1. Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264-355 (2016)
2. Baumann, M. H., Glennon, R. A. & Wiley, J. L. (ed.) Neuropharmacology of new psychoactive substances. In: Curr. Top. Behav. Neurosci. vol. 32 (2017)
3. Heim, R. Synthese und Pharmakologie potenter 5-HT2A Rezeptoragonisten mit N-2 -Methoxybenzyl-Partialstruktur. Entwicklung eines neuen (2003)
4. Suzuki, J. et al. Toxicities Associated With NBOMe Ingestion – A Novel Class of Potent Hallucinogens: A Review of the Literature. Psychosomatics 56, 129-139 (2015)
5. Rickli, A. et al. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99, 546-553 (2015)
6. Miliano, C. et al. Neurochemical and behavioral profiling in male and female rats of the psychedelic agent 25I-NBOMe. Front. Pharmacol. 10, 1406; 10.3389/fphar.2019.01406 (2019)
7. Herian, M., et al. Hallucinogen-Like Action of the Novel Designer Drug 25I-NBOMe and Its Effect on Cortical Neurotransmitters in Rats. Neurotox. Res. 36, 91-100 (2019)
8. Herian, M. et al. Contribution of serotonin receptor subtypes to hallucinogenic activity of 25I-NBOMe and to its effect on neurotransmission. Pharmacol. Rep. 72, 1593-1603 (2020)
9. Herian, M. et al. Tolerance to neurochemical and behavioral effects of the hallucinogen 25I-NBOMe, Psychopharmacology 238, 2349-2364 (2021)
10. Kyriakou, C. et al. NBOMe: new potent hallucinogens – pharmacology, analytical methods, toxicities, fatalities: a review. Eur. Rev. Med. Pharmacol. Sci. 19, 3270-3281 (2015)
11. Zawilska, J. B., Kacela, M. & Adamowicz, P. NBOMes–Highly Potent and Toxic Alternatives of LSD. Front. Neurosci. 14, 78; 10.3389/fnins.2020.00078 (2020)
12. Catlow, B. J., Song, S., Paredes, D. A., Kirstein, C. L. & Sanchez-Ramos, J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res. 228, 481-491 (2013)
13. Yoon, K. S. et al. 25I-NBOMe, a phenethylamine derivative, induces adverse cardiovascular effects in rodents: possible involvement of p21 (CDC42/RAC)-activated kinase 1. Drug Chem. Toxicol. 1-9 (2020)
14. Xu, P. et al. 25C-NBOMe, a Novel Designer Psychedelic, Induces Neurotoxicity 50 Times More Potent Than Methamphetamine In Vitro. Neurotox. Res. 35, 993-998 (2019)
15. Zwartsen, A., Hondebrink, L. & Westerink, R. H. Changes in neuronal activity in rat primary cortical cultures induced by illicit drugs and new psychoactive substances (NPS) following prolonged exposure and washout to mimic human exposure scenarios. Neurotoxicology 74, 28-39 (2019)
16. Wojtas, A. et al. Neurochemical and behavioral effects of a new hallucinogenic compound 25B-NBOMe in rats. Neurotox. Res. 39, 305-326 (2021)
17. Ettrup, A. et al. Radiosynthesis and Evaluation of 11C-CIMBI-5 as a 5-HT2A Receptor Agonist Radioligand for PET. J. Nucl. Med. 51, 1763-1770 (2010)
18. Weber, E. T. & Andrade, R. Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice. Front. Neurosci. 4, 36; 10.3389/fnins.2010.00036 (2010)
19. Alex, K. D. & Pehek, E. A. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol. Ther. 113, 296-320 (2007)
20. Xu, T. & Pandey, S. C. Cellular localization of serotonin2A (5HT2A) receptors in the rat brain. Brain Res. Bull. 51, 499-505 (2000)
21. Yelmo-Cruz, S., Morera-Fumero, A. L. & Abreu-González, P. S100B and schizophrenia. Psychiatry Clin. Neurosci. 67, 67-75 (2013)
22. Huttunen, H. J. et al. Coregulation of Neurite Outgrowth and Cell Survival by Amphoterin and S100 Proteins through Receptor for Advanced Glycation End Products (RAGE) Activation. J. Biol. Chem. 275, 40096-40105 (2000)
23. Marchi, N. et al. Peripheral markers of blood–brain barrier damage. Clin. Chim. Acta 342, 1-12 (2004)
24. Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of Microglia. Physiol. Rev. 91, 461-553 (2011)
25. Wake, H., & Fields, R. D. Physiological function of microglia. Neuron Glia Biol. 7, 1-3 (2011)
26. Cocchi, V. et al. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int. J. Mol. Sci. 21, 9616 (2020)
27. Herian, M., Kaminska, K., Wojtas, A., Swit, P. & Golembiowska, K. Comparison between LSD and 25-I-NBOMe effects on brain neurotransmitters and WDS response in rats. In: 14th International Symposium Molecular basis of pathology and therapy in neurological disorders. Folia Neuropathol. 56/3 264; 10.5114/fn201878705 (2018)
28. Frenzilli, G. et al. DNA fragmentation and oxidative stress in the hippocampal formation: a bridge between 3,4-methylenedioxymethamphetamine (ecstasy) intake and long-lasting behavioral alterations. Behav. Pharmacol. 18, 471-481 (2007)
29. Colado, M. I. et al. A study of the mechanism involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) on dopamine neurons in mouse brain. Br. J. Pharmacol. 134, 1711-1723 (2001)
30. West, M. J., Slomianka, L. & Gundersen, H. J. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231, 482-497 (1991)
31. Mackowiak, M., et al. Cocaine enhances ST8SiaII mRNA expression and neural cell adhesion molecule polysialylation in the rat medial prefrontal cortex. Neuroscience 14, 21-31 (2011)