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Abstract: Accurate crop growth and yield estimate information can be obtained via appropriate 

metrics such as the leaf area index (LAI) and biomass. Such information is crucial for guiding 

agricultural production, ensuring food security, and maintaining sustainable agricultural 

development. Traditional methods of field measurement and monitoring typically show low 

efficiency and can only return limited untimely information. Alternatively, methods based on 

remote sensing technologies are fast, objective, and nondestructive. As well, crop growth models 

can dynamically reflect the biological processes of crop growth and development. Indeed, remote 

sensing data assimilation and crop growth modeling represent an important trend in crop growth 

monitoring and yield estimation. In this paper, we assimilate the leaf area index retrieved from 

Sentinel-2 remote sensing data in the crop growth model of the simple algorithm for yield 

estimation (SAFY). The SP-UCI optimization algorithm is used for fine-tuning several SAFY 

parameters, namely the emergence date (D0), the effective light energy utilization rate (ELUE), 

and the senescence temperature threshold (STT) which is indicative of biological aging. These 

three sensitive parameters are set in order to attain the global minimum of an error function 

between the SAFY model predicted values and the LAI inversion values. This assimilation of 

remote sensing data into the crop growth model facilitates the LAI, biomass, and yield estimation. 

The estimation results were validated using data collected in 2014 and 2015. For the 2014 data, 

the results showed coefficients of determination (R2) of the LAI, biomass and yield of 0.734, 

0.831 and 0.487, respectively, with corresponding root-mean-squared error (RMSE) values of 

0.716, 1.13 and 1.14, respectively. For the 2015 data, the estimated R2 values of the LAI, biomass, 

and yield were 0.700, 0.853, and 0.607, respectively, with respective RMSE values of 0.828, 1.217, 

and 1.389, respectively. The estimated values were found to be in good agreement with the 

measured ones. This shows high applicability of the proposed data assimilation scheme in crop 

monitoring and yield estimation. As well, this scheme provides a reference for the assimilation of 

remote sensing data into crop growth models for regional crop monitoring and yield estimation. 

Keywords: remote sensing; SAFY crop model; data assimilation; leaf area index; biomass; yield 

estimation 

1. Introduction 

As one of the essential food crops, wheat is widely planted worldwide, with a total planting 

area exceeding 200 million hectares, and more than one third of the world population using wheat 

as the main food ingredient (Ortiz et al., 2008; Yu, 2013) Wheat is also one of the main food crops 

in China, where the wheat total planting area and yield come just next to those of rice and corn. 

Several parameters can be used to assess the growth of wheat and other crops including mainly the 

leaf area index (LAI) and the biomass. Indeed, these two parameters represent the material basis 
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for crop yield formation. As well, the dynamic changes in those two parameters during different 

growth periods are closely related to the full crop yield formation. Therefore, LAI and biomass 

monitoring can provide essential information for analyzing energy balance and flow in terrestrial 

ecosystems. In particular, wheat yield estimation enables timely understanding of the changing 

trends of wheat harvesting and production, provides a reference for macro-level control and 

formulation of trade policies, and helps ensure food security through the formulation and 

implementation of policies for food pricing, circulation, and storage.  

The wheat LAI, biomass, and yield metrics have been traditionally obtained through field 

measurement methods. Although these methods generally have a high accuracy, they may not be 

appropriate for monitoring wheat growth in widely distributed countries with complex topography 

like China. Meanwhile, wheat growth is not only related to intrinsic physiological and structural 

characteristics, but is also influenced by environmental factors (such as climate, hydrology, and 

soil patterns) as well as social, economic, and technological factors. Therefore, wheat growth 

patterns exhibit wide temporal and spatial variations, and thus manual monitoring methods for 

such patterns are labor-intensive and generally inefficient. In addition, human observers of crop 

growth should have high expertise and crop knowledge. Hence, outcomes of manual monitoring 

methods are highly subjective and not suitable for large-scale monitoring. Alternatively, methods 

based on remote sensing are fast, objective, and non-destructive, and hence offer unique 

advantages in monitoring physiological and biochemical crop parameters and estimating crop 

yield. In recent years, remote sensing technology was widely used in estimating the crop LAI, 

biomass, and yield. 

For LAI and biomass estimation, Huang et al. (2006), Su et al. (2016), and Fieuzal et al. 

(2016) used the canopy red light band (680~760 nm), LiDAR, SAR C HH and L HH band data. 

Then, they calculated the red edge position, amplitude, and area as well as other parameters. In 

addition, they extracted vertical structure parameters, analyzed their correlation with LAI, and 

finally constructed LAI estimation models for rice, corn, wheat and other crops. Furthermore, Liu 

et al. (2016a), Li et al. (2009), and Wang et al. (2012) exploited remote sensing data collected 

from environmental satellites (such as MODIS, ASTER, SPOT5). Then, vegetation index maps 

were combined with LAI measurements to create PROSAIL statistical models for dynamic LAI 

estimation in maize and wheat crops. Thenkabail et al. (2000) showed that crop biomass is 

negatively correlated with spectral reflectance in the red-light band (620~700 nm), and positively 

correlated with spectral reflectance in the near-infrared band (740~1100 nm). So, a biomass 

inversion model was established based on these observations. Takahashi et al. (2000) investigated 

the relationship between canopy spectral reflectance and rice biomass in the spectral range of 

400~1100 nm, and hence established a biomass inversion model based on partial least squares 

regression. Blackard et al. (2008) used MODIS and Landsat TM image data with regression 

methods to devise biomass inversion algorithms and draw a national biomass distribution map in 

the United States. Gao et al. (2013) used environmental satellite image data and ground 

measurements to construct biomass inversion models based on multiple linear regression, and 

employed the high-precision models for biomass estimation. Li et al. (2016), Zheng et al. (2016), 

Zhang et al. (2019) fused spectral reflectance and image data of wheat canopy for wheat biomass 

estimation. In addition, raw spectral data was employed in several methods to filter sensitive 

bands, build spectral or vegetation index maps, analyze index correlation with crop biomass, and 

finally build biomass inversion models. For example, Casanova et al. (1998) analyzed rice spectral 
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reflectance data and calculated several relevant vegetation indices, namely the ratio vegetation 

index (RVI), the normalized difference vegetation index (NDVI), the vertical vegetation index 

(VVI), and the weight difference vegetation index (WDVI). An analysis of the correlation between 

these vegetation indexes and rice biomass showed that the VVI and WDVI are relatively strong 

predictors for rice biomass estimation. Moreover, Chen et al. (2005), Barati et al. (2011), Irykna et 

al. (2011), and Newnham et al. (2011) used remote sensing data to build regression models for 

estimating crop biomass from vegetation indices, evaluated the estimation results, and generated 

maps of the spatial biomass distribution in the studied areas. Bao et al. (2009) explored the 

feasibility of multiple-scale estimation of the biomass of winter wheat using the normalized 

difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the normalized 

vegetation index (NVI). As well, Tan et al. (2011), Gao et al. (2013), and Lu et al. (2017) utilized 

UAV digital images, RADARSAT-2 data, HJ-1 A/B data, and Landsat TM data to construct 

spectral and vegetation index maps for estimating and mapping the biomass of soybean, wheat, 

and other crops. Liu et al. (2015) combined spectral parameters, texture factors, and terrain factors 

with ground measurements in order to construct an inversion model for wheat biomass estimation. 

 For crop yield estimation, numerous remote sensing approaches have been reported as well. 

For instance, Wu et al. (2013) collected spectral data of soybean canopy and associated yield 

measurements during multiple growth periods. This data was used to construct a comprehensive 

soybean yield estimation model across multiple growth periods (R2 = 0.68). Gao et al. (2012),  

Ren et al. (2015), and Akhand et al. (2016) used MODIS data, AVHRR images, HJ satellite 

images, SPOT4 and TM5 images to construct maps of the normalized difference vegetation index 

(NDVI) and the vegetation health index (VHI). These vegetation indices were used as predictors 

within regression models for corn and potato yield estimation. Li et al. (2012) and Sun et al.(2017) 

used MODIS data and Landsat image data to calculate the NDVI and LAI of wheat and grapes, 

and estimate the yield of these crops using multiple linear regression models. Chen et al. (2013) 

and  Ou et al. (2010) analyzed HJ satellite time-series data and extracted characteristic 

parameters of the NDVI change rates across different growth periods for winter wheat, rice, corn, 

and soybean. These parameters were used to create yield estimation models and find periods with 

the best estimated yield for the four crop types. Song et al. (2016) and Zhao et al. (2017) used 

hyperspectral data measured by a GER1500 spectrometer and an unmanned aerial vehicle (UAV) 

to construct maps of the ratio vegetation index (RVI) and the green normalized vegetation index 

(GNDVI). Then, an analysis was performed for the correlation of these indices with rice and 

soybean yields, and yield estimation models were constructed using partial least squares 

regression.  

Remote-sensing-based crop growth monitoring and yield estimation are mainly achieved by 

identifying characteristic parameters, analyzing the statistical relationships between crop growth 

and relevant metrics (e.g. LAI and biomass), and hence constructing estimation models. This crop 

growth assessment approach is simple, easy to use, and widely used. However, remote sensing 

information only reflects superficial physical conditions, and cannot truly reveal the internal 

processes and mechanisms of collective and individual crop growth, yield formation, and 

environmental interactions. Therefore, remote sensing methods lack explanatory mechanisms, and 

typically exhibit poor temporal and spatial expansion. In addition, because the acquisition of 

remote sensing data is often restricted by satellite revisit cycles and adverse weather conditions 

(clouds, rain and snow), continuous crop growth monitoring cannot be performed during the 
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growing season, and hence the monitoring accuracy is limited to a certain extent. On the other 

hand, crop growth models are based on biophysical growth laws, meteorological conditions, and 

soil conditions. Also, these models use light, temperature, moisture and fertilization as driving 

factors, and take into account material balance and energy conservation matters. In fact, such 

models can be created based on computational and mathematical techniques to systematically and 

quantitatively express key processes in crop physiology including crop photosynthesis, respiration 

and transpiration. Indeed, dynamical mathematical models can be established to simulate the 

dynamic crop growth processes during the whole growth period with a fixed step. Therefore, 

computerized mathematical models with strong explanatory power have been widely used in crop 

growth simulation, physiological and biochemical index parameter inversion, yield estimation, etc. 

(Huang et al. (2018), Wu et al. (2017)). Liu et al. (2016b) used hyperspectral data within an 

analytical two-layer canopy reflectance model (ACRM) for LAI inversion in winter wheat. The 

results showed high LAI inversion accuracy with small model parameter uncertainty and 

appropriate band selection. Pan et al. (2018) exploited the PROSAIL model for LAI inversion in 

winter wheat, and showed high accuracy in the red-edge band using the cropping index. Also, 

Baret et al. (2007) combined artificial neural networks with the PROSAIL model for effective 

inversion of crop LAI.  

Crop growth models are typically built on a regional scale for growth monitoring and yield 

estimation. However, such models overlook the large spatial and temporal variations in soil 

characteristics (such as soil moisture), crop parameters (such as LAI, biomass, and nitrogen 

content) and meteorological data (Hansen et al. (2000)). Actually, uncertainties in these factors 

affect the physiological growth process and hence can lead to degradation in the accuracy of crop 

growth models. Those uncertainties can be reduced through the assimilation of remote sensing 

data which provides a great potential for accurate quantitative estimation of regional soil 

properties and canopy state variables. Also, the real-time acquisition and spatial continuity of 

remote sensing data can effectively enhance the applicability of crop growth models at regional 

scales. However, obtaining the input parameters of a crop growth model continuously quite is 

challenging. These challenges can be handled based on the respective advantages of remote 

sensing and crop growth models. Specifically, based on the data assimilation methodology, the 

remote sensing data is embedded into the relevant input parameters of the crop growth model or 

the correction model for local parameter adaptation, and thereby improving the accuracy of crop 

monitoring and yield estimation (Li et al., 2008; Wu et al., 2017). Yao et al. (2015) assimilated the 

MODIS LAI data into the BEPS crop growth model, and hence significantly improved the 

accuracy of corn yield estimation. Tripathy et al. (2013) and Sining et al. (2013) assimilated LAI 

data retrieved by the SPOT satellite into the WOrld FOod STudies (WOFOST) crop growth model, 

and thus effectively improved the yield estimation accuracy for wheat and corn. Curnel et al. 

(2011) assimilated the LAI of winter wheat in the WOFOST model, optimized the model 

parameters using an ensemble Kalman filter, and realized regional-scale growth monitoring and 

yield estimation for winter wheat. Ma et al. (2013) assimilated MODIS-based LAI data into the 

WOFOST model, and improved the yield estimation accuracy by optimizing three model 

parameters, namely the date of emergence, initial biomass, and soil moisture content. Dente et al. 

(2008) and Silvestro et al. (2017) used remote sensing data obtained from ENVISAT, ASAR and 

MERIS for wheat LAI inversion, assimilated the data into the CERES-Wheat and AquaCrop 

models, and improved the model performance by adjusting model parameters such as the sowing 
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time, wilting point, field water holding capacity, harvest index, temperature, and moisture. 

The simple algorithm for yield estimation (SAFY) model is a crop growth model based on 

light-energy utilization theory. This model describes the biophysical crop processes (e.g. biomass 

accumulation, leaf distribution, leaf senescence, etc.) with empirical parameters, and hence 

simplifies the process of crop growth modeling. This model avoids the limitations of earlier 

models and is more applicable under universal conditions (Duchemin et al. (2008)).  

This paper uses Sentinel-2 remote sensing data to retrieve the leaf area index (LAI) of winter 

wheat, assimilates the data into the SAFY crop growth model, and optimizes three sensitive model 

parameters using the SP-UCI optimization algorithm. Those parameters are the emergence date 

(D0), the effective light energy utilization rate (ELUE), and the senescence temperature threshold 

(STT). The paper basically seeks to create a dynamic model of winter wheat growth, estimate 

wheat LAI, biomass, dry aerial mass (DAM) and yield, and also use actual measurements to verify 

the estimation results. In essence, the paper provides new solutions for wheat crop growth 

monitoring and yield estimation using remote sensing, data assimilation, and crop growth 

modeling. 

 

2. Materials and Methods 

2.1 Data acquisition and processing 

2.1.1 Study area 

The study was conducted at the National Precision Agriculture Research Demonstration Base 

in Xiaotangshan Town, Changping District, Beijing. This area is located in the northeast of 

Xiaotangshan Town (116°27'51"～116°27'53" E, 40°10'48"～40°10'54" N), with an average 

elevation of 36 m above sea level. The area has a semi-humid continental climate in the northern 

temperate Monsoon Zone, and is characterized by high temperatures, rainy summers, cold and dry 

winters, and short springs and autumns, with an average frost-free period of 180 days throughout 

the year. The specific area location is shown in Figure 1. 

 

Figure 1. Study area and experimental design 

The study area has 16 experimental plots, replicated 3 times, to give a total of 48 plots. The 
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wheat planting density of each plot is 4.89 million plants/ha, and there are two wheat varieties, 

namely Jing 9843 (Variety 1, denoted by P1) and Zhongmai 175 (Variety 2, denoted by P2). As for 

the nitrogen fertilizer (urea) treatment, there are four possible settings: 0 kg/ha (N1), 195 kg/ha 

(N2), 390 kg/ha (N3), and 585 kg/ha (N4). Three levels of water treatment are possible: rain-fed 

(W1, No irrigation), normal water volume (W2, irrigation water volume of 146 mm), and doubled 

water volume (W3, irrigation water volume of 292mm). Apart from the nitrogen fertilizer 

treatment, the base fertilizer is composed of 375 kg/ha of superphosphate and 150 kg/ha of 

potassium sulfate. The field management conditions of each community are the same. 

2.1.2 Data acquisition and processing 

The types of the collected data include satellite remote sensing data, the leaf area index, 

biomass, wheat yield, and meteorological data. 

（1）Remote sensing data acquisition  

The remote sensing data was collected from Sentinel-2, which is a high-resolution imaging 

satellite that carries a multispectral imager (MultiSpectral Instrument, MSI) with 13 bands, a 

width of 290 km, and a revisit period of 10 days. In this work, the remote sensing data was 

downloaded from the official website of the European Space Agency (ESA) 

(https://scihub.copernicus.eu/dhus/#/home). All image data are L1C products that have been  

ortho-rectified and geometrically corrected. We applied atmospheric data correction with the 

Sen2Cor software provided by ESA. A total of 4 data bands (B2, B3, B4, and B8) were obtained in 

the ENVI software (version 5.3). 

In this paper, remote sensing images were obtained from the Sentinel-2 satellite through 7 

phases with a relatively uniform time distribution. The acquisition times were: April 10, 2014, 

April 15, 2014, April 25, 2014, May 13, 2014, May 23, 2014, June 2, 2014, June 9, 2014, May 2, 

2015, and May 9, 2015. 

(2) LAI data acquisition 

The LAI-2200C Plant Canopy Analyzer was used to collect LAI data. For LAI measurement, 

we selected the plant side facing away from the sun, made one sky light measurement, and then 

placed the analyzer close to the plant root to measure 4 target values. The analyzer lens was kept 

upright, and finally the average value of the cell LAI was obtained. 

(3) Biomass data acquisition 

For collecting biomass data in each plot, we selected three representative wheat plants, cut 

the above-ground plant parts, put the parts in a paper bag, and then put the bag in an oven. The  

temperature was set to 105°C to kill bacteria. After 30 minutes, the temperature was set to 75°C  

and the plant parts were dried to a constant weight for approximately 24~28 h. Then, the plant 

weight was measured with a balance. Finally, the biomass per unit area was calculated according 

to the plant density in the plot and the dry sample weight. 

(4) Production data acquisition 

When wheat became ripe, a certain area of wheat samples was harvested and recorded in 

each plot. The harvested wheat grains were then air-dried under natural conditions, and weighed 

with a balance. The yield per unit area was calculated according to the harvested area and the 

sample weight. 

(5) Meteorological data acquisition 

The meteorological data used in this work is the ERA-Interim data provided by the European 

Centre for Medium-Term Weather Forecast (www.ecmwf.int). The data includes the daily 

http://www.ecmwf.int/
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maximum temperature, the minimum temperature, and the daily radiation. The average of the 

daily maximum and minimum temperatures is the daily average temperature. 

 

2.2 Methods 

(1) Performance evaluation metrics 

The coefficient of determination (R2), the root-mean-square error (RMSE) and the normalized 

RMSE (nRMSE) were selected as performance evaluation metrics. These metrics are 

mathematically defined as: 
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where ix  is the ith measurement, iy  is the corresponding model estimate, y  is the mean 

value of the model estimates, and n is the number of samples. Generally, the larger R2 is, the 

smaller the RMSE is, and the better the model fit is. The range of the nRMSE metric generally 

defines the model accuracy. A value of nRMSE < 10% indicates that the estimated and measured 

values are highly consistent, the range 10% < nRMSE < 20% indicates good consistency, while the 

range 20% ≤ nRMSE < 30% indicates medium consistency, and finally the range nRMSE ≥ 30% 

indicates poor consistency. 

(2) Construction of the vegetation index maps 

Based on relevant research studies, six commonly used vegetation indices are selected, 

namely the enhanced vegetation index (EVI), the enhanced vegetation index 2 (EVI2), the 

modified simple ratio (MSR), the normalized vegetation index (NDVI), the optimized 

soil-adjusted vegetation index (OSAVI), and the ratio vegetation index (RVI). The mathematical 

definition of each of these indices is listed in Table 1. 

Table 1. Mathematical expressions of various vegetation indexes 

Vegetation indices  equation References  

EVI  NIR
EVI 2.5

NIR 6 7.5 1

R

R B




  
 

(Huete et al., 2002)  

EVI2  NIR
EVI2 2.5

NIR 2.4 1

R

R




 
 

(Jiang et al., 2008)  

MSR  NIR / 1
MSR

NIR / 1

R

R





 

(Chen, 1996)  

NDVI  NIR
NDVI

NIR

R

R





 

(Rouse et al., 1974)  

OSAVI  NIR
OSAVI

NIR 0.16

R

R




 
 

(Rondeaux et al., 1996)  
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RVI  NIR
RVI

R
  

(Jordan, 1969) 

Note: R, G, B and NIR represent the reflectance of red, green, blue and near-infrared bands respectively. 

(3) The SAFY crop growth model  

The SAFY model is a crop growth model based on the theory of light energy utilization. This 

model simulates the daily dynamic changes of the crop LAI, DAM, and yield from the growth 

emergence to end. The daily radiation and daily mean temperature are necessary driving inputs for 

the SAFY model. In this model, crop growth is divided into two continuous stages, namely the 

growth stage and the senescence (or biological aging) stage. These stages are identified based on 

the accumulated summary temperature (SMT) after emergence. 

From emergence to senescence, the crop biomass increases with photosynthesis. During this 

process, the aboveground biomass is calculated based on three factors, namely the temperature 

stress function, the absorbed photosynthetically active radiation (APAR), and the effective light 

use efficiency (ELUE). The product of these three factors gives the dry aerial mass (DAM) which 

is calculated as: 

( )TDAM ELUE F Ta APAR   ,                    （4） 

and the APAR factor is given by: 

(1 )K LAI

cAPAR e Rg                           （5） 

where Rg is the daily radiation, 
c  is the climate efficiency factor, K is the light interception 

coefficient, and ( )TF Ta is the temperature stress function. This function is mathematically defined 

as 

            

2
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min max
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       （6） 

where Ta is the daily average temperature, Tmin, Topt, and Tmax represent respectively the minimum, 

the most suitable, and the maximum temperatures for crop growth. If the ambient temperature is 

too high or too low, the growth rate of the crop biomass will decrease. When the daily average 

temperature is lower than Tmin or higher than Tmax, the crop growth will stop. 

In the growth stage, the crop leaves grow, and the biomass growth can be divided into two 

parts: leaf biomass growth and non-leaf biomass growth. The leaf biomass growth follows a 

distribution function (Eq. (8)), and promotes a LAI increase (Eq. (9)). When the accumulated 

temperature reaches the senescence temperature threshold (STT), the leaves enter the senescence 

stage at a specified rate (Eq. (10)). When the LAI is less than 0.1, the senescence ends. The 

aforementioned quantities are defined as follows: 

0
min( )

t

aD
SMT T T dt                        （7） 
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1 bPl SMT

aPl Pl e
                           （8） 

where SMT is the accumulated temperature, D0 is the crop emergence period, Pl is the proportion 

of biomass allocated to leaf tissues, while Pla and Plb are the distribution coefficients. 

If Pl > 0, then 

LAI DAM Pl SLA                            （9） 

where LAI   is the daily LAI increment, and SLA is the specific area, i.e., the ratio of the leaf 

unit area to its dry weight. 

If SMT > STT, then 

( ) / sLAI LAI SMT STT R                       （10） 

where LAI   is the daily LAI decrease, STT is the senescence temperature threshold, and 
sR  

is the coefficient of leaf senescence. 

The crop yield is expressed as  

                  maxGY DAM HI                              （11） 

where 
maxDAM  is the maximum aboveground biomass, and HI is the harvest index. 

(4) SP-UCI parameter optimization algorithm 

The shuffled complex evolution with principal component analysis – University of California, 

Irvine (SP-UCI) is a global optimization algorithm for high-dimensional and complex problems 

(Chu et al., 2011). Based on the SCE-UA algorithm, the SP-UCI algorithm combines a complex 

evolutionary algorithm, the simplex algorithm, and polynomial resampling to deal with 

particle-swarm search degradation in high-dimensional spaces (Duan et al., 1993). Indeed, the 

SP-UCI algorithm enables efficient particle-swarm search in whole parameter spaces with high 

dimensionality.  

Although many hyperparameters should be set in the SP-UCI algorithm, most of these  

hyperparameters are typically set following values recommended in earlier methods. The settings 

of the maximum number of runs (maxn) and the number of complexes (m) are problem-dependent. 

The SP-UCI optimization steps are as follows: 

1) Initialization: Under uncertain prior information, assume that the data samples follow a 

uniform distribution and that the optimization target is n-dimensional. Denote the number of 

evolved complexes by m (m ≥ 1) and the number of vertices selected within each complex by p 

(p ≥ m + 1). A total of m × p points are randomly sampled in the parameter range, and the 

function is evaluated at each point. 

2) Complex division: The sample points are randomly divided into m complexes, and each 

complex is sorted according to the value of the fitness function. 

3) Dimension monitoring and recovery: Principal component analysis is used to determine 

the particle swarm degradation level, and search for and recover the missing dimension. 

4) Complex evolution: Based on the modified competitive complex evolutionary（MCCE） 

algorithm, each complex is evolved by reflection, contraction, and mutation. 

5) Polynomial resampling: After the above steps, if a better evolution point is still not found, 

a point is randomly drawn following the multivariable normal distribution defined by the simplex. 
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6) Convergence judgment: If the convergence criterion is met, the cycle is terminated. 

Otherwise, return to step (2). 

(5) Partial least squares regression 

Partial least squares regression (PLSR) is a regression method that combines features of set 

regression analysis, canonical correlation analysis, and principal component analysis. The PLSR 

method seeks to infer a linear relationship between the independent and dependent variables, solve 

the problem of multicollinearity, and also ensure model stability. The PLSR method can be 

described as follows. Suppose there are p independent variables 
 1 2, , , px x xL

, Q dependent 

variables
 y

, and n samples altogether. Each sample has p independent variables and one 

dependent variable, with corresponding matrices X and Y. Firstly, the component t1 is extracted 

from X, which is a linear combination of 1 2, , , px x xL
. If a total of m components 

1 2, , , ( )mt t t m nL
are extracted from X, and y is expressed through regression over the original 

independent variables, the regression of y to the components 1 2, , , mt t tL
 is realized. 

 

3. Experimental Results and Analysis 

3.1. LAI Inversion using Sentinel-2 remote sensing data 

In the process of assimilating LAI remote sensing data into crop growth models, LAI inversion 

should be realized on the regional scale. At present, models for crop LAI inversion from remote 

sensing data are mainly divided into three categories: statistical models, mechanism models, and 

mixed models. Verrelst et al. (2015) and Chenget and Meng, (2015) investigated the LAI 

inversion performance for statistical and mechanism models. The results showed that the 

statistical models can achieve higher LAI inversion accuracy than the mechanism ones. For 

statistical models, vegetation index methods are the most traditionally employed methods. 

Although such methods involve fewer crop-growth mechanisms, these methods are simple, easy to 

use, and can retrieve crop LAI in a timely and effective manner. Numerous studies have shown 

that optical remote sensing is effective for large-scale inversion of crop LAI, especially because 

the visible-light and near-infrared bands are highly correlated with crop LAI. Therefore, we 

employed optical remote sensing data obtained from Sentinel-2 to retrieve wheat LAI using 

vegetation index methods. Based on the vegetation indices listed in Table 1, we randomly selected 

two thirds of the data samples (n=256), used the PLSR method to construct the LAI inversion 

model, and finally calculated three performance metrics for each model (R2, RMSE, and nRMSE). 

The results are shown in Table 2.  

Table 2. LAI inversion model and accuracy using Sentinel-2 remote sensing data 

Vegetation 

index 
Model 

Model accuracy 

R2 RMSE nRMSE（%） 

EVI 8.475 1.639y x   0.626** 0.838 25.8 

EVI2 
1.6178.509y x  

0.635** 0.828 25.5 
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MSR 
0.3611.263 xy e  

0.679** 0.780 24.0 

NDVI 9.721 4.677y x   0.625** 0.839 25.8 

OSAVI 
4.6770.208 xy e  

0.696** 0.756 23.3 

RVI 0.181 0.893y x   0.695** 0.757 23.3 

Note: ** indicates the significance level of 0.01. 

In order to evaluate the stability and reliability of the LAI inversion model constructed by each 

vegetation index, the remaining one third of data samples (n=128) (which were not used in the 

modeling process) were selected for checking the model accuracy. Pairs of LAI predicted and 

measured valued were used to create scatter plots for models with different vegetation indices, as 

shown in Figure 2. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2. Scatter plots of predicted and measured LAI values for models with different vegetation 

indices 

The results showed that the relationship between each vegetation index and the LAI was 

extremely significant (P < 0.01). According to the LAI estimation accuracy, the vegetation indices 

are ranked in a descending order as follows: OSAVI, RVI, MSR, EVI2, EVI and NDVI. Indeed, 

the OSAVI-based model had the highest accuracy, and the R2 values for the modeling and 

validation sets were 0.696 and 0.713, respectively. All other vegetation indices resulted as well in 

high modeling and validation accuracies, but the OSAVI model had the best performance and was 

hence chosen to retrieve LAI from Sentinel-2 remote sensing data. 
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3.2. Estimation of wheat LAI, biomass, and yield with the SAFY model 

3.2.1. Parameter settings for the SAFY model 
Based on earlier studies (Chahbi et al., 2014; Hadria et al., 2010; Claverie et al., 2012; Raes et 

al., 2009; Dong et al., 2016; Duchemin et al., 2008), the main parameters of the SAFY model were 

set as shown in Table 3. 

Table 3. Main parameter settings for the SAFY model 

Parameter Value Reference 

Parameter I 

Climate efficiency factor c  
0.48 Chahbi et al., 2014  

Initial biomass  DAM0 4.2 g.m-2 Hadria et al., 2010 

Optical interception coefficient K 0.5 Claverie et al., 2012 

Three base point temperature

（Tmin,Topt,Tmax） 

0℃/18℃/26℃ Raes et al., 2009  

Specific leaf area SLA 0.022m2.g-1 Claverie et al., 2012 

Recession coefficient  RS 6875℃/day Claverie et al., 2012 

ParameterⅡ 
Partition function coefficient Pla 0.01-0.3 Dong et al., 2016  

Partition function coefficient Plb 10-5-10-2 Duchemin et al., 2008 

Parameter Ⅲ 

Day after sowing D0   

Effective light energy utilization ELUE 1.3-2.5g/Mj Duchemin et al., 2008 

Senescence temperature threshold STT 600-1500℃  

The agricultural system complexity leads to uncertainties in crop growth parameters. When the 

parameters of a crop growth model are suitable for the area of interest, the model shows relatively 

high estimation accuracy. Otherwise, the model estimates will greatly deviate from the actual crop 

growth outcomes. Therefore, model parameter estimation and adjustment are crucial for ensuring 

the applicability of crop growth models in a certain area. In this paper, according to earlier 

methods (Chahbi et al. (2014), Claverie et al. (2012), Duchemin et al. (2008)), the adjustable 

parameters of the SAFY model are divided into two categories: non-sensitive parameters (Pla, Plb) 

and sensitive parameters (D0, STT, ELUE). Based on the measured wheat LAI, DAM, and 

biomass data, a trial-and-error approach was followed to adjust the non-sensitive model 

parameters.  

The wheat emergence date is generally about 10 days after sowing. During the flag picking 

period, the flag leaves grow. At that time, the wheat LAI reaches its maximum value, and the 

accumulated temperature is determined. The non-sensitive model parameters are adjusted as 

follows: 

(1) Use a trial-and-error method to determine the non-sensitive parameters (Pla, Plb). Firstly, the 

parameter Pla is set. According to Eq. (8), when the LAI reaches its peak value, the blade 

distribution function Pl is 0, and thus Plb is determined. 

(2) Initialize the parameters and simulate the SAFY model. 

(3) Construct the cost function based on the sum of squared errors between the measured and 

estimated LAI values: 

2

1

( )
n

i i

i

S M

J
n







                         (12) 
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where iM
 and iS

 respectively represent the measured and model estimated LAI values for the ith 

sample, and n represents the number of samples. 

 (4) Terminate the iterations when either the objective function cannot be improved by 0.01% for 

20 consecutive cycles, or the cost function is evaluated more than 10,000 times. 

 (5) Estimate the error between the DAM and measured values. 

   The steps (1)-(5) are repeated until the DAM model estimate is close to the measured value. 

Finally, the non-sensitive parameters (Pla, Plb) are obtained as 0.16 and 0.0025, respectively. 

These parameters are fixed throughout the process of assimilating the remote sensing data into the 

SAFY model. 

3.2.2. Wheat LAI, DAM and yield estimation 
(1) LAI estimation 

Using the Sentinel-2 remote sensing data, an OSAVI-based LAI inversion model was 

constructed. Then, optimization is carried out to get the best values of the three SAFY sensitive 

parameters, namely D0, ELUE, and STT for different test plots. The wheat LAI was thus estimated 

for different wheat varieties, and different irrigation and fertilizer settings. The relationships 

between the estimated and measured LAI values in 2014 and 2015 are inferred and shown in 

Figure 3. 

 

(a)                          (b) 

Figure 3. Relationships between estimated and measured values of wheat LAI for different wheat 

varieties and different irrigation and fertilizer settings 

In Figure 3, the error bars represent the actual LAI measurements in each growth period 

under different irrigation and fertilizer settings, while the curves represent the LAI estimated 

values. The results show that with the transition to later wheat growth periods, the SAFY model 

shows an increasing LAI trend. After the greening period (about 160 days after sowing), the LAI 

increases significantly, and at the end of wheat growth (about 200 days after sowing) the LAI 

reaches the maximum value and begins to decay approaching zero at the end of grouting (about 

250 days after sowing). The estimated LAI values are in good agreement with the measured ones, 

indicating that the SAFY model can generally simulate the dynamic wheat growth and LAI 

progression during the entire growth period. 

We created scatter plots of the estimated and measured LAI values in 2014 and 2015 

respectively, as shown in Figure 4.In Figure 4, the R2 values of the LAI estimation results for 2014 

and 2015 are 0.734 and 0.700, respectively. These results show that the LAI estimated values are 

in good agreement with the measured ones. This indicates that the assimilation of remote sensing 

data into the SAFY model facilitates the effective estimation of the wheat LAI. 
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(a)                         (b) 

Figure 4. Scatter plots of the LAI estimated and measured values in 2014 and 2015 

(2) DAM estimation 

As mentioned above, using Sentinel-2 remote sensing data, the OSAVI-based LAI inversion 

model was constructed to optimize three sensitive parameters for different test plots: D0, ELUE, 

and STT. For each test plot, wheat DAM values were estimated for different wheat varieties and 

different irrigation and fertilizer settings. The relationships between the estimated and measured 

DAM values in 2014 and 2015 are shown in Figure 5. 

 

(a)               (b) 

Figure 5. The relationships between the estimated and measured wheat DAM values for different 

wheat varieties and different irrigation and fertilizer settings 

The results show that the SAFY-based wheat DAM estimate exhibits an overall increasing 

trend with time progression. After the greening period (about 160 days after sowing), the DAM 

growth rate increased significantly, and at the end of the growth period (about 200 days after 

sowing), the DAM growth rate reached its maximum, and then the growth gradually tended to be 

flat. At the end of the filling stage (about 250 days after sowing), the biomass growth ended. This 

shows that under different experimental conditions, the estimated DAM value is basically 

consistent with the measured one, and that the SAFY model can better model wheat DAM growth 

during the whole growth period. 

Figure 6 shows scatter plots of the estimated and measured DAM values in 2014 and 2015 

respectively.The estimated and measured DAM values in 2014 and 2015 resulted in R2 metrics of 

0.831 and 0.853, respectively. Indeed, the estimated values are in good agreement with the 

measured ones, indicating that the assimilation of remote sensing data into the SAFY model helps 

with effective wheat DAM estimation. 



15 

 

 

(a)                          (b) 

Figure 6. Scatter plots of the estimated and measured DAM values in 2014 and 2015 

 

(3) Production estimation 

The harvest index (HI) is the ratio of the above-ground biomass (or DAM) to the yield when 

the crops are harvested. This index is an important parameter for crop yield estimation. Related 

studies show that the wheat HI is between 0.45 and 0.55 under non-stress conditions. Each of the 

irrigation, nitrogen fertilizers, and disease conditions can increase or decrease the HI value 

according to the condition timing and severity. Under adverse conditions, the HI can be reduced to 

0.2-0.3 (Raes et al. (2009)). Constantin et al. (2015) used the optimal HI for yield estimation. The 

impact of water stress on biomass was directly considered and evaluated by simulating soil 

moisture (Steduto et al. (2009), Supit and Hooijer (1994), and Jones (1986)). The SAFY model 

can adequately take into consideration the effects of water stress in the LAI and ELUE simulations. 

Therefore, the HI value in this paper was set to 0.5. 

Scatter plots of the estimated and measured wheat yields for 2014 and 2015 are shown in 

Figure 7.The estimated R2, RMSE, and nRMSE metrics of wheat production in 2014 were 0.487, 

1.135 t/ha, and 21.9%, respectively. For 2015, the corresponding metrics were 0.607, 1.389 t/ha, 

and 23.3%, respectively. However, the wheat production in 2014 was slightly overestimated, while 

that in 2015 was underestimated. In general, the estimated yield is in good agreement with the 

measured one, and this indicates that the SAFY model can reliably estimate wheat yield. 

 

(a)                          (b) 

Figure 7. Scatter plots of the estimated and measured production values for 2014 and 2015 
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4 Discussion 

The remote sensing technology has the desirable characteristics of being objective, rapid, 

non-destructive, and of wide coverage area. Numerous in-depth studies have been conducted on 

the use of remote sensing data for crop growth monitoring, parameter retrieval, and yield 

estimation. However, remote sensing data only obtains instantaneous and superficial physical crop 

conditions, while this type of data cannot effectively reveal the mechanisms of environmental, soil, 

and farmland processes (including irrigation, and fertilization) and their effects on crop growth 

and yield formation. So, models based only on remote sensing data suffer from poor universality. 

In addition, existing studies have shown that as crops grow, the remote sensing coverage gradually 

increases, spectral saturation effects become more visible, and parameter inversion becomes far 

from ideal (Kross et al., 2015). Alternatively, crop growth models have the advantages of 

possessing strong mechanisms and anti-interference capabilities. Therefore, many methods have 

been proposed to use crop growth models for parameter inversion and yield estimation. However, 

if such models were developed for limited areas, then the models may not scale well as the spatial 

scale increases. Consequently, model parameters would be difficult to estimate with spatial 

variations, the model accuracy would deteriorate, and the models wouldn’t show good 
generalization performance. Therefore, we assimilated remote sensing data into crop growth 

models to achieve complementary advantages of both approaches, and hence improve the model 

universality. On the one hand, such assimilation can provide crop information with ‘ground-truth 

values’ to assist in correcting model deviations. The assimilation also effectively reduces the 
difficulty of regional model construction in terms of the initial conditions and model parameters. 

On the other hand, the resulting enhanced models allow comprehensive investigation of the 

inherent mechanisms of crop growth and development. 

In comparison with other crop growth models (Steduto et al. (2012), Supit and Hooijer, 

(1994), Jones (1986)), the SAFY crop growth model exploits the theory of light energy efficiency, 

and overcomes limitations arising from the numerous and complicated parameters of other models. 

Defects that are difficult to determine simplify the process of crop growth modeling, maintain the 

advantages of crop growth models, and are more applicable under universal conditions. In this 

paper, remote sensing data and the SP-UCI optimization method are used to optimize the key 

parameters in the SAFY model. The average coefficients of determination R2 of the LAI, biomass 

and yield estimates are 0.717, 0.842 and 0.547, respectively. The corresponding average RMSE 

values are 0.772, 1.174, and 1.262, respectively. Also, the average nRMSE values are 24.4%, 22.7% 

and 22.6%, respectively. The model estimates are in good agreement with the measurements, and 

are in line with the actual wheat growth. This indicates that the proposed crop growth model with 

assimilated remote sensing data can be used for estimating the LAI and biomass of winter wheat. 

The model estimates are feasible, and consistent with those of earlier studies (Duchemin et al., 

2008). 

In comparison to actual measurements in 2014 and 2015, our model seems to overestimate 

the LAI and biomass values, especially for 2014. This tendency may be due to the lack of remote 

sensing wheat data for the pre-winter period, and also the previous assimilation windows that are 

relatively stable and directly caused by assimilation modeling. 

 

5 Conclusions 

In this paper, the SP-UCI optimization algorithm is used to assimilate remote sensing spectral 



17 

 

data into the SAFY crop growth model, build an assimilation system, and estimate three key wheat 

growth parameters (the leaf area index, biomass, and yield). The reliability, accuracy, and 

robustness of the assimilation system were evaluated and verified based on the winter wheat 

growth data under different irrigation and fertilizer settings for two consecutive years. The 

estimated LAI, biomass and yield are more consistent with the actual measurements. This 

indicates the feasibility of the proposed assimilation scheme in crop growth monitoring and yield 

estimation. 

There is an immediate need to continue this research in several directions. First, we note that 

this study is based on known field data in the study area. For model simulation, the starting point 

of the simulation, i.e., the day of emergence, is a known quantity. However, when the assimilation 

model is applied on the regional scale, the emergence date of each crop is generally unknown. To 

achieve truthful and complete crop growth monitoring, the date of emergence must be first 

determined. Wheat growth is highly sensitive to the sowing date. A date that is too early or too late 

will seriously affect the late crop growth and the early emergence rate. Therefore, specifying the 

emergence date on the regional scale is crucial for accurate growth modeling. At the same time, 

the proposed model didn’t account for the effect of the irrigation conditions on the harvest index 

when estimating the final yield. Indeed, the model parameters need further optimization to ensure 

model robustness under variations in field conditions. 

Another area that warrants future work pertains to the process of the assimilation of remote 

sensing data into crop growth models for yield estimation. The remote sensing data is mainly used 

to optimize the sensitive model parameters, which have a great influence on crop growth. That is, 

remote sensing data reflects the influence of several factors that affect crop yield. These factors 

include weather conditions, wheat variants, and soil characteristics. Crop yield is also affected by 

field management practices which are essentially based on the joint effects of the aforementioned 

factors. In addition to the sensitive model parameters, the fixed values of other insensitive model 

parameters will also affect the crop yield estimates. However, some parameters may not have good 

regional representation due to limited data availability. In the future, data types could be further 

increased to improve the representativeness of model parameters. 
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 Figure legends  

Figure 1. Study area and experimental design 

Figure 2. Scatter plots of predicted and measured LAI values for models with different vegetation 

indices 

Figure 3. Relationships between estimated and measured values of wheat LAI for different wheat 



23 

 

varieties and different irrigation and fertilizer settings 

Figure 4. Scatter plots of the LAI estimated and measured values in 2014 and 2015 

Figure 5. The relationships between the estimated and measured wheat DAM values for different 

wheat varieties and different irrigation and fertilizer settings 

Figure 6. Scatter plots of the estimated and measured DAM values in 2014 and 2015 

Figure 7. Scatter plots of the estimated and measured production values for 2014 and 2015 

Tables legends  

Table 1. Mathematical expressions of various vegetation indexes 

Table 2. LAI inversion model and accuracy using Sentinel-2 remote sensing data 

Table 3. Main parameter settings for the SAFY model 

 

 

 

 

 

 

 

 

 

 

 


