Many age-related diseases (ARDs) including virtually all neurodegenerative diseases (NDs) are characterized by the accumulation of proteins that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the Ubiquitin Proteasome System (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on increasing the total proteasome levels, but thus far, none have focused on intrinsic activation of the proteasome itself. With this in mind, we constructed a, first to our knowledge, animal model that endogenously expresses a hyperactive open-gate proteasome in Caenorhabditis elegans (C. elegans). The gate-destabilizing mutation introduced into the nematode germline created a viable nematode population with substantially enhanced proteasomal peptidase and unstructured protein degradation activity. These CRISPR edited nematodes showed a significantly increased lifespan and substantial resistance to oxidative/proteotoxic stress with surprisingly mild consequential phenotypes. These results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future ARD research efforts in mammals.