[1] Mueller KT, Maude SL, Porter DL, et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia [J]. Blood, 2017, 130(21): 2317-25.
[2] Ikonomidou C. Cerebrospinal Fluid Biomarkers in Childhood Leukemias [J]. Cancers (Basel), 2021, 13(3):
[3] Saeedi A, Baghestani A, Khadem Maboudi A, et al. Determining the Significant Prognostic Factors for the Recurrence of Pediatric Acute Lymphoblastic Leukemia Using a Competing Risks Approach [J]. Iran J Med Sci, 2020, 45(4): 304-10.
[4] Kinjyo I, Bragin D, Grattan R, et al. Leukemia-derived exosomes and cytokines pave the way for entry into the brain [J]. J Leukoc Biol, 2019, 105(4): 741-53.
[5] Matloub Y, Lindemulder S, Gaynon PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children's Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children's Oncology Group [J]. Blood, 2006, 108(4): 1165-73.
[6] Prieto C, López-Millán B, Roca-Ho H, et al. NG2 antigen is involved in leukemia invasiveness and central nervous system infiltration in MLL-rearranged infant B-ALL [J]. Leukemia, 2018, 32(3): 633-44.
[7] Gossai NP, Gordon PM. The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia [J]. Front Pediatr, 2017, 5(90.
[8] Gaynes JS, Jonart LM, Zamora EA, et al. The central nervous system microenvironment influences the leukemia transcriptome and enhances leukemia chemo-resistance [J]. Haematologica, 2017, 102(4): e136-e9.
[9] Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data [J]. Cancer Metastasis Rev, 2020, 39(1): 173-87.
[10] Janani C, Ranjitha Kumari BD. PPAR gamma gene--a review [J]. Diabetes Metab Syndr, 2015, 9(1): 46-50.
[11] Yousefnia S, Momenzadeh S, Seyed Forootan F, et al. The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity [J]. Gene, 2018, 649(14-22.
[12] Boyd A, Bhatia M. Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche [J]. Nature Cell Biology, 2017, 19(11): 1336-47.
[13] Zhou F, Wen Y, Jin R, et al. New attempts for central nervous infiltration of pediatric acute lymphoblastic leukemia [J]. Cancer Metastasis Rev, 2019, 38(4): 657-71.
[14] Li J, Jin C, Zou C, et al. GNG12 regulates PD-L1 expression by activating NF-κB signaling in pancreatic ductal adenocarcinoma [J]. FEBS Open Bio, 2020, 10(2): 278-87.
[15] Langen UH, Ayloo S, Gu C. Development and Cell Biology of the Blood-Brain Barrier [J]. Annu Rev Cell Dev Biol, 2019, 35(591-613.
[16] González-Mariscal L, Raya-Sandino A, González-González L, et al. Relationship between G proteins coupled receptors and tight junctions [J]. Tissue Barriers, 2018, 6(1): e1414015.
[17] Yim YY, Betke KM, McDonald WH, et al. The in vivo specificity of synaptic Gβ and Gγ subunits to the α(2a) adrenergic receptor at CNS synapses [J]. Sci Rep, 2019, 9(1): 1718.
[18] Shi Q, Li M, Mika D, et al. Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes [J]. Cardiovasc Res, 2017, 113(6): 656-70.
[19] Fukuda S, Nakagawa S, Tatsumi R, et al. Glucagon-Like Peptide-1 Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells Under Basal and Hyperglycemia Conditions [J]. J Mol Neurosci, 2016, 59(2): 211-9.
[20] Pacenta HL, Laetsch TW, John S. CD19 CAR T Cells for the Treatment of Pediatric Pre-B Cell Acute Lymphoblastic Leukemia [J]. Paediatr Drugs, 2020, 22(1): 1-11.
[21] Maus MV, Grupp SA, Porter DL, et al. Antibody-modified T cells: CARs take the front seat for hematologic malignancies [J]. Blood, 2014, 123(17): 2625-35.
[22] Jin MY, Han Y, Liu YJ, et al. [Treatment of central nervous system leukemia with CD19-chimeric antigen receptor T-cell immunotherapy: two cases report and literature review] [J]. Zhonghua Xue Ye Xue Za Zhi, 2018, 39(8): 650-3.
[23] Nair S, Wang JB, Tsao ST, et al. Functional Improvement of Chimeric Antigen Receptor Through Intrinsic Interleukin-15Rα Signaling [J]. Curr Gene Ther, 2019, 19(1): 40-53.
[24] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia [J]. N Engl J Med, 2014, 371(16): 1507-17.
[25] Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial [J]. Lancet, 2015, 385(9967): 517-28.
[26] Hu Y, Sun J, Wu Z, et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy [J]. J Hematol Oncol, 2016, 9(1): 70.
[27] Yao H, Price TT, Cantelli G, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system [J]. Nature, 2018, 560(7716): 55-60.
[28] Goldberg JM, Silverman LB, Levy DE, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience [J]. J Clin Oncol, 2003, 21(19): 3616-22.
[29] Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group [J]. Blood, 2000, 95(11): 3310-22.
[30] Crist W, Shuster J, Look T, et al. Current results of studies of immunophenotype-, age- and leukocyte-based therapy for children with acute lymphoblastic leukemia. The Pediatric Oncology Group [J]. Leukemia, 1992, 6 Suppl 2(162-6.
[31] Cancela CS, Murao M, Viana MB, et al. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia [J]. Rev Bras Hematol Hemoter, 2012, 34(6): 436-41.