
Page 1/36

Altered Intestinal Microbial Flora and Abnormal
Metabolism in Chinese Patients With Idiopathic
Membranous Nephropathy
Xiaohu Shi 

Peking Union Medical College Hospital
Zhaojun Li 

Institute of Material Medical: Chinese Academy of Medical Sciences & Peking Union Medical College
Institute of Materia Medica
Weifeng Lin 

Peking University Third Hospital
Rongrong Hu 

Peking Union Medical College Hospital
Gang Chen 

Peking Union Medical College Hospital
Xuemei Li 

Peking Union Medical College Hospital
Xuewang Lee 

Peking Union Medical College Hospital
Sen Zhang 
(

zhangs@imm.ac.cn
)

Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica
https://orcid.org/0000-0003-1409-5795

Research

Keywords: Intestinal microbiome, Metabolites, Idiopathic membranous nephropathy

Posted Date: October 20th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-961658/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

https://doi.org/10.21203/rs.3.rs-961658/v1
mailto:zhangs@imm.ac.cn
https://orcid.org/0000-0003-1409-5795
https://doi.org/10.21203/rs.3.rs-961658/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/36

Abstract
Background: Dysbiosis of the intestinal microbiome and related metabolites have been observed in
chronic kidney disease (CKD), yet their roles in idiopathic membranous nephropathy (IMN) is poorly
understood.

Results: In this study, we describe the variation of intestinal bacteria and fecal metabolites in patients
with IMN for the first time in Chinese population. Stool samples are collected from 41 IMN patients at the
beginning of diagnosis confirmation and 41 gender and age matched healthy control (HC). Microbial
communities are investigated by sequencing of 16S rRNA genes and functional profiles predicted using
Tax4Fun, and the correlation between intestinal bacteria and IMN clinical characteristics is also analyzed.
Untargeted metabolomic analysis is performed to explore the relationship between colon’s microbiota and
fecal metabolites. IMN gastrointestinal microbiota demonstrates lower richness and diversity compared
to HC, and exhibits a marked taxonomic and inferred functional dysbiosis when compared to HC. Some
genera are closely related to the clinical parameters, such as Citrobacter and Akkermansia. 20
characteristic microbial biomarkers are selected to establish a disease prediction model with a diagnostic
accuracy of 93.53%. Fecal metabolomics shows that tryptophan metabolism is reduced in IMN patients
but uremic toxin accumulation in feces is not noticeable. Fecal microbiota transplantation demonstrates
that gut dysbiosis impairs gut permeability in microbiota-depleted mice and induces NOD-like receptor
activation in kidneys.

Conclusions: Clarifying the changes in intestinal microbiota in IMN patients will help further know the
pathogenesis of this disease, and microbiota-targeted biomarkers will provide a potentially powerful tool
for diagnosing and treating IMN. 

1 Introduction
Membranous nephropathy (MN) is an autoimmune-mediated glomerular disease, and albuminuria is its
most typical clinical manifestation, accompany by immune complex deposit in glomerular area by
pathological test 1. MN is the one of most common causes of nephrotic syndrome in adults, and 75% of
MN cases have traditionally been designated as primary or “idiopathic” MN (IMN), and circulating
autoantibodies directed against the M-type phospholipase A2 receptor (PLA2R1) was considered as
major pathogenesis and biomarker of IMN 2. Although IMN may spontaneously remit without treatment,
as many as one third of patients have progressive loss of kidney function and may progress into chronic
kidney disease (CKD), even to end-stage renal disease (ESRD) at a median of 5 years after diagnosis 3.
The ESRD incidence varies between 20% and 37% in most cases 4, 5, whereas 1% -7% in children 5.
Clinical heterogeneity suggests that IMN has complicated pathogenesis, but how the immune
dysregulation is triggered and exact pathobionts of IMN are still not clear.

The gut microbiota plays an important role in shaping systemic immune response 6, and recently more
and more evidences suggest that dysbiosis of intestinal flora is linked with chronic kidney disease (CKD),
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and intestinal microbiota appears to be one of key factors in mediating the onset of kidney disease 7.
Meijers et al and Pahl et al put forward "gut-kidney axis" theory to explain the interaction between the
kidney and intestinal flora 8. According to this theory, intestinal microbiota disorders lead to accumulates
of enterogenous urinary toxins in the gut 9–11, and the destruction of intestinal epithelial barrier causes
the transfer of enterogenous urinary toxins and conditional pathogens into the blood circulation which
can activate the intestinal mucosal immune system and induce a systemic microinflammatory response
12, 13, possibly leads to CKD. A series of CKD-related intestinal microbiota have been identified, and
provide potential biomarkers or targets for further diagnosis and treatment for CKD 7, 14. However, so far,
based on our knowledge, there is not yet studies focusing on IMN, to investigate the alteration of
intestinal microbiota in IMN patients. In the published studies about gut microbiota for CKD, patients
used in 16s rRNA sequencing or shotgun metagenome sequencing are from mixed CKD cases with
different pathogenesis, including diabetic nephropathy, lupus nephropathy, and several other
glomerulonephritis 15, 16. Although cohorts from these studies include MN subjects, the MN number are
less, and do not differentiate IMN cases and secondary MN. Therefore, understanding distinguished
intestinal microbiota dysbiosis in IMN patients is necessary, and also can provide evidence to explain the
IMN pathogenesis from intestinal microbiota perspective.

In the current study, 41 IMN cases and matched 41 healthy control subjects have been enrolled into case-
control cohort and circulating PLA2R1 antibody is used as IMN diagnosis biomarker to distinguish IMN
from secondary MN. 16s rRNA sequencing is used to analyze intestinal bacterial changes in IMN patients,
and the correlation between intestinal microbiota and clinical characteristics was further analyzed.
Further to understand modified metabolic activity of the altered gut microbiome, untargeted
metabolomics using UPLC–HDMS was performed to identify the differential metabolites between IMN
and healthy control, which might be one of major contributors to the development and progression of
IMN through network of microbiome-metabolomics. Finally, answering causal relationship between
pathogenesis of IMN and microbiota dysbiosis, the feces from IMN patients and healthy control had been
transplanted into germ-depleted mice to investigate the possible causal relationship between
pathogenesis of IMN and microbiota dysbiosis.

Because geographic origin had a greater impact on the composition of the gut microbiota, all the IMN
patients in the present study are from capital of China, Beijing. Heathy volunteers same from Beijing
serve as controls to minimize variation caused by geographic influence. The other advantage of present
study is that the feces were collected at the first diagnosis for patients, which avoided the modulated diet
influence to gut biota because patients will adjust the diet once they know they have albuminuria,
consequently change the intestinal microbiota to mock the real dysbiosis induced by IMN pathogenic
factors.

2 Materials And Methods

2.1 Study cohort
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All clinical studies are conducted with the subject informed and volunteered, and the study protocol was
approved by the Ethics Committee of Peking Union Medical College Hospital and Peking University Third
Hospital. A total of 82 subjects from Peking union medical college hospital and Peking University Third
hospital were enrolled, including 41 IMN patients and same number of corresponding healthy controls
from May 2019 to October 2019. All IMN patients eligible for this study were accurately diagnosed with
following criteria: massive albuminuria (>3.0g/d), hypoalbuminemia (<25g/d), edema, hyperlipidemia,
predominant IgG and C3 deposition in glomerular basement membrane by immunofluorescence, and
positive for serum PLA2R1 autoantibody. Exclusive criteria for patients were as follows: (1) Patients with
complicated diseases, acute and chronic infections, and habitual constipation; (2) Patients with chronic
inflammatory bowel disease and coeliac disease; (3) Patients who received antibiotics,
immunosuppressants, and functional foods (probiotics) within three months. The healthy controls
possess the following characteristics: (1) with normal renal function and no kidney diseases, coeliac
disease, habitual constipation and other complications; (2) did not received antibiotics,
immunosuppressants and functional foods (probiotics) within three months. The age of all participants
varies between 18-70 years old. The two groups were matched in age and gender, and they all lived in
Beijing, capital of China. Fresh feces were immediately placed in sterile tubes and stored at -80°C.

Clinical data were collected through standard laboratory examination. Each subject’s weight and height
were measured, and the body mass index (BMI) was calculated. IMN clinical characteristics, such as
blood urea nitrogen (BUN), serum creatinine (Scr), hematuria, proteinuria, 24-hour urinary protein, serum
total cholesterol (TC), serum low-density lipoprotein cholesterol (LDL-C), serum high-density lipoprotein
cholesterol (HDL-C), as well as the immunological indices including serum concentration of complement
component C3 and C4, immunoglobulins IgA, IgG and IgM. Hematuria was quantified by dipstick
analysis, and proteinuria by the sulphosalicylic acid method Creatinine clearance rate (CCr) was
estimated by widely accepted formula described in previous publication 17. The other clinical
characteristics, such as blood pressure, hemoglobin and peripheral blood counting, covering neutrophils,
lymphocytes and white blood cell (WBC) were also examined. In addition, serum concentration of PLA2R
was tested as a biomarker for IMN.

2.2. Microbiome sample collection and DNA extraction
Fresh feces from all participants were placed in a fecal collection container, transported on ice, and stored
at -80°. Bristol stool scale (a visual scale of the aspect of stool, from hard [1] to liquid [7]) was determined
18.Total genome DNA from samples was extracted using CTAB/SDS method. DNA concentration and
purity were monitored on 1% agarose gels. According to the concentration, DNA was diluted to 1ng/µL
using sterile water and stored at -20°C until further processing.

2.3 Bacterial 16S rRNA sequencing and data processing
All the sequencing and data processing were conducted by Novogene Co. Ltd (Beijing, China). Briefly, V3-
V4 variable regions of 16S rRNA genes was amplified with universal primers 515F and 806R 19. The
amplicons were sequenced on an Illumina Miseq platform to obtain 300-bp paired-end reads. Paired-end
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reads were then preprocessed using Trimmomatic software to detect and cut off ambiguous bases (N) 20.
It also cut off low quality sequences with average quality score below 20 using sliding window trimming
approach. After trimming, paired-end reads were assembled using FLASH software 21. Parameters of
assembly were: 10bp of minimal overlapping, 200bp of maximum overlapping and 20% of maximum
mismatch rate. Sequences were performed further denoising as follows: reads with ambiguous,
homologous sequences or below 200bp were abandoned. Reads with 75% of bases above Q20 were
retained. Then reads with chimera were detected and removed. These two steps were achieved using
QIIME software (version 1.8.0) 22. Clean reads were subjected to primer sequences removal and clustering
to generate operational taxonomic units (OTUs) using Vsearch software with 97% similarity cutoff 23. The
representative read of each OTU was selected using QIIME package. All representative reads were
annotated and blasted against Silva database Version 123 (16s rDNA) using RDP classifier (confidence
threshold was 70%) 24. Specific procedures for sequencing and analysis are described in Methods in the
Supplemental Data.

According to the OTUs clustering results, taxomic annotation was made for the representative sequence
of each OUT, and also obtain their abundance distribution. At the same time, abundance, alpha diversity
calculation, Venn diagram and petal diagram were analyzed on OTUs to obtain richness and evenness
information, common and unique OTUs among different groups, etc. Through dimensionality reduction
analysis such as principal co-ordinates analysis (PCoA), community structure differences among
different groups were explored. To further find out the community structure differences among the two
groups, statistical methods such as t-test, MetaStat, LDA effect size (LEfSe) and Anosim were used for
identifying significantly differential taxonomic composition. The annotation results of the amplicon were
correlated with the corresponding functional database, and Tax4Fun software was used for functional
prediction and analysis of the microbial community in the ecological samples.

2.4. Random forest model prediction
Considering the robustness of the algorithm, random forest provided in the R package random Forest was
used to build the prediction model to identify the potential diagnostic biomarkers. The 16S rRNA
abundance profiles were collected in the work, and the core genera in HC or IMN groups were filtered as
prediction input variables. The important genera contributed to prediction were identified via a nested 10-
fold cross-validation procedure. The area under curve (AUC) index and receiver operating characteristic
(ROC) analysis were used to predicate the efficiency of possible cutoff values of the tests.

2.5. Sample preparation and UPLC–MS analysis for
metabolomics
Faecal metabolites were performed using an untargeted metabolomics liquid chromatography-high-
definition mass spectrometry (UPLC–HDMS). The metabolomic procedure, including sample preparation,
metabolite separation and detection, data preprocessing and statistical analysis for metabolite
identification, was performed following published protocols with minor modifications 25, 26. Different
statistical methods were applied to mine features that could distinguish IMN patients and healthy control.
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We used partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares
discriminant analysis (OPLS-DA) to evaluate the difference in metabolic profiles between HC and IMN
patients 27. The analysis was performed using the ropls version 1.12.0
(http://bioconductor.org/packages/release/bioc/html/ropls.html). All the observed and predicated
compounds also were imported KEGG database. The significant metabolites with variable important in
projection (VIP) ≥1, P value (T test) <0.05, and >2-fold changes were selected for further analysis.

2.6. Correlation analysis of genera and metabolites
To determine the association between gut microbiota and metabolites in IMN patients, we constructed a
correlation analysis between gut microbiota and differential metabolites using Spearman’s correlations in
R version 3.4.3 (Hmisc package). The top 48 genera between two groups, and metabolites with >2-fold
changes between IMN and HC, VIP≥1, P < 0.05 (T test) were analyzed.

2.7. Fecal bacterial cell counts and viability test
To determine the total, intact, and damaged bacterial cell count, flow cytometric analysis was performed
on the fecal suspension supernatant (Supplementary Methods). Feces were 1000 times diluted with
filtered phosphate-buffered saline, intact/damaged stained, and incubated for 13 minutes at 37℃
(Supplementary Methods). Samples were incubated using LIVE/DEAD® Bac LightTM Bacterial Viability
Kits (Molecular Probes, Invitrogen, CA, USA) were analyzed with a four-laser BD FACSVerse flow
cytometer (Becton Dickinson, San Jose, CA), equipped with a flow sensor for volumetric counting as
previously described 28.

2.8. Fecal microbiota transplantation (FMT)
Fecal microbiota transplantation was performed according to the modified method described previously
29. Briefly, 6-8-week-old male C57BL/6 mice received antibiotics (vancomycin, 50 mg kg− 1; neomycin
sulfate 100 mg kg− 1; metronidazole 100 mg kg− 1; and ampicillin 50mg kg− 1) intragastrically once
each day for 1 week to deplete the gut microbiota (Pseudo germ-free mice). The depletion efficiency was
measured by counting the bacterium colonies in streak culture using faeces from animals described by
previous studies 29. FMT started one day after cessation of antibiotics, and total three groups were
involved, which received saline (FMT-saline), feces from healthy control (FMT-Healthy) and faeces from
IMN patients (FMT-IMN) respectively (N=6). Six normal mice without antibiotics treatment and FMT were
used as normal control. Fecal samples were resuspended in sterile saline at 0.125 g/ml. The feces were
ground with a 40µm sieve. The grinding solution was centrifuged at 800g for 3mins to remove the dregs.
The sterile 1.2% sodium bicarbonate solution was orally administrated ahead of time to protect fecal
microbes from gastric acid damage, then an amount of 0.2ml of the fecal solution was administered to
mice in the corresponding groups orally via gastric gavage. The FMT procedure was shown in
Supplemental Fig. S3A), and FMT was performed for total six times. All the mice were maintained on a
germ-free condition with regular water and diet. After 17 days of first FMT, the urine and blood from each
animal were collected for biochemical examination, meanwhile the kidneys and colorectal tissues were
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harvested for pathological analysis and molecular research. Serum endotoxin level was measured by
using a Pierce LAL Chromogenic Endotoxin Quantitation Kit (Thermo Scientific).

2.9. Histopathological analysis and immunohistochemistry
The kidney and colorectal tissues were harvested from FMT mice, and fixed into the 4%
paraformaldehyde solution. The HE staining was performed for observing the histopathological
damages. Immunohistochemistry with IL-6, IL-17, TNFα, NGAL and F4/80 was performed to evaluate the
inflammatory status of kidney tissues and colorectal tissues. The immunohistochemistry protocol was
described by previous studies from our laboratory 30, 31.

2.10. Gene expression profiling and quantitative PCR
validation
The fresh kidney tissues were isolated immediately after animal sacrifice, and total RNA was extracted
from 300 mg of renal epithelial tissue with the RNeasy Micro kit (Qiagen) following the manufacturer’s
protocol. Total RNA was quantified by NanoDrop ND-2000 (Thermo Scientific, Waltham, MA, USA) and
RNA integrity was evaluated using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). The samples with RNA Integrity Number (RIN) ≥ 7 were subjected to the subsequent analysis. After
removal of ribosomal RNA and then constructing a library, a high-throughput RNA sequencing was
performed by Berry Genomics Ltd (Beijing, China). Mean fold-change in gene transcript levels between
each two groups were calculated, and genes whose fold-change was over 1.5 were inputted into The
Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 for pathway analysis.

Aims to confirm the gene sequencing accuracy, cDNA was synthesized using High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems), and gene expression was measured by real-time qRT-PCR
using specific primers/probes (Roche Universal Probe library, Table S7). PCR was performed using 7300
Real Time PCR machine (Applied Biosystems). The results are expressed as fold-change, and normalized
to GAPDH expression.

2.11. Statistic analysis

The SPSS (ver. 21.0, SPSS Inc., Chicago, IL, USA) and R software (ver. 3.1.0, the R Project for Statistical
Computing) were used for the statistical analysis. All the Effective tags in samples were clustered using
Uparse software (Uparse v7.0.1001, http://www.drive5.com/uparse/)32; Mothur method and SILVA132
(SSUrRNA database) (http://www.arb-silva.de/) were used for taxonomic annotation analysis33, 34. α
diversity was analyzed using Qiime software (Version 1.9.1), WGCNA, stats and gplot2 and vegan
software packages were used for analyzing β diversity. The associations between genera with a
prevalence > 1% and clinical parameters of IMN and healthy groups were evaluated using a generalized
linear model (GLM) based on Spearman’s correlation. MetaStat analysis was used to identify differential
abundance taxa between two groups 35. LEfSe (LDA Effect Size)36 analysis was performed to find the
microbial biomarker between groups by Kruskal-Wallis (KW) and rank test. Receiver operating
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characteristic (ROC) curve was plotted to compare the prediction ability of selected metabolites and was
built in “R” with “pROC” package (with a suitable threshold).

3 Results
3.1. The basic characteristics of study subjects

The general clinical and demographic data of IMN patients and healthy controls were summarized in
Table 1. There were no significant differences in age, gender, bristol stool scale, fecal dry weight
percentage between the two groups, but BMI in IMN group was significantly higher than healthy control,
suggesting that obesity might be a risk factor for IMN pathogenesis. Compared with the healthy group,
IMN patients have significantly higher levels in BUN, TC, LDL-C and peripheral neutrophil count, and lower
hemoglobin and CCr (P<0.05). Remarkably proteinuria and hematuria were also observed in the urine of
IMN patients. In addition, IMN patients have higher blood pressure compared with healthy control, which
was indicated by significantly higher systolic blood pressure (SBP) and diastolic blood pressure (DBP)
(P<0.01). Generally, CKD patients were categorized into five stages according to eGFR, using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)–creatinine equation, as recommended by the
KDOQI, and all the cases in the current study belonged to stage 1 to stage 3. 

3.2. Gut microbiome characteristics between IMN and healthy group

All the effective tags in samples were clustered in OTUs with 97% identity, and a total of 2061 OTUs were
identified, 1183 OTUs were shared between two groups, with 252 OTUs specific in IMN group and 626
OTUs unique in healthy control (Fig.1A and supplemental table 1). 

Richness of microbial communities between IMN and healthy control was evaluated by index of observed
species, chao1 and ACE, which was shown in Fig.1B. Results showed that richness of intestinal
microbiota in IMN group was significantly reduced compared with healthy control. α-diversity indexes of
IMN group were also significantly lower than those of the healthy group, including shannon, simpson,
phylogenetic diversity (PD) whole tree (Fig.1B). As for β-diversity, significant difference was also found
based on the weighted (quantitative, ANOSIM R=0.223, P=0.001) but not unweighted (qualitative, P >
0.05) UniFrac between IMN and healthy groups (Fig. 1C), which indicated that presence of OTUs was not
significantly different between two groups, but composition ratio of OTUs was more significantly
different between IMN and healthy group. The relative abundance of taxa at different levels from
microbiota between these two groups was shown in supplemental Fig.S1.

3.3. Differential taxa in intestinal microbiota between IMN and healthy groups

 To best of our knowledge, it is the first description of gut dysbiosis in IMN patients from Chinese
population, therefore, it is necessary to describe all the differential taxa at all the levels, including phylum,
class, order, family and genus (supplemental table S2). On the phylum level, the Firmicutes/Bacteroidetes
(F/B) ratio is considered as an important indicator in the composition of the intestinal microbiota, and as
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shown Fig. 2A, the F/B ratio significantly increased in the IMN group compared with healthy control. In
detail, Bacteroidetes in IMN group reduced significantly compared with healthy control (32.06% vs
18.91%, Healthy vs. IMN, P<0.01), and relative abundance of Firmicutes kept at almost same level
between two groups (Fig.2B). MetaStat was used to analyze the significantly differential taxa at all the
levels between two groups, and at the phylum level, besides of Firmicutes and Bacteroidetes, the
Proteobacteria and Actinobacteria were enriched in IMN groups (P<0.05), and the minor phylum,
Euryarchaeota was enriched in HC group (P<0.05). At the genus level, the bacteria detected in the IMN
groups predominantly belonged to the Bacteroides (13.37%), Bifidobacterium (8.92%),
unidentified_Enterobacteriaceae (7.52%), Romboutsia (5.29%), and Faecalibacterium (5.26%) genera.
Likewise, the most abundant genus in the healthy group were Bacteroides (23.59%), followed by
Faecalibacterium (9.69%), Dialister (3.32%), and Bifidobacterium (3.19%). As shown in Fig.3C, the top12
genera with most significant differences were following, Romboutsia, unidentified Enterobacteriaceae,
Bifidobacterium, Collinsella, unidentified Clostridiales, Citrobacter were remarkably higher in IMN group
(p<0.05), and Bacteroides, Faecalibacterium, Dialister, Roseburia, Alistipes, Paraprevotella were at higher
level in the healthy group (p<0.05). The top 12 significant differential taxa at class, order and family were
shown in supplemental Fig.S2.

Linear discriminant analysis (LDA) effect size (LefSe), a supervised learning model, was used to
reduce the dimensions and identify the presence and effect size of specific taxa between IMN and
healthy group. A logarithmic LDA score cutoff of 4.0 was set up in the current study, and total 22 taxa at
all levels were discovered as high-dimensional fecal microbiota biomarkers between IMN and healthy
groups (LDA score (log10)>4, p<0.05) (Fig.3A and 3B). At phylum level, Proteobacteria and Actinobacteria
significant increased in IMN group, while Bacteroidetes increased in healthy group. At class level, IMN
group showed higher enrichment of Gammaproteobacteria and unidentified Actinobacteria, while
Bacteroidia were significantly enriched in healthy group. At order level, Enterobacterial and Bifidobacterial
were higher in IMN group, whereas Bacteroidia increased in healthy group. At family level, IMN group was
characterized by higher abundance of Enterobacteriaceae, Bifidobacteriaceae and
Peptostreptococcaceae, whereas normal group was characterized by Bacteroidaceae and
Ruminococcaceae. At genus level, IMN patients were mainly characterized by higher relative abundance
of unidentified Enterobacteria, Bifidobacterium, Romboutsia, whereas the relative abundance of the
genera Dialister, Faecalibacterium, Bacteroides were higher in healthy samples. At species level,
Escherichia coli was in higher abundance in IMN group, while Bacteroides dorei was more enriched in
healthy group. 

GLMs were used to model the genera that were significantly different between IMN and healthy subjects
after controlling for possible confounding factors, such as age, gender and BMI. The differences between
feces from IMN and healthy control were associated with the genera Bifidobacterium, unidentified
Enterobacteriaceae, Romboutsia, Collinsella, Citrobacter, unidentified Clostridiales, Lactobacillus, Blautia,
Intestinibacter, Haemophilus, Dorea, Fusicatenibacter (p<0.05, table 2), suggesting that these genera were
associated with IMN. On the other hand, genera Alistipes, Roseburia, Paraprevotella, Butyricicoccus,
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Barnesiella, Dialister, Bacteroides, Faecalibacterium, Sutterella were negatively associated with IMN
(P<0.05, table 2).  

3.4. IMN-related microbiota biomarker predictive model

In order to screen the representative taxa at genus level as biomarkers to distinguish IMN efficiently and
specifically from healthy persons, random forest model (RF) was used to build a predictive model based
on fecal microbiota profile using the significantly different abundance genera from MetaStat test as the
input. Here, 20 genera predicted IMN are screened out through Mean Decrease Accuracy and Mean
Decrease Gini using the RF model (Fig.3C). The diagnosis performance of these 20 genera combination
was evaluated by receiver operating characteristic curve (ROC). The AUC (the area under the receiver
operating characteristic curve) was 93.53%, with confidence interval (CI):0.8775-0.9931 (Fig.3D). 

3.5. Associations of the gut microbiome with clinical indicators

We carried out the correlation analysis between gut microbiota (genus level, at a prevalence>1%) and IMN
clinical parameters, which were related with systemic immune status, abnormal lipid metabolism and
renal function respectively (Fig.4). For indicators related to systemic immune status, Dialister had the
significant positive correlation with serum C3(sC3), sC4 and sIgM, meanwhile Faecalibacterium was only
positively related to sC3 (p<0.05) and Fusicatenibacter was positively correlated with sIgG (p<0.01).
Genus Phascolarctobacterium and unidentified Prevotellaceae had a significant negative correlation with
sIgA (P<0.05 and P<0.01 respectively). As for renal function indicators, the genera Terrisporobacter,
Intestinibacter, Citrobacter, Streptococcus, unidentified Clostridiales, Klebsiella and unidentified
Ruminococcaceae were all positively associated with hematuria (p<0.01 in unidentified
Ruminococcaceae). Among them, unidentified Clostridiales and Klebsiella also had a positive correlation
with 24h proteinuria (p<0.01 and p<0.05 respectively). In addition, Fusobacterium was negatively
associated with BUN (p<0.05). Streptococcus had a positive correlation (p<0.05) while Parabacteroides
and Akkermansia had a negative correlation with glomerular IgG deposition (p<0.05 and p<0.01
respectively). Regard to parameters related to blood pressure and lipid metabolism, Collinsella had a
significant negative association with SBP and DPB, while Bifidobacterium only showed the negative
correlation with DBP. Besides, we could observe that unidentified Prevotellaceae, unidentified Clostridiales
and Citrobacter were all positively correlated with total serum cholesterol (P<0.01). Similarly, Dialister,
unidentified Clostridiales and Sutterella were positively associated with TG (p<0.01 in Dialister). As for
HDL, genera Parabacteroides, Flavonifractor, Bacteroides, Alistipes, Roseburia and
Akkermansia displayed the remarkable positive correlation (p<0.01), while Streptococcus and
Lactobacillus showed the significant negative relationship (p<0.05). Beyond these,
unidentified Enterobacteriaceae had a significant positive association with LDL (p<0.05), while
Fusobacterium was negatively correlated with LDL (p<0.05). 

In addition, we could discover that some genera were associated with peripheral WBC, neutrophils,
lymphocytes and hemoglobin (HGB), which were related to innate immunity and human basically
physical condition. Lactobacillus was negatively related to WBC and neutrophils (p<0.05), while Alistipes
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showed the positive correlation with neutrophils (p<0.05). Unidentified Enterobacteriaceae and Dialister
had positive relevance with peripheral lymphocyte number (p<0.05). Anemia is common complication for
kidney disease, and for HGB, genus unidentified Prevotellaceae, Phascolarctobacterium, Flavonifractor,
Bacteroides and Parabacteroides displayed remarkable negative correlation (p<0.01), whereas Collinsella,
Dorea and Haemophilus were positively correlated with HGB (p<0.05). 

Short-chain fatty acids (SCFA) producing bacteria were considered to be protective for CKD, and we
compared their relative abundance between two groups, and analyzed their correlation with clinical
parameters, including Roseburia, Faecalibacterium, Clostridium and Paraprevotella. Roseburia, although
decreased 50% in IMN group compared with healthy control, it did not show correlation with any clinical
characters in the current study. Faecalibacterium also decreased in IMN group (9.7% in healthy group vs.
5.3% in IMN), and its abundance was positively with serum C3. Clostridium did not change between two
groups. Paraprevotella decreased from 0.53% (healthy group) to 0.06% (IMN), but no significant
correlation with clinical parameters was found. 

Although serum PLA2R antibody was a biomarker for IMN, no specific genus which had significant
correlation with serum PLA2R antibody was found among all the differential genera. 

3.6. Function prediction analysis 

Tax4Fun was used to predict the functions of the differential intestinal microbiota of two groups, based
on functional annotation information of OTUs using the Silva database sequence as a reference.
According to the annotation results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database, abundant of functional groups - KOs (KEGG orthologous groups) had been screened, and a
total of 6508 KOs were identified from IMN and healthy groups, of which 1587 KOs were identified with
significantly different abundance between two groups (false discovery rate (FDR), P<0.05), illustrating
that there were functional aspects of the gut microbiota associated with IMN. All the significantly
differential KOs were listed in Table S3, and top 26 KOs based on difference significance were shown in
Fig.5A. The predictive microbiota functions at level 1 and 2 KEGG pathways were shown in Fig.5B.
Among them, genetic information processing, replication and repair, membrane transport, translation,
nucleotide metabolism, cellular community-prokaryotes were highly enriched in IMN samples (p<0.01),
whereas gene function that related carbohydrate metabolism, energy metabolism, glycan biosynthesis
and metabolism and catabolism were higher in healthy group, p<0.01.  

Total 390 level 3 KEGG pathways had been identified by OTU annotation in two groups. By calculating
FDR-corrected P value <0.05, 158 significantly differential KEGG pathways were identified between two
groups based on OUT abundance on pathways, which was shown in Fig.5C. Top five enriched pathways
in IMN group were transporters, DNA repair and recombination protein, phenylalanine tyrosine and
tryptophan biosynthesis, purine metabolism and pyrimidine metabolism (P<0.01), whereas amino sugar
and nucleotide sugar metabolism, pyruvate metabolism, alanine-asparate-glutamate metabolism,
butanoate metabolism were significantly up-regulated in healthy groups (P<0.01). 
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3.7. Fecal metabolite profiles 

To confirm the alteration of function of gut microbiota, we explored the metabolic profile in the same
fecal samples as that of 16s rDNA sequencing using an untargeted approach, through liquid
chromatography-mass spectrometry and examined the relationship between microbiota and metabolites.
A total of 2340 metabolites were identified. Heatmap and volcano analysis based on criteria (P<0.05,
VIP>1 and fold change >2) identified total 466 differential fecal organic compounds, and 112 up and 354
down in IMN patients compared with healthy control, which was shown in Fig.6A and 6B and
supplemental table S4. We observed a clear discrimination on fecal concentrations of their gut bacterial
fermentation metabolites between these two groups both on PCA and PLS-DA score analysis (Fig.6C and
6D), reflecting the modified metabolic activity of the altered gut microbiome. The differential metabolites
were classified into most abundant 15 chemical categories which was shown in Fig.6E, and top three are
“amino acid, peptide and analogues”, “purine and purine derivates” and “fatty acid and conjugates”. Aims
to understand the changed metabolism pathways due to gut microbiota dysbiosis, KEGG enrichment was
performed with all significantly differential metabolites, however, only caffeine metabolism pathway
emerged with P=0.002, Fatty acid biosynthesis (P=0.081), Vitamin digestion and absorption (P=0.089),
and Oxidative phosphorylation (P=0.090), and other pathways all had P value higher than 0.1 (Fig.6F).  

To explore the potential relationships between the gut microbiome changes and metabolic products, a
correlation matrix was generated using Spearman correlation, and only top ten genera enriched in IMN
and correlation with statistical difference were shown in Fig.6G. All the abundance of Bifidobacterium,
Fusicatenibacter, and Lactobacillus positively correlated with the level of threitol, myricetin, dUMP,
toltrazuril, geranylgeranyl pyrophosphate, xylitol, tanespimycin, and 3-[2-(2-pyridyl)ethyl]-1H-indole, and
their correlation coefficient was higher than 0.7. Intestinibacter and Citrobacter shared similar metabolic
pattern and positively correlated with Sulfaquinoxaline, Esculetin, Hydroxypyruvic acid and 2-
Hydroxyestradiol. L-Arginine was positively correlated with Romboutsia with coefficient was 0.92.
Whether these compounds play roles in IMN occurrence and progression deserves further clarification.
The detailed correlation coefficients and significances between all the differential genera and all the
differential metabolites (fold change>2, P<0.05, and VIP>1) were provided in supplemental table S5 and
S6.  

Aromatic amino acid, tyrosine, phenylalanine and tryptophan, and their metabolites in the intestine,
contribute to the resource of main uremic toxins 37. In the present research, as shown in table 3, only
tryptophan significantly increased in IMN feces sample compared with healthy control (20% increased,
P<0.01), which was partly consistent with enhanced tryptophan biosynthesis pathway in gut microbiota
of IMN group (Fig.5C). Indole, one of tryptophan uremic toxin metabolite precursor, significantly
decreased almost half in IMN group (P=0.002), which was explained that that tryptophan accumulation
in the faeces of IMN patients. Another endogenous tryptophan metabolite 5-methoxytryptophan, was
reported to be one of most promising biomarker metabolites for detection of early-stage CKD in serum,
decreased in the feces of IMN (P<0.05), which was consistent with previous report 38. Other tryptophan
metabolites, such as 5-Methoxytryptamine, skatole, 3-Indoleacrylic acid were all significantly decreased in
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IMN group. Meanwhile, 3-indoxyl sulfate was higher in IMN group without statistical significance. We
speculated that higher 3-indoxyl sulfate might contribute from plasma accumulation, instead of
bacterium metabolism. tyrosine, phenylalanine and their uremic metabolite, p-cresol, did not change
significantly between IMN and healthy group (table 3). The other well-known gut microbiota derived
uremic toxin, trimethylamine N-oxide (TMAO), was also not altered between two groups (table 3). 

3.8. Fecal bacterial cell counts and viability test before FMT

Antibiotic mixture can clear more than 90% of bacteria from the intestine, which were confirmed by
counting the bacterium colonies in streak culture using faeces from animals (Supplemental Fig. S3B).
The color of feces in antibiotics-treated animals seemed to be darker than before treatment
(Supplemental Fig. S3C). The fecal bacterial cell counts and intactness in human samples were
examined by flow cytometry, and the number of intact and damaged bacterial cells did not differ between
IMN and healthy control, and about 90% bacteria are intact and live bacteria (Supplemental Fig. S3D). We
calculated the live number of bacteria per gram of human feces, to make sure that same number of live
bacteria was transfected into pseudo germ-free mice.

3.9. FMT affected renal function and lipid metabolism in mice

Four days after final FMT, blood and urine of mice were collected for laboratory examination. It could be
found in Fig.7A that the levels of BUN and Scr in the FMT-IMN group was significantly higher than FMT-
healthy group (P<0.01), but not different from FMT-saline group. The serum albumin levels were not
different among three groups (Fig.7A). As for the lipid metabolism parameters, the serum LDL were
significantly increased in FMT-IMN group compared with the FMT-healthy group (P<0.05), but not serum
TG and total CHO (Fig.7A). As for the urinary indexes, the ratio of microalbumin/creatinine,
NAG/creatinine and NGAL/creatinine were all significantly elevated in FMT-IMN group compared with
other groups, which suggested that more renal serious injuries had been caused by FMT with IMN faeces
(Fig.7B). Further HE staining showed that there were more glomerular hyperplasia and enlargement of
tubular lumen in FMT-IMN group than FMT-healthy group. Immunohistochemistry using IgG indicated
that more IgG immune complex was deposited in glomeruli of FMT-IMN group, and
immunohistochemistry using NGAL also demonstrated that renal local inflammation and tubular slight
injury in FMT-IMN group was aggravated than FMT-healthy group (Fig.7C).   

Antibiotics treatment could cause body weight loss compared with normal control, and this loss was
gradually reverse after terminating antibiotics. As shown in Fig. 7D, the growth curve of body weight in
the FMT-healthy group and FMT-IMN group were both higher than that in the FMT-saline group,
suggesting that intestinal flora has the function of providing nutrition. Body weight of FMT-IMN groups
was slightly higher than FMT-healthy group, and also consistent with that BMI index in IMN patients was
higher than healthy control.  

3.10. Intestinal inflammation, endotoxin and NOD-like receptor activation contribute to the aggravated
kidney injury by IMN-FMT  
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Aims to understand the molecular mechanisms of FMT with IMN feces aggravating kidney injuries, the
mRNA sequencing was performed using total mRNA from kidney tissue in each group. Differential genes
between FMT-IMN and FMT-healthy groups were mainly enriched in the following pathways by KEGG
analysis (Fig.8A): Cytokine-cytokine receptor interaction, TNF signaling pathways, chemokine signaling
pathways, and NOD-like receptor signaling pathways, and these pathways were all associated with
inflammation. Specifically, the cytokine receptor interaction pathway mainly enriched the following genes:
CCL12, CXCL2, CCL7, CCL5, IL9R and CCL20; GM5431, CCL12, CXCL2, CCL20 and CCL5 was mainly
enriched in TNF signaling pathway; CCL12, CXCL2, CCL7, ADCY2, CCL5 and CCL20 were mainly enriched
in the chemokine signaling pathway; and MEFV, CXCL2, CCL12, LCN2 and CCL5 were mainly enriched in
NOD like receptor signaling pathway. The expression levels of the above genes in each group were further
confirmed by QRT-PCR, and it could be found that the expression levels of these cytokines in the kidney
tissues from FMT-IMN group were significantly higher than those from the FMT-healthy and FMT-saline
groups (Fig.8B). Besides that, the “intestinal immune network for IgA production” and “systemic lupus
erythematosus” pathways were also upregulated in FMT-IMN group, and activation of these pathways
also contributed to the pathophysiology of IMN (Fig.8A).  

NOD-like receptor pathway was most enriched pathway in KEGG analysis, which suggested that
pathogens, like bacteria and endotoxin, might translocate into the systemic circulation through the
impaired intestinal mucosal permeability. Elevated serum LPS level (Fig.8C) and more damaged
structural integrity of intestinal tissue (Fig.8D) in FMT-IMN group confirmed this speculation.
Immunohistochemistry further demonstrated higher expression of pro-inflammation cytokines and
macrophage infiltration into the colon tissues of FMT-IMN group than the FMT-healthy group (Fig.8E).  

4. Discussion
IMN is an autoimmune glomerulonephritis, which can progress into CKD. Although several studies have
reported that intestinal dysbiosis plays an important role in CKD14 and autoimmunity disease 39, there is
no investigation focusing on IMN so far. Understanding of intestinal microbiota composition and
alteration is a basis for utility of human gut microbiota in the diagnosis and treatment 40, and our study
clarified taxonomic changes and composition of intestinal microbiota in the Chinese IMN patients for the
first time. The strength of our study lies in a relatively comprehensive description of microbial
communities associated with IMN, and the utilization of prediction models to identify differentially
bacterial taxa in the disease, as well as correlation study with IMN clinical characteristics. The
recruitment of patients and healthy control from one city is another important advantage that may largely
mitigate the influence of geographic distribution on the diversity of intestinal microbiota. Besides that, the
most striking merit of current study is that it is probably the first report that 12 genera associated with
IMN pathogenesis have been identified by GLM in a case-control study.

The Firmicutes/Bacteroidetes ratio is considered as an important factor in the composition of the
intestinal microbiota and increase of this ratio is considered to increases susceptibility to several
physiological activities, infections, immune disorders, inflammation, oxidative stress and insulin
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resistance 41, 42. In the present study, the F/B ratio is higher in IMN patients compared with healthy control
group, and higher F/B ratio is mostly due to lower relative abundance of Bacteroidetes. In the previous
study of gut microbiota with CKD in Chinese population, Li et al report that F/B ratio does not change in
CKD patients 43, and by analyzing their demographic data, we find in that study, the BMI in CKD patients
is not different from healthy control. However, in our study, the IMN patients has significantly higher BMI
than healthy control, we postulate that is the possible reason why F/B ratio is higher in our study, which
also suggests that obesity might be potential risk for IMN pathogenesis. The F/B ratio increased in IMN
patients also suggest the possible chronic inflammation status in human body44. However, Maria De
Angelis reported that in the IgA nephropathy from Italian cohort study, even under same BMI index, the
IgA patients has lower abundance of Bacteroidetes and unchanged Firmicutes, which is consistent with
our results45, which suggests that lower Bacteroidetes is a potential risk factor for IMN.

IMN is an autoimmune disease, therefore it is necessary to compare with some autoimmune diseases. In
here, we compared with three systemic lupus erythematosus (SLE) cohort studies from Spain and China,
and F/B ratio is reduced in two studies, and one is not changed, which is not compatible with IMN, which
suggest IMN has the unique gut dysbiosis different from SLE 46. One study using 45 Chinese SLE
patients suggest that abundance of a number of bacterial genera such as Rhodococcus, Eubacterium,
Flavonifractor, Eggerthella, Klebsiella, and Prevotella was significantly higher, while abundance of
Pseudobutyrivibrio and Dialister was lower in SLE patients 39; compared with IMN subjects in our study,
only Rhodococcus, Eggerthella and Dialister have the same trend as SLE, other genera are not different
compared with healthy group.

Both β-diversity and α-diversity significantly decrease in IMN groups compared with healthy control in the
current study, which is consistent with most CKD studies43, as well as IgA nephritis45. However, the
reduction is more statistically significant compared to other studies 47. The possible explanation is that
subjects in current study are all unique IMN patients instead of combination of heterogenous CKD
patients. There is another phenomenon which is not consistent with previous studies, that is β-diversity is
not significant in unweighted univariance analysis, but at weighted Univariance. The possible reason is
that IMN is auto-immunity disease, its pathogenesis mostly relies on internal physiological change
instead of outside environment factors or introduction of new genera from outside environment. Taken
together, both α-diversity and β-diversity indexes provide solid evidences that the intestinal microbiota in
IMN is different from that of healthy subjects.

LEfSe analysis is a high-dimensional biomarker discovery and interpretation used to identify and describe
the differential genomic characteristics between two or more biological conditions36. In the present study,
LEfSe was applied to altered microbiota data from the two groups, identifying 22 differential taxonomic
clades with an LDA score higher than 4.0. Through the random forest model and ROC analysis, we
observed that 20 genera combination has a high diagnosis power which can distinguish IMN diseases
well (AUC is 93.53%), therefore, these findings may lead to the development of bioassays with prognostic
value for the risk of IMN, also these are useful biomarkers for diagnosis.
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Tax4Fun is used for functional analysis which is based on SILVA database that updated every month.
However, there are still some limitations in predicting the function using 16S rRNA, and metagenomic
sequencing may be more accurate in predicting the gene function of bacteria. Tax4fun predicted
differential 158 KEGG pathways between two groups, almost 40% in total predicted 390 KEGG pathway,
which suggest that IMN has significant different changes in biofunction of intestinal microbiota. At level
2, purine metabolism significantly increased in IMN group, and uric acid, as a purine metabolic end
product, might increase with enhanced purine metabolism, and consequently impair the intestinal barrier
48. In addition, Transporter is one of most enriched KEGG pathway in IMN, may suggest intestinal tight
junction was impaired and more renal toxins might be transported into circulating blood via leaking
intestinal barriers.

Identification of disease-specific bacterium genera and clarifying its relationship with disease
pathogenesis is an important way to understand the role of intestinal microbiota. For example, Cheol
Kwak et al demonstrate that there is an inverse correlation between intestinal Oxalobacter formigenes
and urinary oxalate levels in patients with calcium oxalate urolithiasis, and supports the concept that O.
formigenes is necessary in maintaining oxalate homeostasis and lack of enteric O. formigenes is a risk
factor of urolithiasis49. In our results, MetaState analysis provides valuable information about abundant
differential bacteria at different levels, further by spearman correlation analysis with clinical parameters,
several genera were found be significantly correlated with clinical parameters, such as TG, sC3, sC4, sIgA,
sIgG, BUN, proteinuria, HGB, HDL and LDL, suggesting that these genera may play important roles in IMN
pathogenesis. These findings provide genus candidates for further study how these bacteria initiate or
aggravate IMN, and may provide new targets for IMN diagnosis and treatment. Following I will discuss
several important genera which are potential in IMN pathogenesis.

Genus Lactobacillus belongs to Lactic acid bacteria, generally are considered to be beneficial
microorganisms and have been associated with multiple potential health effects in both humans and
animals 50. However, a study from Egypt find the Lactobacillus is significantly higher in CKD patients
than healthy control, and moreover, the Lactobacillus is higher in CKD with cardiovascular disease (CVD)
than CKD without CVD, suggesting Lactobacillus could not provide renal protective effect 51. The current
study showed that the average abundance of lactobacillus is almost five times higher in IMN group than
healthy control, consistent with study from Egypt, and GLM analysis also suggest it is pathogen for IMN.
Meanwhile, Lactobacillus is negatively correlated with HDL-C, which was beneficial for cardiovascular
disease, also shows its worsening role in lipid metabolism dysregulation. However, its abundance also
negatively correlated with peripheral neutrophil counting, which means Lactobacillus has a certain effect
on lowering systemic inflammatory stress in IMN group. This controversy effect for lactobacillus in IMN
needs function test using in vivo study.

Hypertension is one of complications of IMN. From the clinical data in table 1, blood pressure is higher in
IMN patients than healthy control. In the current study, Bifidobacterium and Collinsella were found to be
negatively with blood pressure, but these two genera are enriched in IMN than healthy control, which was
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also found in the other CKD cohorts52. Liu et al report Bifidobacterium is negative with blood pressure in
Chinese hypertension population53. Bifidobacterium is an anaerobic gram-positive bacterium that is
widely found in the human gastrointestinal tract, and accounts for 3-6% of adult feces54, 55. Most
Bifidobacteria are pro-health that improve the immune system56–59. In the current study, although
Bifidobacteria is enriched in IMN group, it is negative correlated with hypertension, which suggest that it
might be protective in blood pressure control for IMN patients to some extent. Previous studies have
shown that Collinsella is associated with obesity, atherosclerosis, and abnormal lipid metabolism60–63.
GLM analysis suggest it is positive with IMN, but correlation study suggest it is negative with
hypertension and positively with HGB, seemingly also partly beneficial in IMN. Bifidobacterium and
Collinsella also showed controversy sign, which deserves further function study too.

Faecalibacterium decreased in IMN group (9.7% in healthy group vs. 5.3% in IMN), and its protective
effect on IMN was also confirmed GLM analysis. Faecalibacterium is butyrate producing bacterium 37,
and it is reasonable to postulate that the less butyrate produced by Faecalibacterium is also a risk factor
for IMN. Akkermansia is considered as a next-generation star microbe because abundant of reports
indicate that genus Akkermansia, especially Akkermansia muciniphila, benefit glucose metabolism, lipid
metabolism, and intestinal immunity64, 65, and enhance sensitivity to checkpoint blockade
immunotherapy66. In the current study, the relative of abundance of Akkermansia is found to be positively
with serum HDL-cholesterol concentration, and negative with the IgG deposition grades in glomeruli,
which indicate that Akkermansia is also beneficial for IMN, and supplementation with Akkermansia is
possible treatment strategy against IMN.

Microbially derived metabolites influence the host through multiple pathways. Increasing evidences show
that some metabolic products of gut microbiota can enter the bloodstream and exert important
influences on the physiology and behavior of the hosts27. CKD is characterized by accumulation of
protein-bound uremic toxins such as pcresyl sulfate, p-cresyl glucuronide, indoxyl sulfate and indole-3-
acetic acid, which originate in the gut. Intestinal bacteria metabolize aromatic amino acids into p-cresol
and indole, (further conjugated in the colon mucosa and liver) and indole-3-acetic acid. 37. There is
increasing interest in the colonic microbiota as a relevant source of uremic retention solutes
accumulating in CKD67. However, in the current study, when we screened these precursor and metabolites,
surprisingly, no toxin precursors were found to be significantly increased compared with healthy control.
On the contrary, indole significantly reduced in IMN group and tryptophan catabolism was inhibited. Our
findings are comparable to the results of Tessa Gryp et al., who observed no difference in fecal p-cresol
and indole levels among healthy control, hemodialysis patients and CKD patients 37, and plasma uric
toxins retention is mainly caused by impaired kidney function instead of increased uremic toxin
production by microbial dysbiosis. On the other hand, although indoxyl sulfate is a uremic toxin, the
indole also plays several beneficial effects in host intestinal homeostasis. Both in vitro and in vivo
studies have indicated that indole enhances intestinal epithelial barrier functions by increasing
expression of genes involved in maintenance of epithelial cell structure and function68, 69. Besides indole,
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other tryptophan catabolites, such as skatole 3-Indoleacrylic acid (decreased in IMN patients), also affect
mucosal homeostasis by decreased intestinal permeability possibly mediated by the pregnane X
receptor70. Therefore, reduction of tryptophan catabolism in gut microbiota may contribute to the
susceptibility of IMN, especially possible for early stages (the IMN patients in current study are all
between stage 1 to stage 3 kidney dysfunction)

Caffeine metabolism is the most significant KEGG pathway by IMN fecal metabolite enrichment analysis,
and previous studies suggest that long-term caffeine consumption exacerbates renal failure in obese,
diabetic, ZSF1 (fa-facp) rats, and caffeine potentiated the development of more severe tubulointerstitial
changes and increased focal glomerulosclerosis71, 72.

The current FMT study provides new pathophysiological insights into the causal relationship between gut
microbiota dysbiosis and the IMN, opening a new venue of therapeutic strategy to treat IMN. Herein, we
showed that IMN-associated microbial dysbiosis caused gut barrier dysfunction, abnormal elevation of
circulating LPS, and enhancement of the renal inflammation via NOD-like receptor signaling pathway,
leading to an increase in IMN susceptibility. One novel study shows that gut microbiota dysbiosis
promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NOD-like
receptor protein (NLRP)-3 inflammasome-inflammasome 73, which also provides evidence that NOD-like
receptor pathway may be one of common pathways through which microbiota dysbiosis induce the
diseases.

There are several limitations of the present study. One is all the subjects in the current study are from
Chinese population, and there might be different in composition of intestinal microbiota from other
countries. Second is that the sample size is not large, and more patients are needed to validate the
results. Thirdly, 16s sequencing has limitations on species identification and function analysis, and
shotgun metagenome analysis, which can provide more detailed information, is also needed to analyze
fecal microbiota in IMN; the last limitation is that we did not collect the patient serum in parallel to
investigate that dysregulation of fecal metabolites cause alteration of serum metabolites.

Conclusion
Taken together, gut microflora dysbiosis occurred in the occurrence and progression of IMN. Landscape
of characteristics of intestinal microbiota in IMN patients was described for the first time in the current
study. By GLM and correlation study of intestinal bacteria with clinical parameters, we found several
bacteria closely related to IMN, which may help to understand the pathogenesis of IMN. These IMN
associated microbiota may provide new targets for the early diagnosis and treatment for IMN.
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Index  Healthy 

n=41

IMN 

n=41

P value

Age (year) 48±12 54±14 0.0579

Sex  M 25（61.0%） M 25（61.0%） 1.00

 

BMI (kg/cm2)

F 16（39.0%）

23.73±3.03

F 16（39.0%）

27.06±5.81

 

0.002

Scr (umol/L)

Hematuria (+)

74.26±16.60

0

86.24±34.76

1.39±0.70

0.0564

—

BUN(mmol/L) 4.51±1.04 6.38±2.84 0.0003

24h-UP(g/24h)  — 4.90±3.33 —

CCr (ml/min)

SBP(mmHg)

DBP(mmHg)

97.12±13.40

117.12±15.49

74.10±13.11

85.49±25.57

132.17±16.82

81.39±10.40

0.0089

0.000

0.007

TC(mmol/L) 5.03±0.91 6.81±1.93 0.000

TG (mmol/L) 1.81±2.69 2.69±1.75 0.0875

HDL-C(mmol/L) 1.39±0.37 1.30±0.41 0.2994

LDL-C(mmol/L) 3.12±0.86 4.08±1.59 0.0017

WBC(109/L) 5.58±1.16 8.22±3.34 0.0000

NEUT(109/L) 3.30±1.06 5.70±3.13 0.0000

LYM (109/L) 1.71±0.42 1.88±0.76 0.2381

HGB (g/L) 144±15.51 132±22.55 0.0073

PLT (109/L) 255.72±76.54 253.26±68.12 0.8811

PLA2R(EU/ml)

C3(g/L)

C4(g/L)

—

—

—

167.27±173.69

1.12±0.19

0.26±0.06

—

—

—

IgG(g/L) — 6.40±2.86 —

IgA(g/L) — 2.01±1.24 —

IgM(g/L) — 0.95±0.54 —

Fecal parameters      
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Bristol Stool Scale

Dry weight (%)

4.0 (3.8–5.0) 

0.27 ± 0.05

4.5 (3.0–5.3)

 0.25±0.10 

0.0214

0.0845

M: Male, F, Female. Ccr: Creatinine clearance; 24h-UP: 24 hour urine protein; 

Data which are normally distributed are shown as mean ± SD, and compared by student’s t-test; data
which are not normally distributed are shown as median (range, 25-75 percentile) and compared by non-
parametric Kruskal-Wallis test. Sex distribution was analyzed by χ2 test. 

Table 2. GLMs for fecal genera based on differences between IMN and healthy control group
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Study group Genus Coefficient 95% CI P value

IMN vs. Healthy Lactobacillus 1.166 0.461~1.875 <0.001

  Citrobacter 1.214 0.539~1.881 <0.001

  Bifidobacterium 1.070 0.500~1.635 <0.001

  unidentified_Enterobacteriaceae 1.675 1.139~2.207 <0.001

  Romboutsia 0.793 0.364~1.225 <0.001

  Collinsella 1.050 0.554~1.540 <0.001

 
 

Blautia 0.306 0.011~0.602 0.0415

 
 

Intestinibacter 0.618 0.015~1.222 0.0447

 
 

Haemophilus 1.797 1.034~2.560 <0.001

 
 

Dorea 0.244 0.001~0.488 0.0473

 
 

Fusicatenibacter 0.531 0.198~0.865 0.0013

  unidentified_Clostridiales 0.648 0.183~1.121 0.0045

 
 

Alistipes -0.738 -1.302~-0.167 0.0065

 
 

Roseburia -0.487 -0.931~-0.042 0.0279

 
 

Paraprevotella -2.382 -3.079~-1.675 <0.001

 
 

Butyricicoccus -0.396 -0.652~-0.140 0.0029

 
 

Barnesiella -1.695 -2.295~-1.088 <0.001

 
 

Dialister -1.409 -2.043~-0.768 <0.001

 
 

Bacteroides -0.832 -1.235~-0.424 <0.001

 
 

Faecalibacterium -0.603 -0.925~-0.280 <0.001

 
 

Sutterella -1.161 -1.800~-0.511 <0.001
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Result of the GLMs for significant genera (sequence counts) based on the group factors (IMN and healthy
group) and possible confounding factors (age, gender and BMI) of 82 subjects.

The coeffienct value (positive number) indicated the taxa were associated with IMN patients.

GLM, general linear model; CI, confidence interval; BMI, body mass index.

Table 3. Differential uremic toxins in healthy control and IMN patients   

metabolite Fold change (IMN/Healthy) P value

L-tyrosine 1.02 0.7

L-phenylalanine 1.14 0.7

DL-tryptophan 1.59 0.005

L-tryptophan 1.20 0.007

5-methoxytryptophan 0.80 0.001122109

p-cresol 2.67 0.93

Phenol 0.825 0.11

Indole 0.593 0.002

indole-3-acetic acid 1.49 0.5

5-Methoxytryptamine 0.435198509 0.000118635

Skatole 0.229787626 0.003527695

3-Indoleacrylic acid 0.794464353 0.073948886

3-indoxyl sulfate 3.43 0.25

Trimethylamine N-oxide 1.2 0.665

Figures
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Figure 1

Alpha Diversity and Beta Diversity of gut microbiota between IMN and healthy groups. (A) Venn diagram
of unique and shared OTUs between IMN and healthy group. (B)The microbiota richness index (observed
species, chao1, ACE) and α-Diversity analysis index (shannon, Simpson, PD whole tree) of different
samples based on OUT counts. (C) Unweighted and weighted ANOSIMs and PCOA based on the distance
matrix of UniFrac dissimilarity of the fecal microbial communities in the IMN and healthy groups.
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ANOSIM R values show the community variation between the compared groups, and significant P values
are indicated. The axes represent the two dimensions explaining the greatest proportion of variance in the
communities. *, P<0.05, **, P<0.01, ***, P<0.001.

Figure 2

Differential taxa at different levels between IMN and healthy groups. MetaStat was used to screen
microbiota with significant differences between groups at the genus level. The horizontal axis was the
group, vertical axis is the relative abundance of corresponding taxa. A) F/B ration at phylum level
between two groups; Differential taxa at phylum B) and genus C) levels between two groups. *P<0.05,
**P<0.01.
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Figure 3

Important microbiota biomarker screening between IMN and healthy groups. (A)Linear Discriminant
Analysis (LDA) Effect Size (LEfSe) analysis revealed biomarkers with significant difference between IMN
and healthy groups using LDA histogram and cladogram. The LDA score >4 and p<0.05 were listed. (B)
Cladogram using LEfSe method indicating the phylogenetic distribution of fecal microbiota associated
with IMN and healthy subjects. (C)The predictive model based on genus level was made. The relatively
important genus was screened using Mean Decrease Accuracy and Mean Decrease Gin (D) ROC curve
generated by Random Forest model. The Area Under the Curve (AUC) was used as a strong indicator for
the evaluation of the classification model. p, phylum; c, class; o, order; f. family; g, genus; RF, Random
Forest; ROC, receiver operating characteristic; AUC, area under the ROC curve; CI, confidence interval.
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Figure 4

Heatmaps showing correlations between gut microbiota and IMN clinical parameters. The microbiota
genera(prevalence>1%) were showed. The IMN clinical parameters are related to A) immune status, B)
renal function, C) lipid metabolism, D) innate immunity. *p<0.05; **p<0.01. BLD: blood, refers to
hematuria.
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Figure 5

Functional predictions for the gut microbiota between IMN and healthy groups. (A)The KOs with
significantly different abundance between IMN and healthy controls using Tax4Fun. (B,C) Significant
KEGG pathways in different level for the gut microbiota between the IMN and healthy groups. In B and C,
the left figure shows the differences in KEGG abundance between groups. Each bar represents the mean
abundance of pathway with significant differences in each group. The right figure shows the confidence
between groups. The left-most endpoint of each circle represents the lower limit of the 95% confidence
interval of the mean difference, while the right-most endpoint represents the upper limit of the 95%
confidence interval of the mean difference. The group represented by the color of the circle is the group
with high mean value. At the far right end of the presentation is the p value.
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Figure 6

Fecal metabolite profiles of IMN patients and healthy control. A) Hierarchical cluster analysis. Columns
represent fecal metabolite profiles of IMN patients and healthy controls. Red indicates increased
abundance of individual metabolites relative to internal standard and blue indicates decreased
abundance. B) volcano plots showing both P value and fold change of metabolites, with left being
upregulated and right being down-regulated metabolites. C) PCA score plot of fecal metabolite profiles of
IMN patients and healthy controls. D) PLS-DA score plot of fecal metabolite profiles of IMN patients and
healthy controls. E) Chemical categories of differential metabolites; F) KEGG enrichment pathways based
on differential metabolite; G) correlation analysis between top ten IMN enriched genus and differential
metabolites.
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Figure 7

FMT transfer could cause decline of renal function and renal pathological injuries. Serum indexes among
FMT-IMN, FMT-Healthy and FMT-saline; B) urine indexes among FMT-IMN, FMT-Healthy and FMT-saline;
C) HE staining and immunohistochemistry to demonstrate that FMT with IMN feces can aggravate
kidney impairment; D) Body weight dynamics of each groups.
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Figure 8

FMT transfer could cause decline due to intestinal inflammation, endotoxin and NOD-like receptor
activation. A) KEGG pathway enrichment using mRNA sequencing data; B) QRT-PCR quantitation of
mRNA sequencing results; C) serum LPS concentration tested by ELISA; D) HE staining and
immunohistochemistry to demonstrate that FMT with IMN feces can aggravate intestinal impairment.
Red cycle refers to inflammatory cells; black arrow refers to highly expressed TNFα cells, and red arrow
indicates the F4/80 positive macrophages.
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