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Abstract
Background: Chemokines and their receptors can be expressed on the surface of in�ammatory cells and
malignant tumor cells in the body. Tumor cells can participate in directional organ metastasis by means
of the ‘navigation effect’ of chemokines. Recent studies have found that chemokine C-C motif chemokine
ligand 3 (CCL3) plays an important role in the invasion and metastasis of malignant tumors. Determining
the effect of chemokine CCL3 and the related cytokine network on colorectal cancer is helpful in
developing new therapeutic targets and anti-tumor drugs, as well as improving the survival rate of
patients.

Methods: In this study, protein chip technology was used to examine colorectal cancer tissue samples
and identify the key factors of chemokine CCL3 and the toll-like receptors/nuclear factor-κB (TLR/NF-κB)
pathway in cancer and metastatic lymph nodes. In addition, we used lentiviral vector technology for
transfection to construct interference and overexpression cell lines. The aim of this experiment was to
analyze the mechanism of CCL3 and TNF receptor associated factor 6 (TRAF6)/NF-κB pathway-related
factors and their effect on the proliferation of colon cancer cells. Finally, the expression and signi�cance
of CCL3 in colorectal cancer tissues and its correlation with clinical pathology were studied by
immunohistochemistry.

Results: The results con�rmed that CCL3 and C-C motif chemokine receptor 5 (CCR5) were expressed in
adjacent tissues, colorectal cancer tissues, and metastatic cancer. The expression level was correlated
with clinical stage and nerve invasion.

Conclusions: The expression of chemokine CCL3 and receptor CCR5 was positively correlated with the
expression of TRAF6 and NF-κB, and could promote the proliferation, invasion, and migration of
colorectal cancer cells through TRAF6 and NF-κB.

Background
According to data from the International Cancer Research Center of the World Health Organization,
in2020, the number of new cases of colorectal cancer worldwide reached approximately 1.9 million. The
incidence and mortality associated with colorectal cancer (approximately 935000 deaths) rank third and
second, respectively, among malignant tumors [1]. Although colorectal cancer can be cured by surgical
resection, various factors result in a low rate of early diagnosis, high recurrence and metastasis rates, and
poor prognosis, thereby posing a great threat to human health [2]. Hence, controlling the metastasis and
recurrence of colorectal cancer is a di�cult challenge. Chemokines are a class of cytokines that can
cause cells to undergo chemotactic movement, and their main role in the body is in chemotactic cell
migration. They are widely expressed in various tissues and cells of the body, and their receptors are
mainly expressed in white blood cells, mediating the directional migration of white blood cells to play a
biological role. In addition, they can also be used as a surface marker of immune cells as they closely
related to cellular immune responses. Tumor cells can also express chemokines and receptors. They can
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use the ‘navigation effect’ of chemokines, which is closely related to the targeted organ metastasis of
tumors [3–5]. CCL3, one of the components of the chemokinep CC ligand family was also termed as
MIP(macrophage in�ammatory protein). It can be expressed on the surface of macrophages,
lymphocytes, epithelial cells, and other cells. It mediates the secretion of cytokines by immune cells and
promotes the aggregation and migration of a variety of cells. C-C motif chemokine receptor 1 (CCR1) and
CCR5 are the receptors of CCL3. Recent studies have found that CCL3 plays a role in the invasion and
metastasis of malignant tumors. A previous study reported that upregulation of CCL3 expression can
promote the invasion and migration of lung cancer A549 cells [6]. Silva et al[7] found that, in C57BL/6
(wild type) mice with chemically induced oral squamous cell carcinoma, the expression of CCL3 and
CCR5 increased. Of note, knockout of the CCL3 gene retarded tumor cell proliferation. The above studies
indicated that the secretion of CCL3 promotes the development of malignant tumors. Studies have
demonstrated that liver cancer cell lines produce higher levels of CCL3 than normal cells, which
stimulates these cells to produce pseudopodia and migrate in vitro [7]. A study using a kidney malignant
tumor model found that knockout of the CCL3 and CCR5 genes in mice can reduce the incidence of tumor
metastasis [8]. CCL3 is highly expressed in a variety of cancers, but its expression in colorectal cancer
has rarely been investigated.

One of the receptors of CCL3, CCR5, has been studied in depth as an important co-receptor for human
immunode�ciency virus type 1 (HIV-1) during invasion of the human body. At present, maraviroc, a
targeted CCR5 inhibitor, has been used in the treatment of patients with clinical HIV. However, CCR5
functions as a co-receptor for chemotactic immune cells to mediate HIV invasion of CD4 + T cells [9, 10],
and participates in the development of malignant tumors. Nevertheless, in the �eld of cancer treatment,
there is limited evidence regarding the role of CCR5 as a speci�c marker of certain tumors.

A previous study reported that binding of a ligand by CCR5 can activate the GTPase-activating protein,
which in turn activates protein kinase C (PKC). This process results in the activation of downstream
transcription-related signaling pathways, the p65 subunit of nuclear factor-κB (NF-κB), and the
phosphatidylinositol-3-kinase (PI3K) signaling pathway in a secondary cascade [11]. TNF receptor
associated factor 6 (TRAF6) can directly or indirectly bind to members of the TNF receptor superfamily
[12], through the activation of the transcription factor PI3K/AKT and activator protein-1 (AP-1) pathway.
Therefore, the expression of important factors related to the CCL3–CCR5 axis and TRAF6/NF-κB pathway
in colorectal cancer warrants further investigation.

In this study, protein array was initially used to screen 38 chemokines in 16 tissue samples obtained from
patients with colorectal cancer. After screening, CCL3, which is highly expressed in colorectal cancer
tissues, was selected as the target factor. The cancer tissue samples of patients were selected for further
veri�cation of expression at the tissue level using immunohistochemical experiments. The correlation
between CCL3–CCR5 expression and clinical indicators was further analyzed based on the
characteristics of the clinical data of patients with colorectal cancer. CCL3 interference and construction
of an overexpression lentiviral vector were performed to verify the expression of CCL3 in colon cancer and
its cancer-promoting effects in cell and animal experiments. At the same time, a preliminary study on the
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interaction between the target factor CCL3 and the differential pathway-related factors (TRAF6, NF-κB,
PI3K) in colon cancer cells was conducted.

Materials And Methods

2.1 Inclusion and exclusion criteria
The criteria were: 1) all patients were clearly diagnosed with colorectal cancer after pathological
examination, and con�rmed to undergo radical surgery for colorectal cancer; 2) patient age 40–75 years;
3) no edematous diseases prior to the operation, such as pleural effusion and ascites effusion, no
cachexia, no intestinal obstruction, no serious cardiopulmonary dysfunction, no wasting disease; 4) no
radiotherapy or chemotherapy performed prior to operation; 5) no signi�cant metastasis of cancer cells to
important organs before operation; 6) no obvious abnormality in liver and kidney function; 7) no
congenital metabolic disease; 8) ability of patients to stand and walk at the time of admission to the
hospital; 9) no usage of antibiotics 1 month prior to the operation; and 10) no infectious disease and no
in�ammatory disease (cholecystitis, gastrointestinal in�ammatory disease, viral hepatitis, nephritis,
autoimmune system disease, rheumatoid arthritis, ankylosing spondylitis, etc.) prior to the operation.

2.2 Cytokine Array Analysis

2.2.1 human specimens
This experiment was approved by the Ethics Committee of Ningxia Medical University General Hospital,
Yinchuan, China (approval number: 2017-200), and, prior to the selection of materials, patients and their
families provided written informed consent. The researchers obtained 16 samples from four patients with
colorectal cancer; the samples were surgically resected in the General Hospital of Ningxia Medical
University from September 2019 to March 2020: normal (n=3); paracancer (n=3); adenomas (n=3); cancer
(n=4); and metastatic lymph nodes (n=3). Normal samples and paracancerous tissues were obtained
from the intestinal tissue >5 cm and 3–5 cm away from the cancer, respectively. The adenomatous tissue
was taken from the adenomatous polyp tissue in the intestinal tract (except for the tumor), and
pathological examination revealed adenoma. The metastatic lymph node tissue was taken from the
regional metastatic lymph node tissue con�rmed by frozen section during the operation. The cancer
tissue was taken from the whole layer tissue block of colorectal cancer diagnosed by preoperative
pathology. All samples were collected within 30 min after surgical removal of the specimens. Fresh
samples were washed with phosphate-buffered saline (PBS) solution, immediately frozen in liquid
nitrogen, and transferred to −80°C.

2.2.2 Cytokine Array Analysis
Proteins of the surgical specimens were extracted through cutting the tissues into small pieces,
homogenizing and lysing them using homogenizer and cell lysis buffer (Sigma,USA). And the
concentration was valued by BCA Assay kit (KeyGEN Biotech, China). After blocking and incubation of the
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certain anti-cytokine chip(RayBio, China),the proteins were incubated with the chip at 4℃ overnight.
Following that, the chip was washed, blocked and then incubated with biotin labeled antibody. Finally,
after washing, the proteins were visualized using HRP-Streptavidin(Sigma USA) and scanned with a
chemiluminescence imaging analysis system (ImageQuant LAS4000). The AAH-CHE-1-8 data analysis
software was used for data analysis. Differentially expressed genes were obtained and subjected to the
Kyoto Encyclopedia of Genes and Genomes enrichment analysis to determine the signi�cant biological
regulatory pathways involved in the progression of CRC. Fisher’s exact test and R language were used in
this experiment for the enrichment analysis. The node/path data was sorted in descending order
according to the value of the count. The gene order of difference on a certain node/path≥5 was the
criterion for the selection of factors and pathways with signi�cant differences.

2.3 Cell lines, cell culture and lentivirus vectors infection
CRC cell lines (SW620, HT29, HCT116) and normal colon cell line (NCM460) were purchased from ATCC
(American Type Culture Collection, VA, USA). Cells were collected and cultivated at 37oC in an incubator
with 5% CO2 in different medium(SW620: Leibovitz’s L-15 medium,HT29 and HCT116: Mc Coy's 5A
medium, NCM460: RPMI-1640 medium) supplemented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin and 100 µg/ml streptomycin (GIBCO, Invitrogen, USA). Lentivirus vectors carrying shRNA-CCL3
or CCL3 OE plasmids were constructed, and then they were infected to the CRC cells at certain MOI to
downregulate or upregulate the expression of CCL3 in CRC cells.

2.4 Western blotting
The cells were taken from the incubator to remove the culture medium and washed twice with precooled
PBS. Proteins were harvested using Whole Cell Lysis Assay (KeyGEN Biotech, China) according to the
manufacturer`s instructions. After valuing the concentration and equaled the quantity of loading
samples, the proteins of different groups were separated by SDS-PAGE and subsequently transferred onto
PVDF membranes (Millipore, MA, USA). Afterwards, the membranes were blocked with 5% non-fat milk in
TBST at room temperature for 1 h, followed by incubated with antibodies against targeting protein
overnight at 4℃. The primary antibodies including anti CCR5, anti TRAF6, anti NF-kB, anti PI3K were
purchased from Abcam(Cambridge Science Park, UK), and used as the following concentration: anti
CCR5: 1: 1000; anti TRAF6:1: 2000;anti NF-kB: 1:500;anti PI3K : 1 : 250; anti β-Actin:1:5000. Following
being washed with TBST buffer, the membrane was stripped with appropriate HRP-conjugated secondary
antibodies (Abcam, CA, USA) for 1h at room temperature, followed by visualized using the enhanced
Western Bright ECL reagents (Cell Signaling Technology, USA). Eventually, bands were imaged and
analyzed by a chemiluminescence detection system (Bio-Rad, USA). The experiments were repeated at
least three times to ensure reproducibility.
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2.4 Enzyme linked immunosorbent assay (ELISA)Human
MIP-1α/CCL3 ELISA
Kit(BOSTER technology, China) was used to detect the secretion of CCL-3 from normal colon epithelial
and CRC cells. According to the manufacturer`s protocol, a standard curve for duplicate measurements
was constructed. Then, at certain time points, the cells culture media were centrifuged at 2,000 x g for 10
minutes to remove debris and supernatants were collected and diluted by sample dilution provided. Add
100 µL of samples or standard to appropriate wells. Seal the plate and incubate for 90 minutes at 37℃
on a plate shaker set to 400 rpm. Remove the liquids and add 100 µL of the anti-CCL3 Antibody to each
well. Seal the plate and incubate for 60 minutes at 37℃ on a plate shaker set to 400 rpm. Wash each
well with 3 x 350 µL Wash Buffer and after last wash invert the plate and blot it against clean paper
towels to remove excess liquid. Add 100ul of the prepared ABC work solution. Seal the plate and incubate
for 30min. Wash each well with 5 x 350 µL Wash Buffer and after last wash invert the plate and blot it
against clean paper towels to remove excess liquid. Add 100 µL of TMB Substrate to each well and
incubate for 20 minutes in the dark on a plate shaker set to 400 rpm. Add 100 µL of Stop Solution to each
well. Shake plate on a plate shaker for 1 minute to mix. Record the OD at 450 nm using an ELISA reader
(Bio-Rad Laboratories, Richmond, CA, USA).

2.5 Cell Counting Kit-8 (CCK8) experiment
The proliferations of HT29 and HCT116 cells with the impression of CCL3 were determined by Cell
Counting Kit-8 (CCK-8) assay according to the manufacturer’s instructions using Cell CountingKit-8
(Dojinodo, Shanghai, China). In brief, cells with inhibition or overexpression of CCL3 were plated in 96-
well microplates. Once the cells were sticked to the bottom of plates, the proliferation was
detected(0h),and then it was also detected at 12h, 24h, 36h, 48h, 72h. For detection, the CCK-8 solution
(10µl) was added to each well and incubated for additional 4h. Absorbance at 450nm were measured
using an ELISA reader (Bio-Rad Laboratories, Richmond, CA, USA).

2.6 Transwellmigration and invasion experiment
The migration and invasion of HT29 and HCT116 cells with the impression of CCL3 were determined by
transwell migration and invasion assays. For transwell migration assays, the cells were cultured without
FBS for 6h,and then equal quantity of cells in different groups were harvested with 200µL FBS free
culturing medium and seeded into the 8.0 µm Pore Polycarbonate Membrane Inserts (Corning, USA).
Meanwhile, Medium (500 µl) containing 30% fetal bovine serum was added to the lower chamber of the
24-well plate. The cells were conventionally cultured for 48 h. The cell culture medium was aspirated, and
the cells were washed twice with PBS. The cells in the upper surface were removed using a wet cotton
ball and the cells remained were stained with 0.1% crystal violet for 20 min. After being gently washed
twice with PBS to remove excess staining, the cells were pictured and counted. For transwell invasion
assays, the the upper 8.0 µm Pore Polycarbonate Membrane Inserts (Corning, USA) of the transwell were
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pre-coated with 50mg/l Matrigel (BD, USA) diluent (1:8). And the subsequent procedures were the same
with those in the transwell migration assays.

2.7 Cell scratch detection
The density of different groups of cells was adjusted to 6×105 cells/mL; the cells were seeded into 6-well
plates and cultured until the cell density reached approximately 100%.The cell layers were scratched with
a sterile 10 µl pipette tip p and washed twice with PBS. With 0h and 24 h incubation, 3 �elds were
visualized to assess migration,respectively. The scratch area was calculated using the ImageJ software
(National Institutes of Health, Bethesda, MD, USA), and one-way analysis of variance was employed to
analyze the input data.

2.8 Immunohistochemistry (IHC) assays

2.8.1 Collection of human specimens for IHC
According to inclusion and exclusion criteria, tissues including cancer, para-cancer and normal epithelial
colorectal tissue were collected from 50 patients diagnosed with CRC to perform Immunohistochemistry
assays. Meanwhile, the clinical data of 50 patients were also collected. Among them, 26 and 24 patients
were males and females, respectively; 19 and 31 patients were aged ≤60 years and >60 years,
respectively. Moreover, the cancer of 22 and 28 patients located in rectum and colon, respectively; 14, 17,
and 19 patients had TNM stage I, II, and III disease, respectively. The degree of differentiation was as
follows: high (seven cases), moderate (30 cases), and poor (13 cases). There were 16 and 34 cases with
and without vascular invasion, as well as 22 and 28 cases with and without nerve invasion, respectively.

2.8.2 Immunohistochemistry staining
The surgically resected tumor samples were �xed with 10% neutral formalin and subsequently embedded
in para�n. A 4-µm thickness of sections were depara�nized and rehydrated through graded alcohol
solution, and then boiled in 10mM sodium citrate pH 6.0 for 15 min in an autoclave and cooled down to
room temperature (RT) for a purpose of antigen retrieval. Then treating with 3% hydrogen peroxide to
eliminate endogenous peroxidase activity at RT for 20 min. The sections were incubated with blocking
buffer (5% goat serum in PBS) for 2 h at RT to block the non-speci�c binding. Tissue sections were then
incubated with primary antibodies including rabbit anti-human CCL3 antibody (1:50, ab32609, Abcam,
Cambridge Science Park, UK), Goat anti-human CCR5 antibody (1:300, ab65850, Abcam,Cambridge
Science Park, UK) overnight at 4°C. Paralleled sections were incubated with rabbit and mouse IgG to
become isotype controls. After washing with PBS, horseradish peroxidase (HRP)-Conjugated goat anti-
rabbit IgG antibody (zb2301, ZSGB-BIO, Beijing, China) or peroxidase-conjugated goat anti-mouse IgG
antibody (zb2307, ZSGB-BIO, Beijing, China) were used as secondary antibodies and incubated for 2 h at
RT. After washing with PBS, the sections were incubated with 3`-diaminobenzidine (DAB) peroxidase
substrate and counterstaining with hematoxylin. The images of stained sections were captured with the
high-powered upright microscope (Leica DM3000). Gray-level density mean and numbers of positive-
CCL3 CCR5 cells were analyzed by Image Pro Plus 6 (IPP6).
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2.8.3 Data analysis of Immunohistochemistry assays
The IHC stained sections were then blindly evaluated by three independent pathologists. The appearance
of yellow-brown particles in the cytoplasm of the cells was indicative of positivity for CCL3 and CCR5.
This positivity was graded according to the intensity of cytoplasmic staining: 0 (negative); 1 (weak
positive); 2 (moderate positive); and 3 (strong positive). The classi�cation according to the scope of
staining was as follows: 0 points (<5%); 1 point (5–25%); 2 points (26–50%); 3 points (51–75%); and 4
points (>75%). The staining intensity was multiplied by the staining range to obtain the
immunohistochemical score: no expression (0); low expression (0–4); moderate expression (5–8); and
high expression (9–12) [13]. Moreover, the correlation between the IHC data and clinal features of the
patients were analyzed using SPSS 23.0.

2.9 Subcutaneous tumorigenicity in nude mice

2.9.1 Animals
Female BALB/c nude mice (n=36) (speci�c-pathogen-free [SPF] grade, age: 4 to 6 weeks, weight: 16–18g)
were purchased from Beijing Weitonglihua Experimental Animal Center (Beijing, China). The mice were
raised in the SPF barrier animal laboratory of the Experimental Animal Center of Ningxia Medical
University. The feed (SPF-level AIN-93G puri�ed) was purchased from Beijing Keaoli Feed Co., Ltd.
(Beijing, China). The mouse feed was changed once every 5 days. The water was �ltered and sterilized by
high temperature and high pressure. The experimental conditions of daily animal care were based on the
Standards for Laboratory Animal Environment and Facilities of the Ministry of Health of the People’s
Republic of China. All animal experiments were approved by the Laboratory Animal Management
Committee of Ningxia Medical University and conducted in accordance with the National Institutes of
Health Animal Ethical Use Guidelines. The experiments were reviewed by the Ethics Committee of Ningxia
Medical University.

2.9.2 Subcutaneous tumorigenicity assays
The 36 nude mice were divided into two groups and then 3 subgroups named the control, empty
vector(NC), and interference/overexpression groups(shRNA/OE). 1 × 107 differentially treated HT29 or
HCT116 cells including control-HT29, NC-HT29, shRNA CCL3-HT29, control-HCT116, NC-HCT116, OE
CCL3-HCT116 in 200µl normal saline The maximum diameter of the tumor was measured once every 5
days and the curve of tumor growth was drawn. When the maximum diameter of the tumor reached 1.5
to2 cm, the nude mice were sacri�ced, Immunohistochemical methods were used to detect the expression
of Ki67 in tumor specimens and determine the effect of CCL3 on tumor proliferation.

2.10. Statistical analysis
Data were expressed as the mean ± standard error. One-way analysis of variance, t-test, and non-
parametric test were used to conduct group comparisons. Categorical variables were compared using
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Chi-squared test. SPSS 22.0 and GraphPad Prism 5.0 were used. P<0.05 was considered to be indicated
as statistically signi�cant difference.

Results
Protein array for chemokines

Based on the analysis of the standardized optical density values obtained from the membrane array, it is
suggested that CCL3, CCL4, and interleukin 8 (IL8) are highly expressed in cancer tissues and metastatic
cancer tissues; the difference was statistically signi�cant (P<0.05) (Figure 2.2 and Table 2.4, 2.5)

Colorectal adenoma- cancer sequence in different group target chemokine screening optical density data
statistical table

*Note: The difference in the standardized optical density between samples, as the criterion for screening
differentially expressed proteins, was statistically signi�cant (P<0.05).

The antibody array chemokine enrichment analysis chart shows that the chemokines CCL3, CCL4, and
IL8 were highly expressed in colorectal cancer tissues and metastatic lymph nodes; however, they were
downregulated in the normal, adjacent, and adenoma groups. The difference was statistically signi�cant
(P<0.05) (Figure 2.3). Because CCL4 did not achieve the expected results in the subsequent cell
veri�cation process, the high expression of IL8 factor in colorectal cancer and a variety of cancers has
been con�rmed. Thus, we �nally selected CCL3 as the target factor.

Veri�cation of factor expression at the tissue level using western blotting

Compared with normal tissues, CCL3 was highly expressed in cancer tissues, while CCR5, NF-κB, TRAF6,
and PI3K were highly expressed in cancer tissues and metastatic lymph nodes. The difference was
statistically signi�cant (P<0.05). We compared the protein expression levels of cancer and paracancerous
tissues. The expression level of TRAF6 increased in paracancerous tissue, and the difference was
statistically signi�cant (P<0.05). However, western blotting showed that the expression levels of these
factors in cancer tissue and metastatic lymph node tissue were not signi�cantly different (P>0.05) (Figure
2.6).

Expression of chemokine CCL3 in colorectal cancer tissues, paracancerous tissue, and normal tissues
using immunohistochemistry

CCL3 is mainly expressed in the cytoplasm and outside the cell. It is highly expressed in cancer tissues
(brown or brownish yellow) as well as in paracancerous tissues and normal tissues. The expression
gradually decreases from paracancerous to cancerous tissues. All extracellular lymphocytes express
CCL3. According to the analysis of immunohistochemical scores, the expression of CCL3 in normal and
paracancerous colorectal cancer tissues gradually increased, and the difference between the groups was
signi�cant (P<0.05) (Figure 2.7).



Page 10/33

Expression of chemokine CCR5 in colorectal cancer tissues, paracancerous tissues, and normal tissues
through immunohistochemistry

CCR5 is mainly expressed in the cytoplasm. It is highly expressed in cancerous tissues (brown or
brownish yellow) as well as in paracancerous tissues and normal tissues. Its expression gradually
decreases from paracancerous to cancerous tissues. In paracancerous and normal tissues, CCL3 is
expressed on lymphocytes outside colonic epithelial cells. According to the analysis of
immunohistochemical scores, the expression of CCR5 in normal and paracancerous colorectal cancer
tissues gradually increased, and the difference between the groups was signi�cant (P<0.05) (Figure 2.8).

Correlation analysis between the expression of CCL3 and CCR5 in human colorectal cancer tissues and
clinical data

As shown in Table 2.9, according to the immunohistochemical score, further statistical analysis showed
that the expression level of CCL3 was correlated with TNM staging (P<0.05). Subsequently, after further
segmentation testing on TNM staging, it was found that the expression of CCL3 was signi�cantly
different among patients with stage I and III colorectal cancer (P<0.05); however, there was no correlation
with other clinical indicators (P>0.05).

As shown in Table 3.0, further statistical analysis based on the immunohistochemical score revealed that
the expression level of CCR5 was correlated with TNM staging (P<0.005) and nerve invasion (P<0.05);
however, there was no correlation with other clinical indicators (P>0.05).

CCL3-HT29 interference and CCL3-HCT116 overexpression cell proliferation

The tumor proliferative ability of CCL3 was weakened after RNA interference, while the proliferative ability
of HCT116 cells was enhanced after overexpression of CCL3. The difference was statistically signi�cant
(P<0.05). The differences in proliferative ability were all manifested 12 h following resuscitation of colon
cancer cell lines (Figure 3.10).

Transwell cell migration experiment

The results of the Transwell cell invasion experiment suggested that the invasive ability of HT29 cells
was weakened after RNA interference with CCL3. Following overexpression of CCL3, the migratory ability
of HCT116 cells was enhanced, and the difference was statistically signi�cant (P<0.05) (Figure 3.12).

Pathway gene expression by western blotting

Expression of pathway-related genes in colon cancer HT29 cells after CCL3 interference

After CCL3 interference, the expression of CCR5, NF-κB, TRAF6, PI3K and the normal decreased, and the
difference was statistically signi�cant (P<0.05). However, the difference in expression between the control
group and NC group was not statistically signi�cant (P>0.05) (Figure 3.15).
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Expression of pathway-related genes after CCL3 overexpression in colon cancer HCT116 cells

After overexpression of CCL3, the levels of CCR5, NF-κB, TRAF6, and PI3K were increased; the difference
was statistically signi�cant (P<0.05).

Effects of interference and CCL3-overexpressing colon cancer cell lines on tumor formation in nude mice

CCL3 interference in HT29 cells

After CCL3 interference, the tumor proliferation in HT29 cells was retarded. Compared with the control
group, the tumor diameter decreased signi�cantly (P<0.05). The control and empty vector groups did not
show statistically signi�cant differences in tumor proliferation (P>0.05) (Figure 3.17).

CCL3 overexpression in HCT116 cells

Overexpression of CCL3 in HCT116 cells accelerated tumor proliferation, and the difference in tumor
diameter compared with the control group was statistically signi�cant (P<0.05). Moreover, the difference
in tumor proliferation between the control and empty vector groups was not statistically signi�cant
(P>0.05) (Figure 3.18).

Immunohistochemical detection of Ki67 in nude mice

Effects of CCL3 interference on Ki67 in stably transfected cells

After CCL3 RNA interference in colon cancer HT29 cells, the expression of Ki67 was decreased, and the
tumor proliferative ability of cells was weakened. The difference was statistically signi�cant (P<0.05).
The difference in tumor proliferation between the control and empty vector groups was not statistically
signi�cant (P>0.05) (Figure 3.19).

Immunohistochemical testing of Ki67 in CCL3-overexpressing stably transgenic cells

Following overexpression of CCL3 in colon cancer HCT116 cells, the expression of Ki67 was increased,
and the tumor proliferative ability of cells was enhanced. The difference was statistically signi�cant
(P<0.05). The difference in tumor proliferation between the control and empty vector groups was not
statistically signi�cant (P>0.05) (Figure 3.20).

Discussion
The intrinsic properties of tumor cells and the surrounding microenvironment play a vital role in the
development and metastasis of tumors. The key steps in their progression and metastasis include
proliferation, angiogenesis, invasion, and remote metastasis of tumor cells. All these steps are regulated
by chemokines.
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Structurally, chemokines are divided into three sub-families (CXC, CC, and CX3C). In view of the
miniaturization, integration, and high-throughput characteristics of protein array technology, we used
protein array for chemokine expression detection and pathway screening in colorectal cancer and
adenoma sequence tissues. The subsequent western blotting and immunohistochemical analysis results
revealed that the key factors of the target pathways screened were highly expressed in different degrees
in colorectal cancer tissues. Although individual chemokines did not match the screening results in the
later veri�cation process, protein array technology exhibits a certain accuracy in the screening of
differential proteins in colorectal cancer tissues. Hence, it can be used for large-scale screening of tumor
differential factors and markers.

Studies have used protein antibody arrays to screen colorectal cancer and paracancerous tissue samples.
These investigations examined the chemokine CCL5 as a candidate gene and con�rmed that it is highly
expressed in colorectal cancer [14]. In the present study, we con�rmed that CCL3 is highly expressed in
colorectal cancer tissues. In addition, Da [15] reported that CCL3 and CCR5 showed high expression in
oral squamous cell carcinoma, while normal oral epithelial cells also expressed CCL3. This result is
consistent with our �ndings in colorectal cancer tissues, suggesting that CCL3 is ubiquitous and lowly
expressed in human normal epithelial cells. In cells undergoing in�ammatory hyperplasia or even
cancerous transformation, CCL3 exhibits a trend toward high expression. In normal epithelium and knot
tissues, there is a balance between the expression of chemokines and chemokine receptors. Once a
certain pathogenic factor disrupts this balance, the cascade reaction caused by the imbalance of
homeostasis can lead to malignant consequences [16]. In this study, we con�rmed that CCL3 and CCR5
are secreted by macrophages and lymphocytes, and expressed in low levels in normal colonic epithelial
cells. Nevertheless, their expression was more obvious in cancer tissues.

CCR5 is expressed in numerous types of cancer and plays an important role in the occurrence and
development of a variety of tumors [17]. Furthermore, studies found that malignant tumors can also
overexpress CCR5 and accelerate their malignant biological behavior [18–20]. In the tumor
microenvironment, in addition to tumor cells, there are lymphocytes, monocytes, �broblasts,
mesenchymal cells, etc. Studies have found that CCR5 is expressed in the above cells [21, 22]. Moreover,
the expression of CCR5 in colon cancer tissues is positively correlated with disease aggressiveness and
metastatic lymph nodes [23]. Immunohistochemistry experiments combined with correlation analysis of
clinical data have found that the expression of CCL3 and CCR5 is correlated with clinical TNM staging. Of
note, the expression of CCR5 is also related to nerve invasion. This phenomenon suggests that CCR5 may
be an important factor in the development of certain malignant tumors.

TRAF6 is a key factor that depends on the MyD88 for the toll like receptors (TLR) pathway. TRAF6 is
expressed and distributed in a variety of malignant tumor tissues, including colorectal cancer tissues [24].
In this study, we con�rmed that TRAF6 is highly expressed in colorectal cancer tissues. The present
�nding provides a foundation for further research on pathways. TRAF6 can activate NF-κB into the
nucleus through the classical pathway or the alternative pathway, and produce biological effects to
participate in the process of in�ammation and tumor invasion and metastasis [25]. This experiment
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con�rmed that NF-κB and PI3K are both present and highly expressed in colorectal cancer tissues. These
�ndings also laid the foundation for further research on the relationship between the TRAF6/NF-κB
pathway and regulatory function of chemokines at the cellular level in the later stage of the disease.

Chemokines are an important part of the tumor microenvironment. In the process of malignant
transformation of epithelial cells, various components of the tumor microenvironment are abnormally
expressed and secreted through a series of pro-in�ammatory molecules, including chemokines, cytokines,
and a large number of intracellular signal molecules (such as upstream kinases and transcription
factors). This process leads to the formation of an in�ammatory state within the tumor, thereby
promoting the development of tumors. There is a dynamic relationship between tumor cells and stroma,
which promotes the initiation of malignant epithelial cells, leading to tumor immune escape, growth, and
metastasis.

NF-κB can regulate a variety of genes in cells to promote in�ammatory proliferation, increase metastasis,
and inhibit cell apoptosis [26]. Studies have shown that, during the progression of the colorectal
adenoma-carcinoma sequence, NF-κB promotes the progression of colorectal cancer by inhibiting
apoptosis [27]. In addition, it was found that NF-κB can mediate the resistance to TNF-β-induced
apoptosis in the treatment of colon cancer [28]. As shown in animal experiments, inhibiting the activation
of NF-κB prevents the peritoneal metastasis of colon cancer [29]. Activation of NF-κB can promote the
expression of matrix metalloproteinases (MMP) and metastasis of colon cancer [30, 31]. Studies have
shown that silencing NF-κB can signi�cantly reduce the transformation of in�ammatory bowel disease to
colon cancer and initiate apoptosis [32]. In our initial experimental design, in�ammatory diseases were
excluded. However, according to the results, NF-κB remains highly expressed in colorectal cancer tissues,
metastatic tissues, colon cancer cell lines, and metastatic cell lines. These �ndings indicate that this
factor is not altered by the occurrence of in�ammation in its regulatory network. This study con�rmed a
positive correlation between the expression of chemokine CCL3 and NF-κB, alterations in the secretion of
CCL3, feedback inhibition, and promotion of the expression of NF-κB, which also con�rms the existence
of a network of interactions.

TRAF6 can activate NF-κB through the activation of cytokine MyD88, CD4, and AP-1 pathways, thereby
causing biological effects [33]. TRAF6 and NF-κB interact with each other [34]. Chen et al. [35] found that
siRNA blocks the ubiquitination of TRAF6 and activates the in�ammatory pathway involved in NF-κB.
Therefore, TRAF6 and the NF-κB in�ammatory pathway are closely related. This also veri�ed the results
regarding the differential pathways screened by the protein array in the second part of this investigation.
In this study, we found that interference and overexpression of CCL3 in HT29 and HCT116 cells exerted a
positive effect on TRAF6. Combined with the �rst part of the experiment, there was a positive correlation
between the expression of TRAF6 and CCR5 after stimulation of NCM460 cells with Bacteroides fragilis
toxin-1 (BFT-1). Although the expression of CCL3 was initially decreased, it was subsequently increased.
This observation may be related to the dose of the toxin and the stress response of cells to toxic
substances. In general, the CCL3–CCR5 axis has an interactive regulatory effect on TRAF6/NF-κB.
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Chen et al. [36] conducted studies on cholangiocarcinoma cell lines. They found that stimulation of cells
with PI3K inhibitors promoted the apoptosis of cholangiocarcinoma cells; these results were also veri�ed
in mouse models of cholangiocarcinoma. Another study reported that, in the process of treating bladder
cancer and acute lymphoblastic leukemia, activation of the PI3K/AKT signaling pathway can inhibit cell
apoptosis and promote tumor proliferation and metastasis [37, 38]. Therefore, by inhibiting the activity of
PI3K/AKT, tumor cells can undergo apoptosis, thereby inhibiting their proliferation and metastasis. This
method can be used to treat acute lymphoblastic leukemia. In this study, the expression of CCL3, its
receptor CCR5, and PI3K were also positively correlated. Hence, there may be a cascade activation
network relationship between chemokines and PI3K/AKT in the process of tumor invasion and
metastasis. These factors affect each other, leading to tumor proliferation and invasion. Therefore, in the
treatment of tumors, the activation and release of other factors can be controlled to inhibit tumor
proliferation through the administration of effective drugs that can interfere with any one of these
factors.

In 1969, Rygaard and Povsen �rst succeeded in transplanting excised specimens of human cancer tissue
into nude mice. Since then, animal models of transplanted tumors have been widely used in the study of
tumor growth and metastasis. Methods commonly used to establish colorectal cancer xenograft animal
models include cell and tissue transplantation. Athymic nude mice or severely combined
immunode�cient (SCID) mice are generally used to reduce the impact of rejection and the killing effect of
immune cells on tumor cells during modeling [39]. The xenotransplantation model has a high tumor
formation rate, short cycle, and low rates of immune rejection. It is mainly used for research on human
tumors to investigate the treatment, invasion, and metastasis mechanisms, as well as drug sensitivity.
The model retains the original morphology and biological characteristics of tumor cells and can
dynamically observe tumor formation. Moreover, it exhibits good repeatability and is convenient for
monitoring tumor progression and detecting related cytokines. Furthermore, it is effective in screening
drug safety and evaluating the effect of pharmacological interventions. However, it is di�cult to replicate
the occurrence of metastases using this model. Human-derived cell lines are widely used in HCT116 and
HT29 cell lines [40]. The subcutaneous tumor model selected in this experiment is very helpful for
observing the growth state of the tumor.

Tanabe [41] used the mouse-derived colon cancer cell line colon26 to establish a cecal xenograft model
in wild-type BALB/c mice. Injection of the CCR5 inhibitor maraviroc into mice inhibited tumor proliferation
and reduced the expression of CCL3, CCL4, and CCL5. Da [42] studied the transplanted tumor model of
oral squamous cell carcinoma. The results showed that knockout CCL3−/− mice and CCR5−/− wild-type
C57BL/6 mice exhibited slower tumor proliferation, and the difference was statistically signi�cant. These
�ndings are consistent with the results of this experiment. However, in the present study, we used BALB/c
nude mice, which relatively reduced the impact of the immune system. At the same time, we used a
human cell line to con�rm the expression of CCL3. In a previous study, SCID mice were subcutaneously
injected with HT29 cells (10×106) [43]. After 22 days of feeding, 100% of the experimental mice had
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developed lung metastasis. Nevertheless, in our experiments, there was no obvious lung metastasis
found.

Ki67 protein (also termed mKi67) is a marker that re�ects cell proliferation [44]. During mitosis, the Ki67
protein is relocated to the surface of the chromosome; during the intercellular phase, the Ki67 antigen can
only be detected in the nucleus. The level of Ki67 protein increases signi�cantly when the cell progresses
to the S phase of its cycle [45], and its expression level is considered a marker for the proliferation of
breast cancer cells [46]. In clinical practice [47], Ki67 is routinely used clinically to assess whether patients
with colorectal cancer require further adjuvant chemotherapy. Studies have con�rmed that the Ki67 index
is a surrogate indicator for predicting the e�cacy of neoadjuvant chemotherapy. In this study, we
detected Ki67 in subcutaneous xenograft tumors of colon cancer to further verify that enhanced or
weakened secretion of CCL3 is positively correlated with tumor proliferation.

The limitations of this study were as follows. Firstly, this investigation did not include control study of
wild-type BFT because the extraction of wild-type BFT is challenging. Secondly, in the clinical
pathological correlation study, we did not perform a survival and prognosis correlation analysis using the
selected case data. Finally, the sample size of the animal experiments needs to be expanded, and in-
depth research on the mechanism of BFT-1 and colon cancer cells is warranted.

Conclusions
CCL3 and CCR5 were expressed in paracancerous tissues, colorectal cancer tissues and metastatic
carcinoma, and the degree of expression was correlated with clinical stage and nerve invasion. The
expression of chemokine CCL3 and receptor CCR5 is positively correlated with the expression of TRAF6
and NF - κ B, and can promote the proliferation, invasion and migration of colorectal cancer through
TRAF6 and NF - κ B pathway.
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Table 2 Correlation analysis of CCL3 expression and clinical data in human colorectal cancer tissue



Page 22/33

Group n CCL3 expression χ2 P

High Moderate Low Negative

Gender              

Male 26 5 14 6 1 3.559 0.313

Female 24 3 16 2 3

Age              

≤60 years 19 3 14 1 1 5.949 0.114

60 years 31 5 15 8 3

Tumor site              

Rectum 22 2 16 4 0 5.785 0.123

Colon 28 6 13 5 4

TNM stage              

14 1 4 8 1 18.442 0.005*

17 4 9 3 1

19 4 13 0 2

Histologic grade              

Well 7 0 4 2 1 9.95 0.127

Moderate 30 6 18 4 2

Poor 13 7 4 1 1

Lymph-vascular space invasion              

Positive 16 3 9 3 1 0.73 0.886

Negative 34 5 20 6 3

Perineural invasion              

Positive 22 3 16 3 0 5.165 0.16

Negative 28 5 13 6 4

* Indicates that the split test within the group was further performed after conducting the chi-squared test.

Abbreviations: CCL3, C-C motif chemokine ligand 3 
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Table 3 Correlation analysis of CCR5 expression and clinical data in human colorectal cancer tissue

Group n CCL5 expression χ2 P

High Moderate Low Negative

Gender              

Male 26 10 12 4 0 2.11 0.55

Female 24 10 8 4 2

Age              

≤60 years 19 7 7 3 2 0.076 0.962

60 years 31 12 13 6 0

Tumor site              

Rectum 22 10 9 3 0 2.314 0.51

Colon 28 11 11 4 2

TNM stage              

14 4 4 6 0 19.994 0.003*

17 7 7 1 2

19 11 8 0 0

Histologic grade              

Well 7 2 1 2 1 7.074 0.314

Moderate 30 14 11 3 1

Poor 13 5 8 2 0

Lymph-vascular space invasion              

Positive 16 5 9 3 0 5.811 0.121

Negative 34 16 11 1 2

Perineural invasion              

Positive 22 8 12 1 0 8.689 0.034

Negative 28 13 7 7 2

* Indicates that the split test within the group was further performed after conducting the chi-squared test.

Abbreviations: CCR5, C-C motif chemokine receptor 5
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Figures

Figure 1

2.2 Results of the adenoma cancer sequence antibody membrane array. (a) Normal tissue. (b)
Paracancerous tissue. (c) Cancer tissue. (d) Metastatic tissue. The red box indicates the optical density
expression map of the membrane array of the chemokines CCL3, CCL4, and IL8. Abbreviations: CCL3, C-C
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motif chemokine ligand 3; CCL4, C-C motif chemokine ligand 4; E, adenoma tissue; IL8, interleukin 8; Neg,
negative control; Pos, pos label

Figure 2

2.3 Differential chemokine enrichment analysis between different groups of the adenoma cancer
sequence by protein array analysis. (a) Normal and cancerous tissue. (b) Normal and metastatic lymph
node tissue. (c) Cancer and adjacent tissue. (d) Cancer and adenoma tissue. The red and green parts
indicate that the gene was upregulated and downregulated, respectively. The red circle indicates the
chemokine CCL3. Abbreviation: CCL3, C-C motif chemokine ligand 3
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Figure 3

2.6 Western blotting to verify the expression levels of CCL3, CCR5, and the TRAF6/NF-κB pathway-related
factors in colorectal cancer tissues. (a) The expression level of CCL3 in different colorectal cancer
tissues. (b) A graph of the expression level of CCR5 in different colorectal cancer tissues. (c) Changes in
the expression level of NF-κB in different colorectal cancer tissues. (d) A graph of changes in the
expression of TRAF6 in different colorectal cancer tissues. (e) Changes in the expression level of PI3K in
different colorectal cancer tissues. Abbreviations: CCL3, C-C motif chemokine ligand 3; CCR5, C-C motif
chemokine receptor 5; Metastasis, metastatic lymph node tissue; NF-κB, nuclear factor-κB; Normal,
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normal tissue; Para-tumor, paracancerous tissue; PI3K, phosphatidylinositol-3-kinase; TRAF6, TNF
receptor associated factor 6; Tumor, cancer tissue

Figure 4

2.7 Immunohistochemical detection of CCL3 expression in colorectal cancer tissues, paracancerous
tissues, and normal tissues. (a) CCL3 expression in colorectal cancer tissue (×200). (a1) CCL3 expression
in colorectal cancer tissue (×400). (b) The expression of CCL3 in colorectal paracancerous tissues (×200).
(b1) The expression of CCL3 in colorectal paracancerous tissues (×400). (c) CCL3 expression in normal
colorectal tissues (×200). (c1) CCL3 expression in normal colorectal tissues (×400). (d) Scatter plot
comparing the immunohistochemical scores of colorectal cancer, paracancerous tissues, and normal
tissues. Abbreviations: CCL3, C-C motif chemokine ligand 3

Figure 5

2.8 Immunohistochemical detection of CCR5 expression in colorectal cancer tissues, paracancerous
tissues, and normal tissues A: CCR5 expression in colorectal cancer tissue (×200); A1: CCR5 expression in
colorectal cancer tissue (×400); B: CCR5 expression in colorectal paracancerous tissues (×200); B1: CCR5
expression in colorectal paracancerous tissues (×400); C: CCL3 expression in normal colorectal tissues
(×200); C1: CCR5 expression in normal colorectal tissues (×400) D: Scatter plot comparing the
immunohistochemical scores of colorectal cancer, paracancerous tissues, and normal tissues.
Abbreviations: CCL3, C-C motif chemokine ligand 3; CCR5, C-C motif chemokine receptor 5

Figure 6

3.10 CCL3 interference and overexpression in the CCK8 proliferation experiment. (a) CON: Colon cancer
HT29 cells; NC: HT29 cells stably transfected with empty vector; ShRNA: CCL3-HT29 cells stably
transfected with interference shRNA for CCL3. (b) CON: Colon cancer HCT116 cells; NC: HCT116 cells
stably transfected with empty vector; OE: CCL3-HCT116 cells stably transfected for overexpression of
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CCL3. Abbreviations: CCL3, C-C motif chemokine ligand 3; CCK8, Cell Counting Kit 8; ShRNA, short hairpin
RNA

Figure 7

3.12 Results of the Transwell invasion experiment for CCL3 interference and overexpression. (a) HT29
cell invasion for 12 h. (a1) Graph of the statistical analysis of HT29 cell invasion. (b) HCT116 cell
invasion for 12 h. (b1) Graph of the statistical analysis of HCT116 cell invasion. Abbreviations: CCL3, C-C
motif chemokine ligand 3
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Figure 8

3.15 The expression levels of related factors in colon cancer HT29 cells after CCL3 RNA interference. (a)
Western blotting results for CCR5 and TRAF6/NF-κB pathway-related factors. (b) Graph of the statistical
analysis for the expression of factors. Abbreviations: CCL3, C-C motif chemokine ligand 3; CCR5, C-C
motif chemokine receptor 5; NF-κB, nuclear factor-κB; TRAF6, TNF receptor associated factor 6
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Figure 9

3.16 The expression levels of related factors after CCL3 RNA overexpression in colon cancer HCT116
cells. (a) Western blotting results r CCR5 and TRAF6/NF-κB pathway-related factors in HCT116 cells. (b)
Chart of the statistical analysis for the differential expression of each factor. Abbreviations: CCL3, C-C
motif chemokine ligand 3; CCR5, C-C motif chemokine receptor 5; NF-κB, nuclear factor-κB; TRAF6, TNF
receptor associated factor 6
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Figure 10

3.17 Tumor formation in nude mice after CCL3 interference in HT29 cells. (a) Schematic diagram of
tumor formation in nude mice with HT29 cells and their stable transgenic strains. (b) Statistical analysis
of the tumor diameter in each group. (c) Tumor growth curve of nude mice. Con: control group; NC: empty
vector group; ShRNA: CCL3 interference group. Abbreviations: CCL3, C-C motif chemokine ligand 3;
ShRNA, short hairpin RNA
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Figure 11

3.18 Tumor formation in nude mice after CCL3 overexpression in HCT116 cells. (a) A schematic diagram
of tumor formation in nude mice with HCT116 cells and their stable transgenic strains. (b) Statistical
analysis of the tumor diameter in each group. (c) Tumor growth curve. Con: control group; NC: empty
vector group; OE: CCL3 overexpression group. Abbreviations: CCL3, C-C motif chemokine ligand

Figure 12

3.19 Immunohistochemical map of tumorigenesis Ki67 in CCL3 interference stable transgenic HT29 cells.
(a) Immunohistochemical images of the three groups for the detection of tumor tissue Ki67 in the HT29
subcutaneous tumor formation experiment. (b) H-Score statistical analysis of the immunohistochemistry
results. Abbreviations: CCL3, C-C motif chemokine ligand
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Figure 13

3.20 Immunohistochemical map of tumorigenesis Ki67 in CCL3 overexpression stable transgenic
HCT116 cells. (a) Immunohistochemical images of the three groups for the detection of tumor tissue
Ki67 in the HCT116 subcutaneous tumor formation experiment. (b) H-Score statistical analysis of the
immunohistochemistry results. Abbreviations: CCL3, C-C motif chemokine ligand
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