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Abstract
Background: Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family
Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the
most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or
long), even within the same environment. However, no related studies have yet explained the molecular
mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype,
de novo and comparative transcriptomic analysis on PN taproot was performed.

Results: A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-
throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig
N50 = 1,774 bp were generated by using the de novo assembly transcriptome. The annotation results
showed 38,313 BLASTX hits and 24,820 BLASTP hits. KEGG analysis identified 52 genes encoding class
III peroxidase (PRX) family members, 13 genes encoding L-Ascorbate peroxidase (APX) family members,
and 99 genes encoding a series of mitogen-activated protein kinase (MAPK) family members.
Differentially expressed genes analysis indicated substantial upregulation of genes encoding APX3 and
PRX45 enzymes, which are related to reactive oxygen species metabolism, and the MPK3 enzyme, which
is related to cell proliferation and plant root development, in long taproots compared with that in oval
taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2

content verified transcriptomic analysis results.

Conclusion: These results collectively demonstrate that reactive oxygen species (ROS) metabolism and
the MPK3 enzyme may play vital roles in regulating the taproot phenotype of PN. This study provides
further insights into the genetic mechanisms of phenotypic differences in other species of the genus
Panax.

Introduction
Panax notoginseng (Burk.) F. H. Chen (PN) is a perennial herb belonging to the Araliaceae family. PN
taproot, as the most vital organ for the accumulation of bioactive components, is a raw material of many
famous patented Chinese medicines, including Yunnan Baiyao, Xuesaitong, and Compound Danshen
Dripping Pills [1, 2]. The main bioactive components isolated from PN taproots include ginseng saponins,
notoginsenoside, and dencichine [2, 3]. Extensive pharmacology studies have shown that PN prevents
cardio- and cerebrovascular disease, has anti-inflammatory effects, and aids immune regulation [4, 5].
Xuesaitong, produced from the total saponins extracted from PN taproots, is in broad clinical use for the
prevention and treatment of hyperlipidemia, coronary heart disease, stroke sequelae, and other chronic
diseases, and is particularly favored by patients. In general, the growth rate of PN is relatively slow in the
wild, and even with good field management it takes at least three years to grow and accumulate sufficient
bioactive components in its taproots before they can be harvested and used as a medicinal material.
However, in the process of PN cultivation, there has been a perplexing phenomenon wherein there are
obvious differences in the root phenotype during growth, even when many PN plants are grown in the
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same environment. Specifically, some of them present long strip-like ginseng (long taproot of PN: LPN),
whereas others are oval-like (oval taproot of PN: OPN); they are called “Luobo qi” or “Chang qi” and “Geda
qi” or “Tuan qi,” respectively. 

To date, many studies have focused on the biosynthetic pathways, whole-genome expression profile, and
pharmacological effects of the active ingredients from PN taproots [6-12]. To the best of our knowledge,
no studies have yet investigated the cause of morphological differences in PN taproots, and the
metabolic regulation pathways involved in taproot morphology differences remain unknown. Plant traits
are shaped by two vital factors, external environment condition and genetic regulation. To a large extent,
visible changes in plants are caused by a series of invisible physiological changes and molecular
regulation based on transcriptional expression levels, which reveal that gene expression changes are
closely correlated with wide variations in plant development characteristics [13]. In recent years, many
researchers have sought to understand the regulation mechanism of plant root anatomy and architecture
by using the model plant Arabidopsis thaliana and the diverse metabolic pathways involved in root
development regulation [14]. Consistent with the growth of plant aerial parts, the formation and
development of roots follow the internal laws of gene regulation [15]. In other words, changes in root
morphology are inevitably accompanied by changes in the internal metabolic pathways. Therefore,
research based on transcriptional regulation reveals the causes of plant morphological changes from the
perspective of molecular mechanisms. Moreover, the rapid advances in next-generation sequencing
(NGS) can provide abundant transcriptome data, which offers insights into the molecular regulation
mechanism of plant growth and development, such as rhizome formation in Nelumbo nucifera, taproot
thickening in PN, fruit morphology of pumpkin cultivars, secondary metabolite accumulation in tuberous
roots of Aconitum heterophyllum, and improvement of disease resistance in strawberries [16-20].
Collectively, analysis of these data can reveal the internal molecular interaction mechanisms of various
plant types, including morphology, yield, and disease resistance. 

Both reactive oxygen species (ROS) and class III peroxidase (PRX) play pivotal roles in modulating plant
root development. Either ROS balance or PRX activity affects plant root growth and elongation, and this
pathway is completely independent of the signaling pathways of plant hormones, such as cytokinin and
auxin; this has long been confirmed in A. thaliana [21-23]. Additionally, numerous studies have confirmed
that ROS are important plant growth regulators and widely involved in various processes of plant root
development, such as meristematic expansion and root elongation [24-31]. ROS homeostasis maintains a
delicate balance under the coordination of ROS production and scavenging, maintaining an appropriate
threshold boundary between redox potential and cytotoxicity [32]. Two important enzymatic families, PRX
and NADPH oxidase family, contribute to ROS production [26, 33]. ROS scavenging is a two-armed
regulation mechanism. One arm comprises antioxidative enzymes, including catalase (CAT), L-Ascorbate
peroxidase (APX), PRX, superoxide dismutase (SOD), and glutathione peroxidase (GPx) [34-37]. The other
arm consists of nonenzymatic antioxidants, such as reduced glutathione, ascorbic acid, and flavonoids
[38]. It has already been reported that oxidative stress in plant cells is regulated by the mitogen-activated
protein kinase (MAPK) family cascade [39]. The MAPK family widely participates in biological processes
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in plants, such as cell proliferation and differentiation, as well as responding to and tolerating diverse
stresses and environmental stimuli [39-41]. 

Therefore, to investigate the causes of phenotypic differences between LPN and OPN at the molecular
regulation level, we performed an in-depth study of the transcriptome data of PN taproot and then verified
the results. Three genes were very likely involved in regulating the taproot morphogenesis of PN, which
provides a reliable explanation for the phenotypic variation of PN taproot.

Materials And Methods
Plant materials

PN (three years old) was collected at the vigorous growth stage from three sampling sites: SP
county (N23°73′, E103°48′), SL county (N24°77′, E103°27′), and LX county (N24°52′, E103°76′), Yunnan
Province, People’s Republic of China. The specimens undertook the formal identification by Xiuming Cui
that have been preserved in the greenhouse of the Faculty of Life Science and Technology, Kunming
University of Science and Technology. Taproots with obviously different phenotypes (LPN and OPN) were
collected separately from individual plants and washed, followed by measurement of their length and
width. The samples were immediately stored in liquid nitrogen for further processing. Ten samples were
collected from each sampling site, including five LPN and five OPN samples; thus, a total of 30 samples
were collected from three sampling sites.

RNA isolation, library construction, and sequencing

Five samples each of LPN and OPN were collected from each sampling site, for a total of three mixed
samples each of LPN and OPN (marked as LPN1, LPN2, and LPN3 for LPN and as OPN1, OPN2, and
OPN3 for OPN) for RNA extraction and further experimentation. Total RNA per mixed sample was
extracted from the taproot tissue using the RNeasy Plus Mini kit (Qiagen, Valencia, CA, USA), and purified
using oligo (dT) magnetic beads. After completing both cDNA library synthesis and PCR amplification for
each mixed sample, the PCR product was purified on an AMPure XP system (Beckman Coulter, Beverly,
MA, USA). RNA integrity was assessed using an Agilent 2100 Bioanalyzer Instrument (Agilent
Technologies, Santa Clara, CA, USA), and RNA degradation and contamination were monitored on 1%
agarose gels. 

One cDNA library was constructed from each mixed sample, and a total of six libraries were generated.
Clustering of the index-coded samples was performed using TruSeq PE Cluster Kit v3-cBot-HS (Illumina,
San Diego, CA, USA) based on the cBot Cluster Generation System, following the manufacturer’s
instructions. After cluster generation, 150 bp paired-end sequencing was performed using NGS based on
the HiSeq 2500 system (Illumina). The reads were then sequenced and cleaned to generate clean data by
removing adapter, ploy-N, and low-quality reads.

Quality control and de novo assembly
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The quality of clean data was evaluated using FASTQC software v0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequenced reads with a per base
average quality score below 28 were filtered, and the first 15 bases of each read were removed using
Trimmomatic software v0.39 [42]. To create a reference transcriptome of PN taproot for further analysis,
we combined all trimmed reads into one sample using Trinity v2.8.4 [43] to complete the assembly
process for a transcriptome. Then, the assembled transcriptome was clustered, and redundancy was
removed using CD-HIT-EST software v4.8.1 [44] with a similarity parameter of 0.95. The longest
transcripts were extracted as a reference transcriptome (namely unigenes) for subsequent functional
annotation and DEG analysis between LPN and OPN.

Functional annotation and analysis

Trinotate pipeline v3.2.0 [43] was used to annotate both the reference transcriptome and protein-coding
regions predicted by TransDecoder v5.5.0. Trinotate pipeline can integrate several databases including
SwissProt, RNAmmer v1.2 (predicting ribosomal RNA), SignalP v5.0 (predicting signal peptides), TMHMM
v2.0 (predicting transmembrane helices), and HMMER v3.3.1 (identifying protein domains) to populate its
own database. In addition to the databases mentioned above, Trinotate can map BLAST results of the
transcripts to GO and KO databases to obtain corresponding GO and KO numbers, respectively [45-47]. In
brief, Trinotate merged SwissProt, Pfam, and other related databases into the SQLite database. BLASTX
with an E-value cut-off of 1.0 × 10−5, BLASTP, RNAmmer, SignalP, TMHMM, HMMER, eggNOG, KEGG, and
GO homology searches were performed against the SQLite database. Finally, the search results were
compiled in a report file as a table. The subcategories of GO terms of the annotated unigenes were
visualized using Panther GO-slim, and the related metabolic pathways found from KEGG annotation were
visualized using KEGG Mapper [46, 48].

DEG analysis

The gene expression level of each sample from LPN and OPN was calculated by mapping clean reads
back to the reference transcriptome using RNA-seq by expectation-maximization (RSEM) software v1.3.3
[49] and Bowtie 2 v2.4.1 alignment [50]. The expression matrix generated by RSEM was imported into
DESeq2 for DEG analysis between LPN and OPN [51]. Genes with adjusted p < 0.05 and absolute log2

fold change > 1 were selected as significant DEGs. Up- and downregulated DEGs in LPN were further
investigated by GO enrichment analysis using the Goseq R Bioconductor package and then mapped to
KEGG pathways using the Pathview R Bioconductor package [52]. The PPI network diagram based on
DEGs was constructed using the STRING database (https://string-db.org) with default parameters, and
the PPI network was further optimized using Cytoscape software v3.8.2 [53].

Measurement of H2O2 content and enzyme activities

The H2O2 content in OPN and LPN was determined using the H2O2 content assay kit (Solarbio, Beijing,
People’s Republic of China) following the manufacturer’s instructions. The outcome was expressed as
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H2O2 content per gram of fresh taproot weight (μmol/g fresh weight). The enzyme activities of APX and
PRX in OPN and LPN were measured using APX and PRX assay kits (Solarbio) following the
manufacturer's instructions. The enzyme activity was calculated in terms of enzyme activity units per g
of fresh taproot weight (U/g fresh weight). Three biological replicates were used for each experiment.

RT-qPCR validation of unigenes

Total RNA was extracted from six PN taproot samples using the TRIzol Reagent (Thermo Fisher Scientific,
Waltham, MA, USA). cDNA was reverse-transcribed using the RT6 cDNA Synthesis Kit v2 (Beijing Qingke
Biotechnology, Beijing, People’s Republic of China). Specific primers for each gene were designed for RT-
qPCR amplification using Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Actin was
used as an internal reference gene to normalize the mRNA expression levels of target genes in each
sample [54]. The specific primers for the target genes and actin are listed in Supplementary Table 2.
Quantitative reactions were performed using the RT-qPCR Detection System (FQD-96A, Hangzhou Bioer
Technology, Hangzhou, People’s Republic of China). The reaction mixture (20 μL) contained 10 μL 2× T5
Fast qPCR Mix (SYBR Green I), 0.8 μL each of the forward and reverse primers, and 1 μL of template
cDNA. Finally, qPCR amplification was conducted under the following conditions: 95 °C for 60 s, followed
by 40 cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 30 s. The relative expression of internal
reference and target genes was calculated using the 2−ΔΔCT method. Three biological replicates were
used for the validation study.

Results
Statistics of phenotype data

The typical phenotypes of OPN and LPN are shown in Fig. 1a. Length–width ratios of 30 PN taproot
samples (OPN and LPN) collected from Shipin (SP), Shilin (SL), and Luxi (LX) county were calculated.
Length–width ratios for OPN and LPN samples collected from the SP county were 1.42 ± 0.23 and 2.96 ±
0.90, those from SL county were 1.47 ± 0.26 and 2.37 ± 0.45, and those from LX county were 1.27 ± 0.20
and 1.95 ± 0.38, respectively. From the calculated results, the length–width ratios of OPN samples were
approximately 1.00 to 1.50, whereas those of the LPN samples were approximately 2.00 to 3.00; thus, the
length–width ratio of LPN was approximately twice that of OPN. These data were statistically analyzed
using the PASW software v18.0.0. Statistical results (Fig. 1b) indicated that there was a significant
difference in the length–width ratio between OPN and LPN taproots for each sampling site (p < 0.05).

Illumina sequencing results

After removing adapter, ploy-N, and low-quality reads, Illumina sequencing produced a total of
133,730,886 (39.11 Gb) and 114,761,595 (33.31 Gb) paired-end clean reads from three samples each of
OPN and LPN, respectively (Table 1). After assessing read quality using FASTQC software and trimming
the first 15 bases of each read using Trimmomatic software, the length of the retained reads was 135 bp,
and all of them had a high-quality score (> 28) for subsequent de novo assembly.
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Table 1 Summary statistics of sequencing data from OPN and LPN using the Illumina HiSeq 2500
system.

Sample

number

Sample

location

Number of total
reads

Clean bases
(Gb)

Q20 (%) Q30 (%)

OPN1 SP (N23°73′,
E103°48′)

85,408,766 12.52 Gb 97.90 93.91

OPN2 SL (N24°77′,
E103°27′)

86,151,720 12.54 Gb 98.52 95.40

OPN3 LX (N24°52′,
E103°76′)

95,901,286 14.05 Gb 98.00 94.17

LPN1 SP (N23°73′,
E103°48′)

72,558,374 10.64 Gb 98.09 94.32

LPN2 SL (N24°77′,
E103°27′)

78,429,508 11.49 Gb 97.47 92.88

LPN3 LX (N24°52′,
E103°76′)

78,535,308 11.18 Gb 97.61 93.26

Abbreviations: OPN, oval taproot of Panax notoginseng (Burk.) F. H. Chen; LPN, long taproot of Panax
notoginseng (Burk.) F. H. Chen; SP, Shipin county; SL, Shilin county; LX, Luxi county.

De novo transcriptome assembly and function annotation

The reference transcriptome consisted of 121,955 unigenes with an average length of 914 bp, contig N50
= 1,774 bp, and GC content percentage = 38.27%; the length distribution statistics of all transcripts are
shown in Fig. 2a. In total, 42,207 protein-coding regions were predicted from the reference transcriptome
using the TransDecoder software. The final annotation results showed 38,313 Basic Local Alignment
Search Tool (BLASTX) hits and 24,820 BLASTP hits. Moreover, 25,706, 31,269, and 26,563 unigenes were
mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and eggNOG
databases, respectively, and 15,797 unigenes were common among the KEGG, GO, Nr, and eggNOG
databases (Fig. 2b). 
GO function classification distinguished the annotated unigenes involved in different cellular
components, biological processes, and molecular functions, and then divided them into subcategories
within each GO term domain. Within the cellular component subcategory (Fig. 3a), the majority of
annotated unigenes were in the membrane (31.03%), organelle (24.99%), and nucleus (16.71%)
subcategories, and others were distributed in the cytoplasm (12.24%), supramolecular complex (6.75%),
extracellular region (2.25%), cell wall (1.41%), and peroxisome (0.64%) subcategories. Within the
biological process subcategories (Fig. 3b), a high percentage of annotated unigenes were involved in
metabolic processes (16.31%), biological regulation (14.26%), response to stimulus (13.61%), and signal
transduction and transport (11.2%). The rest were mainly involved in RNA processing (8.03%), DNA
processing (9.87%), protein processing (8.79%), development process (5.60%), and cell cycle (3.43%).
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Within the molecular function subcategories (Fig. 3c), 49.01% of annotated unigenes were involved in
binding, 42.76% were involved in enzyme activity, 3.45% were involved in transporter activity, 1.51%
participated in structural molecule activity, 0.58% participated in calcium channel activity, and 0.52%
participated in translation regulator activity.  
Mapping of KEGG pathways

The analysis of metabolic pathway assignment from the annotated unigenes was performed using the
KEGG database. The KEGG annotation results showed that 16,225 unigenes were assigned to specific
metabolic pathways with corresponding KEGG Orthology (KO) numbers; among them, 10,575 unigenes
matched KO numbers in the KEGG database for A. thaliana and are involved in various metabolic
pathways. Then, the repeated KO numbers were added up and counted. The top 15 KO numbers (with
corresponding definition) mapped to enzymes are shown in Fig. 3d. The total number of genes encoding
PRX (K00430) ranked fourth, which indicates that PRX may play an extremely important role in the PN
taproot development processes. Moreover, all known enzymes involved in the metabolism pathway of the
ROS and MAPK families were identified in the KEGG database for A. thaliana. Among the genes encoding
enzymes related to ROS metabolism, 52 genes encoding PRX family members, 16 encoding GPx family
members, and 13 encoding APX family members were identified. In addition, KEGG analysis identified 99
genes that encode a series of MAPK family members related to plant growth, development, and response
to oxidative stress, of which 73 were mapped to the KEGG database for A. thaliana, and 21 of the 73
genes were assigned to specific metabolic pathways with corresponding KO numbers.

Analysis of differentially expressed genes (DEGs)

The volcano plot of gene expression levels illustrates the distribution of up- and downregulated genes in
LPN as compared with in OPN (Fig. 4a). A total of 127 DEGs were identified between LPN and OPN, and
the heatmap clearly presents the clustering results of these DEGs in OPN and LPN samples, showing that
genes that were significantly upregulated in LPN were significantly downregulated in OPN (Fig. 4b). Of
the identified 127 DEGs, 83 were successfully annotated with BLASTX hits. Among the 83 annotated
genes, 44 were upregulated and 39 were downregulated in LPN taproot, and 27 genes including
18 upregulated and 9 downregulated genes (Table S1) were assigned to specific metabolic pathways
with corresponding KO numbers. Among the 18 upregulated genes, the three genes
(TRINITY_DN8843_c0_g3_i1, TRINITY_DN3132_c0_g6_i1, and TRINITY_DN821_c0_g1_i1) are very likely
to be related to the phenotypic difference between LPN and OPN, including two genes
(TRINITY_DN8843_c0_g3_i1 and TRINITY_DN3132_c0_g6_i1) encoding enzymes originating from APX
family ([EC: 1.11.1.11]) and PRX family ([EC: 1.11.1.7]), respectively, both enzymes are directly related to
ROS metabolism, and one gene encoding an enzyme of the MAPK [EC: 2.7.11.24] family related to plant
cell proliferation and meristematic maintenance (Table 2). Specifically, the three genes encoding APX3,
PRX45 and MPK3, respectively, according to the results of BLASTP hit. In total, 47 DEGs were integrated
into the protein–protein interaction (PPI) network diagram (Figure S1), including 30 upregulated (purple
nodes) and 17 downregulated DEGs (green nodes), with five genes involved in ATP binding. Moreover, PPI
networks illustrate that both gene (TRINITY_DN8843_c0_g3_i1) encoding APX3 and gene
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(TRINITY_DN821_c0_g1_i1) encoding MPK3 directly interact with gene TRINITY_DN4949_c0_g2_i2, as
shown by the two straight lines among the three purple nodes in a red circle (Figure S1). GO annotation
results showed that the molecular function of gene TRINITY_DN4949_c0_g2_i2 was implicated in ATP
binding. This suggests that APX3 and MPK3 are also indirectly involved in the energy metabolism of PN
root cells.

Table 2 Pathway assignments of enzymes encoded by the three upregulated genes in LPN.

Enzyme 

family

Definition Enzyme
name

A. thaliana gene LFC Padj

[EC:
1.11.1.11]

L-Ascorbate peroxidase APX3 AT4G35000 4.56 9.42E-06

[EC:
1.11.1.7]

Class III peroxidase PRX45 AT4G30170 3.73 0.001047

[EC:
2.7.11.24]

Mitogen-activated protein
kinase

MPK3 AT3G45640 2.92 1.21E-08

Abbreviations: LFC, log2 (fold change); Padj, adjusted P value
Measurement results of H2O2 content and enzyme activity

APX and PRX enzyme activities and H2O2 concentrations were measured in OPN and LPN. The
H2O2 concentrations in OPN and LPN were 3.18 ± 0.70 and 2.50 ± 0.80 (μmol/g fresh weight),
respectively (Fig. 5a). The statistical results showed that there was a significant difference in the
H2O2 content between OPN and LPN (p < 0.05). The enzyme activities of APX and PRX in OPN were 3.85
± 0.64 and 1837.08 ± 556.74 (U/g fresh weight), and those in LPN taproots were 4.79 ± 0.75, 3177.54 ±
1522.90 (U/g fresh weight), respectively. The statistical results showed that the activities of the two
antioxidant enzymes were significantly upregulated in LPN compared with in OPN (p < 0.05) (Fig. 5b and
5c). Thus, upregulated APX and PRX enzyme activities led to lower H2O2 content in LPN taproots. 
RT-qPCR analysis results

The fragments per kilobase million (FPKM) values of the three genes encoding APX3, PRX45, and MPK3
in OPN were 0.31 ± 0.13, 0.44 ± 0.37, and 0.93 ± 0.16, whereas those in LPN were 7.43 ± 1.89, 5.20 ± 1.40,
and 14.00 ± 4.10, respectively. The statistical results of FPKM values showed that the relative expression
levels of the three genes encoding APX3, PRX45, and MPK3 in LPN were significantly higher than in OPN
(p < 0.05) (Fig. 5d). The relative expression levels of the three genes in OPN calculated based on RT-qPCR
were 1.03 ± 0.31, 1.01 ± 0.22, and 1.03 ± 0.25, whereas those in LPN were 2.89 ± 0.45, 4.48 ± 0.26 and
2.94 ± 0.50, respectively. Interestingly, the relative expression levels of the three genes in LPN were
approximately 3-, 4-, and 3-fold higher than those in OPN, respectively. Thus, the overall relative
expression levels of genes encoding APX3, PRX45, and MPK3 were significantly higher in LPN than in
OPN (p < 0.01) (Fig. 5e). 
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Both RT-qPCR and statistical analyses results of FPKM values confirmed the analysis of DEGs; that is, the
relative expression levels of the three genes encoding MPK3, APX3, and PRX45 were upregulated in LPN. 

Discussion
ROS are extremely active chemical substances and mainly exist in two forms: radicals with free electrons
such as superoxide (O2

-) and hydroxyl radical (OH•) and nonradicals such as hypochlorous acid (HOCl)
and hydrogen peroxide (H2O2) [55]. Different types of ROS have different chemical properties; H2O2 is the
most stable ROS molecule [56, 57]. Depending on the type and concentration of ROS produced in the
cells, different physiological reactions may occur. ROS can induce the expression of stress-responsive
genes at low concentrations but can lead to oxidative damage to important biomacromolecules such as
lipids, nucleic acids, and proteins, eventually causing cell death at high concentrations [58, 59]. To date,
many studies have reported important roles of ROS, including regulation of growth throughout plant root
development, maintenance of apical meristem, and promotion of root elongation; the related internal
molecular mechanisms have also been explored [24]. Specifically, the molecular mechanism of ROS-
mediated control of the cell cycle, including cellular proliferation, elongation, and differentiation, has been
widely demonstrated in A. thaliana and other plants [25-30, 55]. 

Plant cell expansion and elongation are mostly determined by the plasticity and structure of the cell wall
(CW). The cellular expansion rate, namely cellular dynamics, is closely associated with the balance
between CW stiffening and loosening, both of which are controlled by ROS metabolic processes [26].
Thus, ROS production and scavenging are directly related to the elongation and development of plant
roots. ROS is generated mainly by the PRX and NADPH oxidase families [26, 33], whereas its scavenging
is mainly regulated by antioxidant enzymes such as CAT, APX, PRX, SOD, and some nonenzymatic
antioxidants, such as reduced glutathione and ascorbic acid [34, 38]. A number of early studies on A.
thaliana have confirmed that accumulation of H2O2 in plant root cells can enhance CW rigidity to hinder
cellular elongation and proliferation by repressing the expression of cell cycle-related genes CyclinB and
CyclinD, thus leading to shorter roots. In contrast, scavenging an excess of H2O2 in plant root cells
contributes to maintenance of intracellular redox homeostasis in favor of cellular proliferation rather than
differentiation, thus leading to the development of longer roots [21, 23, 26, 28]. In the present study, it was
found that the H2O2 concentration in LPN was significantly lower than that in OPN (p < 0.05) (Fig. 5a). As
shown by green arrows in Fig. 6, low H2O2 concentration in root cell, which is conducive to the expression
of cell cycle-related genes CyclinB and CyclinD, to promote cell division and root growth. Therefore, it is
possible that the emergence of the LPN phenotype is tightly correlated with lower H2O2 concentration
caused by the high expression of some antienzymes in root cells.

APXs, bifunctional enzymes with CAT and broad-spectrum peroxidase activity, are the core enzymes that
scavenge ROS in plants [60, 61]. In plant cells, APXs scavenge H2O2, which mainly participates in the first

step of the ascorbate-glutathione cycle, catalyzing the reaction of L-ascorbate + H2O2 + 2 H+ = L-
ascorbate + L-dehydroascorbate + 2 H2O to convert excess H2O2 into H2O [62]. During plant development,
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an increasing number of APX-encoding genes, such as APX1–6, were detected in A. thaliana, and their
activity and function have been further confirmed [63]. In addition, other APX-encoding genes have been
found in rice, wheat, and potato tubers. A number of studies on the effects of APX-knockout genes on
plant physiological functions, growth processes, and antioxidant metabolism suggest that APXs can
influence plant growth and development by regulating cellular redox signaling pathways involved in plant
growth [64-68]. The up-regulated expression of gene (TRINITY_DN8843_c0_g3_i1) encoding APX3 in LPN
was validated by RT-qPCR results (Fig. 5e) and APX enzyme activity analysis (Fig. 5b) in this study. Based
on the known function of APX3, up-regulated APX3 also confirmed the lower content of H2O2 in LPN
compared with in OPN. Therefore, it is reasonable to infer that the up-regulated APX3 in LPN can
maintain the content of H2O2 in cells at a lower level compared with that in OPN, increase the rate of cell
proliferation, and promote root elongation (green arrows in Fig. 6)
PRXs are plant CW-localized proteins that have been shown to be involved in plant CW dynamics [69].
PRXs can generate ROS such as •OH and HOO• to promote cell elongation in the hydroxylic cycle and
oxidize various substrates to polymerize typical CW lignin compounds to stiffen the CW in the
peroxidative cycle; both cycles are capable of regulating the H2O2 level [26, 70]. To be specific, during the
peroxidative cycle, some PRXs can oxidize molecules such as monolignols, suberin units, and ferulic
acids linked to diverse polymers to form impregnable cross-links between CW polymers and proteins in
CW network, leading to a tight CW, which directly reduces cellular elongation and expansion capacity [23,
71]. However, during the hydroxylic cycle, other PRXs with extremely strong activity can produce •OH and
HOO•, which can nonspecifically break polysaccharide covalent bonds in various types of organic
molecules to enhance nonenzymatic CW loosening and consequently promote cellular elongation [26]. A
previous study on A. thaliana confirmed that the expression inhibition of genes encoding PRXs results in
an increase in H2O2 content, whereas up-regulated expression of genes encoding PRXs can continually
scavenge excess H2O2 in plant root cells and maintain intracellular redox homeostasis in favor of cellular
proliferation rather than differentiation, leading to the development of longer roots [21]. Briefly, the
function of PRXs can be classified into two main categories: stiffening and loosening CW. Additionally,
based on previous studies of multiple phenotypes of the corresponding AtPrx-deficient mutants of A.
thaliana (such as mutants deficient in AtPrx02/25/71, AtPrx33/34, and AtPrx53), one PRX category,
including AtPrx37 [72], AtPrx02/25/71 [73], AtPrx64 [74], and AtPrx72 [75], can promote the hardening of
the plant CW by taking H2O2 as an electron acceptor to catalyze lignin formation and polymerization [76-
78]. In other words, they can catalyze lignin formation and polymerization to stiffen the plant CW in the
presence of H2O2, thus leading to shorter roots. Other categories of PRXs, including AtPrx36, AtPrx39,
AtPrx40, AtPrx57, AtPrx33/34, and AtPrx53, were found to be closely associated with CW loosening and
root elongation [22, 79, 80]. Specifically, A. thaliana with overexpression of gene encoding PRX34 had
longer roots than the wild type (WT), whereas the plants with double knockdown of genes encoding
PRX33 and PRX34 had shorter roots than the WT. The gene identified in this study, which encodes PRX45
(namely AtPrx45), was significantly upregulated in LPN compared with in OPN (Fig. 5c). PRX45, like other
PRXs, mainly exists in roots and hypocotyl tissues and acts in response to oxidative stress. However, the
specific molecular regulation mechanism of PRX45 in the plant root CW has not been reported. The up-
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regulated expression of the gene (TRINITY_DN3132_c0_g6_i1) encoding PRX45 in LPN was validated by
RT-qPCR results (Fig. 5e) and PRX enzyme activity analysis (Fig. 5c). It is reasonable to speculate that
PRX45 may participate in the hydroxylic cycle to produce •OH and HOO• and split glycosidic bonds or
certain covalent bonds in CW components, resulting in cell elongation and expansion, and eventually root
elongation (blue arrow in Fig. 6). The specific molecular function of PRX45 may be comprehensively
confirmed in A. thaliana roots, similar to other AtPrx-encoding genes in the foreseeable future.

MAPKs, also known as MPKs in plants, are a highly conserved enzyme family with essential functions;
they are widely found in plant and animal cells. The MAPK cascade is composed of diverse proteinases
involved in various biological processes, including cell proliferation, differentiation, response to diverse
stresses, and tolerance to environmental stimuli [39-41]. For instance, it has been shown that the activity
of PsMPK2 in pea and ZmMPK5 in maize can be elevated by H2O2 stress [81, 82]. TaMPK4 plays a
critical role in mediating plant tolerance to various stresses by inducing root growth and regulating
cellular ROS metabolism [83]. StMAPK11 upregulation can enhance CAT and PRX activity to increase the
antioxidant activity in potato, tobacco, and A. thaliana [84]. The activities of MPK3 and MPK6 in A.
thaliana are positively correlated with plant defense against oxidative stress triggered by salt stress [85].
Importantly, the regulatory functions of the MAPK cascade in plant shoot apical meristem (SAM) have
long been proposed, as MPK3 and MPK6 are crucial regulators of stem cell homeostasis in A. thaliana by
participating in CLAVATA peptide receptor-WUSCHEL transcription factor (CLV-WUS) signaling pathways
of SAM development [86, 87]. In addition, two recently reported studies indicated that MPK3 can
positively regulate root meristem growth factor 1 (RGF1)-mediated root growth and development and
promote cell division in the root apical meristem, leading to plant root elongation [88, 89]. In the present
study, RT-qPCR was conducted to validate the expression of the gene encoding MPK3 in LPN and OPN.
The validation results were consistent with the analysis of DEGs; the gene (TRINITY_DN821_c0_g1_i1)
encoding MPK3 was upregulated in LPN as compared with in OPN (Fig. 5e). Based on recent studies on
MPK3 function in A. thaliana, it is rational to assume that up-regulated gene encoding MPK3 is more
favorable for stem cell maintenance of plant root meristem and can mediate RGF1 expression, leading to
promotion of cell proliferation in the PN taproot. Therefore, up-regulated MPK3 activity is likely to be one
of the driving forces for the formation of the LPN phenotype (purple arrows in Fig. 6).

Additionally, previous studies have confirmed that plant root development is jointly determined by the
rates of cell proliferation and the extent of cell elongation [30, 90]. Several published studies on different
sweet potato root types suggest that up-regulated antioxidant enzyme levels could improve plant root
growth and development, and under certain circumstances, may increase yield [26, 33, 91]. In the present
study, DEGs analysis showed that the genes encoding APX3, PRX45, and MPK3 were significantly
upregulated in LPN as compared with in OPN. Further, H2O2 content, APX and PRX enzyme activity, and
RT-qPCR analyses in LPN and OPN further verified the transcriptome analysis. This illustrates that APX3,
PRX45, and MPK3 may be directly or indirectly involved in the process of promoting PN taproot
development and elongation. A hypothetical molecular regulatory network leading to LPN formation may
be based on the joint interference of H2O2, APX3, PRX45, and MPK3 (Fig. 6).
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Conclusion
In this study, we performed de novo transcriptome assembly and functional annotation from six PN
taproot samples (three each of LPN and OPN) and determined the causes of phenotypic differences in
the development process of PN by analyzing DEGs of LPN and OPN. DEGs analysis showed that genes
encoding APX3, PRX45, and MPK3 were significantly upregulated in LPN compared with in OPN. These
three enzymes play pivotal roles in ROS metabolism and oxidative stress. Many previous studies have
demonstrated that the process of ROS metabolism is closely related to the proliferation, elongation, and
differentiation of plant root cells. It has recently been reported that MPK3 can positively regulate RGF1-
mediated root growth and is indispensable for stem cell maintenance in the shoot apical stem of A.
thaliana.

In summary, we confirmed that the PN taproot phenotype is influenced by a network controlling ROS
metabolism during the taproot development process. Based on the results of this study and those of
previously published studies on the relationship between ROS metabolism and plant root development, it
can be concluded that the taproot phenotype of LPN is due to the upregulated expression of genes
encoding APX3, PRX45, and MPK3. The results of this study provide a reliable explanation for the
phenotypic differences between OPN and LPN, and they offer further insights into the genetic mechanism
of phenotypic differences for other species of the Panax genus. Our results will be useful for future
molecular breeding of PN.
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Figure 1

Phenotype characteristics of OPN and LPN taproots. (a) The typical phenotypes of OPN (left) and LPN
taproot (right), scale bar: 10 cm. (b) The statistical result of length–width ratios of OPN and LPN
taproots. LX, SL, and SP represent Luxi county, Shilin county, and Shipin county, respectively. Data are
presented as mean ± s.d. (n = 5). The asterisk and double asterisks represent significant difference
determined by the independent-sample t-test in PASW at p < 0.05 (*) and p < 0.01 (**), respectively.
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Figure 2

Statistical results of length distribution and database annotation of the reference transcriptome.
(a) The
transcript length (TL) distribution of all transcripts. (b) The annotation result statistics for all transcripts
annotated to the four databases, namely Nr, KEGG, GO and eggNOG.
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Figure 3

The GO classification results of annotated unigenes and the top 15 KO numbers.
Pie charts indicate the
percentage of genes classified into diverse GO-slim terms for (a) cellular components, (b) biological
processes, and (c) molecular functions. (d) the statistics of the top 15 KEGG Orthology (KO) numbers
mapped to the KEGG database.

Figure 4

Volcano plot of gene expression levels and heatmap of differentially expressed genes (DEGs). (a) The
volcano plot was generated from gene-level differential expression results based on DEseq2, showing the
distribution of down- and upregulated genes in LPN as compared with in OPN. DEseq2 showed 65
downregulated and 62 upregulated DEGs in LPN. In blue are the significantly (padj < 0.05) downregulated
genes with a log2 fold change (LFC) < −1 (left of the vertical line). In red are the significantly (padj < 0.05)
upregulated genes with an LFC > 1 (right of the vertical line). The larger the absolute value of LFC, the
larger the area of the point. (b) Clustering heatmap of 127 DEGs. The heatmap shows downregulated and
upregulated genes between LPN (LPN1, LPN2 and LPN3) and OPN (OPN1, OPN2 and OPN3) samples
(LFC < −1 or > 1, padj < 0.05). Darker blue indicates more significant downregulation, whereas darker red
indicates more significant upregulation.
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Figure 5

The determination results of H2O2, APX, PRX, RT-qPCR, and the statistics of FPKM.
(a) H2O2
concentration and enzyme activities of (b) APX and (c) PRX, as well as (d) statistics of fragments per
kilobase million (FPKM) value of the three genes TRINITY_DN8843_c0_g3_i1 (encoding APX3),
TRINITY_DN3132_c0_g6_i1 (encoding PRX45), and TRINITY_DN821_c0_g1_i1 (encoding MPK3) and (e)
RT-qPCR validation results. Data are presented as mean ± s.d. (n = 3). The asterisk and double asterisks
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represent significant differences determined by the independent-sample t-test in PASW at p < 0.05 (*) and
p < 0.01 (**), respectively.

Figure 6

A Putative network diagram of molecular regulatory mechanism leading to LPN formation.
The blue,
green, and purple arrows represent the metabolic pathways involving PRX45, APX3 and MPK3,
respectively.
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