the manufacturer’s 383 

protocol. Briefly, freshly dissociated tumor cells were sorted into CD45+ and CD45- fractions, mixed at a 1:1 ratio 384 

and loaded into the Single Cell A Chip for gel bead-in-emulsion (GEM) generation and barcoding, targeting for a 385 

cell recovery of 4000-7000 cells per sample. Reverse transcription, cDNA amplification, GEX and TCR library 386 

construction were performed as described. For C1, single cell suspensions were loaded and captured using 387 

medium-sized (10-17um) Fluidigm Integrated Fluidic Circuit (IFC) and a Fluidigm C1 instrument (Fluidigm, South 388 

San Francisco, CA), according to the manufacturer’s protocol. cDNA product was harvested from the IFC, 389 

barcoded for individual cell identity and pooled. Sequencing was performed by an Illumina Hiseq 4000 (Illumina, 390 

San Diego, CA) with 151-bp single-ended or pair-ended reads. 391 

 392 

  393 
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Data processing of single-cell RNA-seq libraries and clustering 394 

scRNAseq reads were aligned to the GRCh38 reference genome and quantified using Cellranger count (10x 395 

Genomics, version 2.2.0). Downstream analyses were performed using Seurat (version 3.1.5). For malignant-cell 396 

analysis, we isolated subsets of cells identified as malignant cells based on broad clustering and reprocessed 397 

using Seurat without patient alignment, since tumor cells tend to be patient specific. For T-cell clustering, we 398 

isolated subsets of cells identified as T-cells based on broad clustering. Cells were then re-clustered using Seurat 399 

alignment across patients similar as with previous analysis. For CD8+ T-cell clustering, CD8+ T-cells were 400 

extracted from the T-cell clustering based on the following two criteria: 1) in Pre-dysfunctional, Dysfunctional 401 

and Proliferative clusters, and with zero CD4 expression, 2) in Naïve-like, Memory and Transitional clusters, with 402 

zero CD4 and positive CD8 (either CD8A or CD8B) expression. TCR reads were mapped to 403 

vdj_GRCh38_alts_ensembl-3.1.0-3.1.0 reference genome and quantified using cellranger count (10x Genomics, 404 

version 3.1.0). Further details on Seurat analysis, UMAP visualization and use of the following algorithms: 405 

InferCNV, Monocle, PAGODA, Slingshot, functional annotation, Geneswitches, Cytotrace and other analyses 406 

tools, are described in detail in Supplementary methods. 407 

 408 

Statistical analysis 409 

Statistical analysis was performed using GraphPad Prism software (GraphPad Software, Inc., San Diego, CA), or 410 

otherwise indicated in the figure legends and Supplementary methods. 411 

412 
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Figure 1. Tumor samples for single cell RNAseq (A) Workflow of sample acquisition, processing, and analyses 512 

for single cell transcriptome and TCR clonality of tumors (and patient-derived cultures) from primary and 513 

metastatic lymph nodes of HNSCC patients. Diagram was created with BioRender.com. (B) Uniform manifold 514 

approximation and projection (UMAP) of scRNAseq data from all cells within primary tumors and metastatic 515 

lymph nodes from 7 patients. Clusters are denoted by colors and labelled according to inferred cell types. Violin 516 

plots show the expression of selected genes used to define the inferred cell types. (C) Distribution of different 517 

cell types (color) for each patient sample (top) and comparing primary and metastatic samples (bottom) as 518 

indicated on the y-axis. (D) Chromosomal gains and losses prediction for malignant epithelial cells by inferCNV 519 

using non-malignant cells from respective samples as controls. Cyan indicates primary malignant epithelial; 520 

yellow indicates lymph node malignant epithelial; sample identities on the y-axis, chromosome numbers on the 521 

x-axis. 522 

 523 

Figure 2. scRNAseq analysis of malignant epithelial cells and identification of pre-metastatic sub-population. 524 

(A) UMAP of malignant epithelial cells only, clustered by Seurat clusters (left), patients (middle), and tissue origin 525 

(primary/metastatic) (right). (B) Boxplot showing epithelial–mesenchymal transition (EMT) scores across 526 

patients and tissue origin (primary versus metastasis). Line represents mean scores, while box represents 2 527 

standard deviations. (C) and (D) Monocle plots demonstrating the derivation of pre-metastatic populations in 528 

HN251 (C) and HN279 (D) based on (from left to right) tissue origin, monocle clusters, EMT scores, CytoTRACE 529 

scores to derive trajectory. (E) Gene ontology pathways that are significantly altered across pseudotime derived 530 

in C and D. (F) Potentially actionable genes identified to be increased in pre-metastatic population. (G) t-SNE 531 

plot of tumor cells in HN257 showing a highly aggressive sub-population in the primary tumor with high 532 

CytoTRACE scores and expression of SNAI2. (H) Gene set enrichment analysis (GSEA) showing normalized 533 

enrichment scores and (I) Kaplan-Meier plot of TCGA data showing overall survival in patients with high versus 534 

low scores based on genes expressed by the specific subpopulation in (G). Shaded area shows 95% confidence 535 

interval and p-value as indicated based on log-rank test. 536 

 537 

Figure 3. Functional analysis of actionable genes enriched in pre-metastatic population in patient-derived 538 

cultures (PDCs). (A) Dimension reduction plots based on PAGODA for PDCs derived from matched primary and 539 

metastatic lymph nodes (nodal metastatic; M). Clusters are denoted by patient identity and site of origin (left), 540 

and Seurat clusters (right). (B) Heatmap of differentially expressed pathways (rows) across samples and tumor 541 

origin (columns), showing selected Hallmark and Gene Ontology (GO) gene sets. Bars on the top of the heat map 542 

indicate the site of sample origins, clusters and patient samples corresponding to those of (A). (C) Boxplot 543 

showing the gene expression level of AXL (left) and AURKB (right) of malignant cells from primary and metastatic 544 

PDCs for the indicated patients. Line represents mean expression, while box represents 2 standard deviations; 545 

colors and cluster numbers of the bars correspond to (A). (D) Immunocytochemistry of AXL in HN137 and AURKB 546 

in HN159 and HN220 of primary and metastatic PDCs. Scale bar indicates 100 μm. (E) Representative 547 

micrographs from Boyden chamber assays of invaded cells (purple) (top), and quantification of invaded cells 548 

(bottom) in barplots from primary and metastatic cell cultures treated with or without BGB324 or barasertib. 549 
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**p < 0.01, ***p < 0.001, ****p < 0.0001 (significant difference) using student t-test compared with untreated 550 

at corresponding site of origin. Error bars represent one standard deviation. (H) Flow cytometry dot plots 551 

representing anti-AXL (left) and mouse IgG1 isotype control (right) staining of primary and metastatic PDCs of 552 

HN137. (I) Gating used for identification and isolation of AXLhi, AXLmid and AXLneg/low from HN137 primary PDC by 553 

FACS sorting (left). Micrographs representing isolated AXL-based subpopulations treated with or without 554 

BGB324 and their respective invasive potential in Boyden chamber assays (right). 555 

 556 

Figure 4. scRNAseq analysis of tumor infiltrating T-cells and establishing a trajectory for tumor-targeting CD8+ 557 

lymphocytes.  (A) UMAP of tumor infiltrating T-cells from primary and metastatic tumors with clusters denoted 558 

by colors and labelled with inferred cell identities. (B) Heatmap of differentially expressed genes (rows) between 559 

cells classified into inferred T-cell subsets. Bars on the top of the heatmap indicate the site of origin and cell type 560 

corresponding to those of (A) with selected genes indicated. (C) UMAP of all CD8 T-cells from primary and 561 

metastatic tumors. Clusters are denoted by colours and labelled with inferred cell identities based on (D) 562 

expression of selected genes used for CD8 T-cell subset annotation for. (E) Slingshot analysis of CD8 T-cells 563 

showing two potential trajectories giving rise to tumor-targeting CD8+ cells: Trajectory 1 (top)- from naïve to 564 

dysfunctional and Trajectory 2 (bottom)- memory to dysfunctional. (F) Graphs showing the estimate scores of 565 

curated genes related to naïve-like (IL7R, TXNIP, SELL, CCR7, TCF7), proliferative (MKI67, HMGB2, TYMS), 566 

dysfunctional (GZMB, GNYL, CTLA4, LAYN, LAG3, TIGIT) populations, and expression of CXCL13 during the 567 

development of CD8 T-cell along the naïve-proliferation-dysfunction axis in Trajectory 1. (G) Geneswitches 568 

output showing ordering of the top switching genes along the naïve to dysfunctional (Trajectory 1) CD8 T-cell 569 

axis using. Key genes are highlighted with enlarged font size. (H) UMAP projections of expression levels for genes 570 

highlighted in (G). 571 

 572 

Figure 5. Functional analysis of genes involved in CD8 dysfunction and T-cell receptor sequencing analysis.  573 

Violin plots showing expression of SOX4, DUSP4 and RBPJ in CD8 T-cell subpopulations derived from published 574 

cohorts of scRNAseq meta-dataset from (A) HNSCC and (B) skin squamous cell cancer12,28. (C) Boxplots showing 575 

expression of SOX4, DUSP4 and RBPJ in CD8 T-cell subpopulations from (B), grouped by pre- and post-576 

pembrolizumab treatment. *p < 0.05 and ****p < 0.0001 denotes a significant difference compared with pre-577 

treatment of corresponding CD8 T-cell subsets by paired t-test. (B-C) X-axis labels: CD8_mem = CD8 memory; 578 

CD8_eff = CD8 effector; CD8_act = CD8 activated; CD8_ex_act = CD8 exhausted/activated; CD8_ex = CD8 579 

exhausted. (D) Bar graph showing percentage of CD8 T-cells expressing CD39, CD57, LAG3 or PD1 from PBMCs 580 

that were activated and cultured with siNT, siSOX4 or siDUSP4 for 5 days (n = 4). Black lines and error bars 581 

represent mean ± SEM. *p < 0.05, **p < 0.01, ****p < 0.0001 (significant difference) by paired t-test compared 582 

with siNT of respective markers. (E) Barplots of the percentage of TCR clone(s) detected once (n=1), twice (n=2) 583 

or more than two times (n>2) across the CD8 T-cell subpopulations of all patients with HNSCC subjected to 584 

scRNAseq. (F) UMAP projection of CD8 T-cells from HN272, HN263 and HN257 colored by selected TCR 585 

clonotypes. (G) Schematic diagram summarizing the development and trafficking of CD8 T-cell clones between 586 
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primary tumor, lymph node and metastasis, and bloodstream of HN272, HN263 and HN257 based on the 587 

clonotype data from (F). Diagram was created with BioRender.com.  588 

 589 

Figure 6. Determining the interaction between pre-metastatic malignant cells and CD8+ T lymphocyte 590 

populations. (A) Hierarchical plot derived from Cellchat analyses showing ligand-receptor interactions between 591 

tumor cells (primary and pre-nodal subpopulations) with T-lymphocytes (CD8+, CD4+ and Treg cells) and TAMs. 592 

Circle sizes are proportional to the number of cells in each cell group available for and edge width represents 593 

the communication probability with number of potential ligand-receptor pair as indicated. (B) Dot (bubble) plots 594 

showing significant MDK ligand-receptor pairs contributing to the signaling from primary or pre-metastatic 595 

cancer cells (epithelial) to Treg, CD4 or CD8 T-cells. The dot color and size represent the calculated 596 

communication probability, and p-values determined from one-sided permutation test. (C) UMAP of cells 597 

derived from tumors of humanized NOG-EXL mice treated with or without anti-PD1. Clusters are denoted by 598 

colors labelled with inferred cell types, with a 2D projection of MDK gene expression (inset). (D) Frequency of 599 

MDK+ (blue) and MDK- (orange) malignant cells in control or anti-PD1 treated mice. (E) Expression level of 600 

selected genes involved in tumor cell proliferation in malignant cells from control or anti-PD1-treated mice. *p 601 

< 0.05 and **p < 0.01 indicate significant difference by unpaired t test when compared to control. (F) UMAP of 602 

tumor infiltrating CD8 T-cells only extracted from (C). Clusters are denoted by colors labelled with inferred cell 603 

identities. (G) Distribution of CD8 T-cell subpopulations in control vs anti-PD1 treated mice. (H) Delta (∆) 604 

percentage of CD8 T-cells expressing the specific MDK-receptors ITGA4, ITGB1 or NCL showing changes in 605 

dysfunctional, transitional and proliferating subpopulations, comparing untreated versus anti-PD1 treated mice. 606 

Delta percentage is determined by the percentage of MDK receptor+ CD8+ T-cells from anti-PD1 treated mice 607 

minus that of the control mice. (I) Expression of NFKB1 in the three CD8 subpopulations in controls and anti-PD1 608 

treated mice. *p < 0.05 indicates significant difference by unpaired t test when compared to control. (J) 609 

Scatterplot showing the correlation of expression between NFKB1 with the following MDK receptor(s): ITGA4, 610 

ITGB1 and/or NCL in the dysfunctional CD8 T-cells subpopulation. Each dot represents one dysfunctional CD8 T-611 

cell from control (red) or anti-PD1 (blue) treated mice. The R and p values were determined using Pearson 612 

correlation statistical analysis. 613 
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