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Abstract

In this paper, the perturbed Gerdjikov-Ivanov (GI) equation using a truncated M-
fractional derivative is studied in mathematical nonlinear optics. We explore its novel
dark and other soliton solutions and compared them with the existing results. To ob-
tain the objective, two particular methods, modified extended tanh expansion method
and Expa function method, are implemented. In this exert, a arrangement of exact
solitons are received as well as verified by utilizing the MATHEMATICA software. The
dynamical characteristics of the obtained results, along with a fractional parameter,
are also discussed via two and three-dimensional graphs. These solutions suggest that
the employed methods are impressive, determined and smooth as compared to many
other methods. The work of this paper is of high importance regarding its applications
in photonic crystal fibers and mathematical physics.

Keywords: M-fractional derivative; perturbed Gerdjikov-Ivanov Equation; Optical soli-
tons.

1 Introduction

Many phenomenon are often described in the form of nonlinear Schrödinger (NLS) equa-
tions. Then those NLS equations are studied for different purposes with different approach.
These have much importance in the different fields of science and engineering. In recent
years, to solve the different NLS equations different analytical and numerical approaches
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have been developed [22–25]. The NLS equations that are mostly studied are those have
cubic nonlinearity. For example, NLS equation along quintic non-linearity is the perturbed
GI equation.
Various approaches have been applied to find different exact solitons of this equation.
For Instance, two types of bright wave solutions of perturbed GI equation have been ob-
tained with the help of semi-inverse variational method [16]. Distinct solitons are in-
vestigated by applying the sine-Gordon equation method [17]. Biswas et al. have ob-
tained the singular and bright solitons with the use of extended trial equation approach
for the perturbed GI equation [18]. Different solitary wave solutions of the perturbed
GI equation have been found by the implementation of the exp(ϕ(ξ))−expansion and the
Kudryashov techniques [19]. Various wave solutions have obtained by applying the two
different method, exp(ϕ(ξ))−expansion method and (G′/G2)−expansion technique [20].
Different optical solitons have been determined by using the expa function method and the
modified Kudryashov method [21]. Recently, some novel wave solutions were investigated
by using the generalized exponential rational function method [26].
Besides of these methods, there are two methods that are more reliable, simple and use-
ful named as: modified extended tanh expansion method (EThEM) and Expa function
method. The modified extended tanh expansion technique [1] has been used to discuss
Biswas and Arshed model with non-linearity factor ”n”. The different solitons of (2 + 1)-
dimensional integrable nonlinear Schrödinger equation were explained in [2]. Various soli-
tons of new coupled evolution equation were explained [4]. Optical soliton solutions of
the travelling wave nonlinear equations have been determined in [5–8]. Explicit exact
solitons of two nonlinear Schrödinger equations have investigated through two different
techniques [13]. Similarly, this techniques have been applied to solve the other many NLS
equations [9, 11].
The main task in this research is to search some new dark and other optical soliton solu-
tions of the perturbed GI equation with truncated M. fractional derivative. The modified
extended tanh expansion method and Expa function method are employed to acquire the
aforesaid task.

2 The governing model and the mathematical analysis

The perturbed Gerdjikov-Ivanov (GI) equation can be read as [15–21]:

ιgt + τ1gxx + τ2|g|4g − ι(τ3g
2g∗x + θ1gx + θ2(|g|2g)x + ρ|g|2xg) = 0 (1)

here g = g(x, t) shows the complex-valued wave function, depends on independent variables
x and t. In Eq. (1), τ1 shows the coefficient of GVD, τ2 represents the coefficient of the
quintic non-linearity of the model and τ3 indicates the coefficient of the nonlinear dispersion
term. Moreover, the parameters θ1, θ2 and ρ represent the perturbation effects. Finally, the
term g∗ shows the complex conjugate of g. Eq. (1) with truncated M-fractional derivative
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is given as:

iDµ,β
M,tg + τ1 D

2µ,β
M,x g + τ2|g|4g = i(τ3g

2 Dµ,β
M,xg

∗ + θ1 D
µ,β
M,xg + θ2 D

µ,β
M,x(|g|

2g)

+ ρ gDµ,β
M,x|g|

2), µ ∈ (0, 1), β > 0,
(2)

where

Dµ,β
M,tg = lim

τ→0

g (x, tEβ(τt
1−µ))− g(x, t)

τ
, µ ∈ (0, 1), β > 0, (3)

that Eβ(.) is a truncated Mittag-Leffler function of one parameter [14].
Now by using the complex constraints conditions given in the following:

g(x, t) = G(ζ)eiψ, ζ = Γ(β+1)
µ (xµ − λ tµ) ,

ψ = Γ(β+1)
µ (−σ1 xµ + σ2 t

µ) ,

(4)

Here λ indicates the phase component, σ1 shows the frequency of the wave solutions and
σ2 represents the wave number of solitons. By putting the Eq. (4) into the model Eq. (2),
we get:
Real part:

τ1G
′′ − (σ2 + τ1σ

2
1 + θ1σ1)G+ (τ3 − θ2)σ1G

3 + τ2G
5 = 0 (5)

Imaginary part:
(λ+ θ1 + 2τ1σ1) + (τ3 + 3θ2 + 2ρ)G2 = 0 (6)

From Eq.(6), we get:

λ = −(θ1 + 2τ1σ1); ρ = −1

2
(τ3 + 3θ2) (7)

Using the terms G
′′
and G5 and the homogenous balance approach, we observe m = 1/2.

Therefore, we use the, we use the following transformation to get solution in retrieve form:

Q(ζ) = G
1
2 (ζ) (8)

By using the Eq. (8) into Eq. (5), yields

τ1(2QQ
′′ − (Q

′
)2)− 4(σ2 + τ1σ

2
1 + θ1σ1)Q

2 + 4(τ3 − θ2)σ1Q
3 + 4τ2Q

4 = 0 (9)

3 Application of the modified EThEM:

Here, a quick review of the said method and its implementation both are explained. Let’s
assume the below non-linear PDE of the form:

Y (u, u2ut, ux, utt, uxx, uxt, ...) = 0, (10)
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here u. Let us assume the below wave transformation:

u(x, t) = U(ζ), ζ = x− νt (11)

Here ν shows the wave velocity. Putting the Eq. (11) into Eq. (10), taking the following
nonlinear ODE:

χ(U,U2U ′, U ′′, ...) = 0. (12)

Here primes represents the derivatives w.r.t ζ.
Moreover, consider the solution of Eq. (12) is of the form:

U(ζ) = α0 +

m∑
n=1

αnϕ
n(ζ) +

m∑
n=1

βnϕ
−n(ζ) (13)

In Eq. (13), α0, αn, βn, (n = 1, 2, 3, ...,m) are undetermined and to be find later. Notice
that αn and βn are not both zero at a time. By balancing nonlinear term and the highest
derivative in Eq. (12), we get m.
The function ϕ(ξ) satisfied:

ϕ′(ζ) = Ω + ϕ2(ζ) (14)

with Ω as a unknown parameter and the Eq. (14) have the below form of solutions [3]:
(i) if Ω < 0, we get

ϕ(ζ) = −
√
−Ω tanh(

√
−Ω ζ), (15)

or
ϕ(ζ) = −

√
−Ωcoth(

√
−Ω ζ). (16)

(ii) if Ω = 0 , we get

ϕ(ζ) =
−1

ζ
(17)

(iii) if Ω > 0, we get
ϕ(ζ) =

√
Ωtan(

√
Ω ζ). (18)

or
ϕ(ζ) = −

√
Ωcot(

√
Ω ζ). (19)

Putting Eq. (13) and it’s derivatives into Eq. (12) along Eq. (14), yields polynomials in pow-
ers of ϕ(ζ). Sorting the coefficients of each power of ϕ(ζ) and letting each summation equal
to 0, we get a set of algebraic equations for α0, αn, βn(n = 1, 2, 3, ...,m), and Ω. Writing
the values of these parameter into Eq. (13) with value of m, yields the solutions to Eq. (10).

Now by using the homogenous balance technique on Eq. (9), we achieve m = 1. Then,
Eq. (13) becomes:

Q(ζ) = α0 + α1ϕ(ζ) +
β1
ϕ(ζ)

(20)
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Here α0, α1 and β1 are undermined parameters. By inserting the Eq. (20) and Eq. (14)
into Eq. (9), sorting the coefficients of each power of ϕ(ζ), we obtain the set of equations
having α0, α1 , β1 and other parameters. By using the soft computation, we gain the
following sets:
Set 1:

{α0 =
3σ1 (θ2 − τ3)

8τ2
, α1 = ∓

i
√
3
√
τ1

2
√
τ2

, β1 = 0,

σ2 = −
σ1

(
−6θ2σ1τ3 + 3θ22σ1 + 16θ1τ2 + σ1

(
3τ23 + 16τ1τ2

))
16τ2

,Ω =
3σ21 (θ2 − τ3)

2

16τ1τ2
} (21)

We now using the Eq. (21) and Eqs. (15)-(19) in Eq. (20), and argue the following cases.
if Ω < 0, then

g1(x, t) = {
3σ1 (θ2 − τ3)± 4i

√
3
√
τ1
√
τ2
√
−Ωtanh

(
ζ
√
−Ω

)
8τ2

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)),

(22)

or

g2(x, t) = {
3σ1 (θ2 − τ3)± 4i

√
3
√
τ1
√
τ2
√
−Ωcoth

(
ζ
√
−Ω

)
8τ2

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)).

(23)

If Ω > 0, then

g3(x, t) = {
3σ1 (θ2 − τ3)∓ 4i

√
3
√
τ1
√
τ2
√
Ωtan

(
ζ
√
Ω
)

8τ2
}

1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)),

(24)

or

g4(x, t) = {
3σ1 (θ2 − τ3)± 4i

√
3
√
τ1
√
τ2
√
Ωcot

(
ζ
√
Ω
)

8τ2
}

1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)).

(25)

Set 2:

{α0 =
3σ1 (θ2 − τ3)

8τ2
, α1 = ∓

i
√
3
√
τ1

2
√
τ2

, β1 = ±3i
√
3σ21 (θ2 − τ3)

2

128
√
τ1τ

3/2
2

,Ω = −3σ21 (θ2 − τ3)
2

64τ1τ2

σ2 = −
σ1

(
−30θ2σ1τ3 + 15θ22σ1 + 64θ1τ2 + σ1

(
15τ23 + 64τ1τ2

))
64τ2

}. (26)
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We now using the Eq. (26) and Eqs. (15)-(19) in Eq. (20), and argue the following cases.
If Ω < 0, then

g1(x, t) = {3σ1 (θ2 − τ3)

8τ2
∓
3i
√
3σ21 (θ2 − τ3)

2 coth
(
ζ
√
−Ω

)
128

√
τ2τ1τ2

√
−Ω

±
i
√
3
√
τ1
√
−Ωtanh

(
ζ
√
−Ω

)
2
√
τ2

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (27)

or

g2(x, t) = {3σ1 (θ2 − τ3)

8τ2
∓
3i
√
3σ21 (θ2 − τ3)

2 tanh
(
ζ
√
−Ω

)
128

√
τ2τ1τ2

√
−Ω

±
i
√
3
√
τ1
√
−Ωcoth

(
ζ
√
−Ω

)
2
√
τ2

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (28)

If Ω > 0,then

g3(x, t) = {3σ1 (θ2 − τ3)

8τ2
∓
i
√
3
√
τ1
√
Ω tan(ζ

√
Ω)

2
√
τ2

± cot(ζ
√
Ω)3i

√
3σ21 (θ2 − τ3)

2

128
√
τ1τ2τ2

√
Ω

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (29)

or

g4(x, t) = {3σ1 (θ2 − τ3)

8τ2
±

(
i
√
3
√
τ1
)√

Ωcot
(
ζ
√
Ω
)

2
√
τ2

∓
tan

(
ζ
√
Ω
) (

3i
√
3σ21 (θ2 − τ3)

2
)

128
√
τ1τ2τ2

√
Ω

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (30)

Set 3:

{α0 =
3σ1 (θ2 − τ3)

8τ2
, α1 = ∓

i
√
3
√
τ1

2
√
τ2

, β1 = ±3i
√
3σ21 (θ2 − τ3)

2

128
√
τ1τ

3/2
2

,Ω =
3σ21 (θ2 − τ3)

2

64τ1τ2

σ2 = −
σ1

(
−6θ2σ1τ3 + 3θ22σ1 + 16θ1τ2 + σ1

(
3τ23 + 16τ1τ2

))
16τ2

} (31)

We now using the Eq. (31) and Eqs. (15)-(19) in Eq. (20), and argue the following cases.
If Ω < 0, then
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g1(x, t) = {3σ1 (θ2 − τ3)

8τ2
∓
3i
√
3σ21 (θ2 − τ3)

2 coth
(
ζ
√
−Ω

)
128

√
τ2τ1τ2

√
−Ω

±
(
i
√
3
√
τ1
√
−Ω

)
tanh

(
ζ
√
−Ω

)
2
√
τ2

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (32)

or

g2(x, t) = {3σ1 (θ2 − τ3)

8τ2
∓
3i
√
3σ21 (θ2 − τ3)

2 tanh
(
ζ
√
−Ω

)
128

√
τ2τ1τ2

√
−Ω

±
(
i
√
3
√
τ1
√
−Ω

)
coth

(
ζ
√
−Ω

)
2
√
τ2

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (33)

If Ω > 0,then

g3(x, t) = {3σ1 (θ2 − τ3)

8τ2
∓

(
i
√
3
√
τ1
)√

Ωtan
(
ζ
√
Ω
)

2
√
τ2

±
cot

(
ζ
√
Ω
) (

3i
√
3σ21 (θ2 − τ3)

2
)

128
√
τ1τ2τ2

√
Ω

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (34)

or

g4(x, t) = {3σ1 (θ2 − τ3)

8τ2
±

(
i
√
3
√
τ1
)√

Ωcot
(
ζ
√
Ω
)

2
√
τ2

∓
tan

(
ζ
√
Ω
) (

3i
√
3σ21 (θ2 − τ3)

2
)

128
√
τ1τ2τ2

√
Ω

}
1
2

× exp(ι
Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)) (35)

Set 4:

{α0 =
3σ1 (θ2 − τ3)

8τ2
, α1 = 0, β1 = ∓3i

√
3σ21 (θ2 − τ3)

2

32
√
τ1τ

3/2
2

,

σ2 = −
σ1

(
−6θ2σ1τ3 + 3θ22σ1 + 16θ1τ2 + σ1

(
3τ23 + 16τ1τ2

))
16τ2

,Ω =
3σ21 (θ2 − τ3)

2

16τ1τ2
} (36)

We now using the Eq. (36) and Eqs. (15)-(19) in Eq. (20), and argue the following cases.
If Ω < 0, then

g1(x, t) = {
(3σ1 (θ2 − τ3))

(
1± i

√
3σ1(θ2−τ3) coth(ζ

√
−Ω)

4
√
τ2τ1

√
−Ω

)
8τ2

}
1
2×exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ))

(37)
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or

g2(x, t) = {
(3σ1 (θ2 − τ3))

(
1± i

√
3σ1(θ2−τ3) tanh(ζ

√
−Ω)

4
√
τ2τ1

√
−Ω

)
8τ2

}
1
2×exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ))

(38)
If Ω > 0, then

g3(x, t) = {
(3σ1 (θ2 − τ3))

(
1∓ i

√
3σ1(θ2−τ3) cot(ζ

√
Ω)

4
√
τ2τ1

√
Ω

)
8τ2

}
1
2×exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)),

(39)
or

g4(x, t) = {
(3σ1 (θ2 − τ3))

(
1± i

√
3σ1(θ2−τ3) tan(ζ

√
Ω)

4
√
τ2τ1

√
Ω

)
8τ2

}
1
2×exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)).

(40)

3.1 Application of Expa function approach

Here, we recall the main points of the aforesaid approach and then its demonstration has
been exercised for required solutions. let’s assume we have a NPDE in the following form:

G(u, u2ut, ux, utt, uxx, uxt, ...) = 0 (41)

The above PDE given in the Eq.(41) may be obtained in the below form of NODE :

Λ(U,U
′
, U

′′
, ..., ) = 0, (42)

by implementing the below wave transformations:

u(x, t) = U(τ), τ = bx+ rt, (43)

Let us suppose a solution of Eq. (12) is of the below form [9,10,12]:

U(τ) =
α0 + α1d

τ + ... + αmd
mτ

β0 + β1dτ + ...+ βmdmτ
, d ̸= 0, 1, (44)

here αi and βi(0 ≤ i ≤ m) are unknown constants and to be find later. Positive integerm is
obtained by using the homogenous balance technique and balancing the highest derivative
and nonlinear term in the Eq. (12). Putting Eq. (44) into non-linear Eq. (12), yields

℘(dτ ) = ℓ0 + ℓ1d
τ + ...+ ℓtd

tτ = 0. (45)

8



Putting ℓi (0 ≤ i ≤ t) in Eq. (45) equal to zero, a set of algebraic equations is gained as
follows.

ℓi = 0, where i = 0, ..., t. (46)

By this obtained sets, we get the nontrivial solutions of the NPDE (41).

For m = 1, Eq. (44) reduces to:

Q(ζ) =
α0 + α1d

ζ

β0 + β1dζ
, (47)

where α0, α1 , β0 and β1 are unknowns. By putting Eq. (47) in the Eq. (5) and collecting
the coefficients of each power of dζ , yields the set of equations having α0, α1,β1 and β1 and
other parameters. By using the soft computations, we gain the following sets:
Set 1:

{α0 = α0, α1 = 0, β0 = −
2iα0

√
τ2√

3
√
τ1 log(d)

, β1 = β1, σ1 =
2i
√
τ1
√
τ2 log(d)√

3 (θ2 − τ3)
,

σ2 =

√
τ1 log(d)

12 (θ2 − τ3) 2
(3θ22

√
τ1 log(d) + θ2

(
−6

√
τ1τ3 log(d)− 8i

√
3θ1

√
τ2

)
+ 16τ2τ

3/2
1 log(d)

+ 3
√
τ1τ

2
3 log(d) + 8i

√
3θ1

√
τ2τ3)}. (48)

g(x, t) = { α0

β1dζ − 2iα0
√
τ2√

3
√
τ1 log(d)

}
1
2 × exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)). (49)

Set 2:

{α0 = α0, α1 = 0, β0 =
2iα0

√
τ2√

3
√
τ1 log(d)

, β1 = β1, σ1 = −
2i
√
τ1
√
τ2 log(d)√

3 (θ2 − τ3)
,

σ2 =

√
τ1 log(d)

12 (θ2 − τ3) 2
(3θ22

√
τ1 log(d) + θ2

(
−6

√
τ1τ3 log(d) + 8i

√
3θ1

√
τ2

)
+ 16τ2τ

3/2
1 log(d)

+ 3
√
τ1τ

2
3 log(d)− 8i

√
3θ1

√
τ2τ3)}. (50)

g(x, t) = { α0

β1dζ +
2iα0

√
τ2√

3
√
τ1 log(d)

}
1
2 × exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)). (51)

Set 3:

{α0 = 0, α1 = α1, β0 = β0, β1 = −
2iα1

√
τ2√

3
√
τ1 log(d)

, σ1 =
2i
√
τ1
√
τ2 log(d)√

3 (θ2 − τ3)
,

σ2 =

√
τ1 log(d)

12 (θ2 − τ3) 2
(3θ22

√
τ1 log(d) + θ2

(
−6

√
τ1τ3 log(d)− 8i

√
3θ1

√
τ2

)
+ 16τ2τ

3/2
1 log(d)

+ 3
√
τ1τ

2
3 log(d) + 8i

√
3θ1

√
τ2τ3)}. (52)
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g(x, t) = { α1d
ζ

β0 − 2iα1
√
τ2dζ√

3
√
τ1 log(d)

}
1
2 × exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)). (53)

Set 4:

{α0 = 0, α1 = α1, β0 = β0, β1 =
2iα1

√
τ2√

3
√
τ1 log(d)

, σ1 = −
2i
√
τ1
√
τ2 log(d)√

3 (θ2 − τ3)
,

σ2 =

√
τ1 log(d)

12 (θ2 − τ3) 2
(3θ22

√
τ1 log(d) + θ2

(
−6

√
τ1τ3 log(d) + 8i

√
3θ1

√
τ2

)
+ 16τ2τ

3/2
1 log(d)

+ 3
√
τ1τ

2
3 log(d)− 8i

√
3θ1

√
τ2τ3)}. (54)

g(x, t) = { α1d
ζ

β0 +
2iα1

√
τ2dζ√

3
√
τ1 log(d)

}
1
2 × exp(ι

Γ(β + 1)

µ
(−σ1 xµ + σ2 t

µ)). (55)

4 Results and discussion with graphical representation

In this portion, we commenced notable graphs in 2-Dimension and 3-Dimension to explain
the results given above. All of our results are consistent with the results found in [21, 26].
The graph of (22) using the modified extended tanh expansion approach at µ = 1, λ =
0.5, β = 1, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1 is introduced in Fig.
1. We shown the graph of (22) using the modified extended tanh expansion approach at

- 15 - 10 - 5 0 5 10 15

0.0

0.1

0.2

0.3

x


g
(
x
,t
)


t=5

t=3

t=0

Figure 1: Graph of (22) using the modified extended tanh expansion approach at µ =
1, λ = 0.5, β = 1, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1.
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λ = 0.5, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1 with different values of µ
and β in Fig. 2. In Fig. 3 we show the graph of (37) using the modified extended tanh
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Figure 2: Graph of (22) using the modified extended tanh expansion approach at λ =
0.5, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1.

expansion approach at µ = 1, λ = 0.5, β = 1, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 =
1, τ3 = 0.1. Also, the graph of (37) using the modified extended tanh expansion approach
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Figure 3: Graph of (37) using the modified extended tanh expansion approach at µ =
1, λ = 0.5, β = 1, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1.

at λ = 0.5, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1 is presented in Fig. 4.
The graph of (49) using the Expa function approach at λ = 0.5, β = 1, µ = 1, α0 = 0.01,
θ1 = 0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3 is introduced in Fig. 5,
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Figure 4: Graph of (37) using the modified extended tanh expansion approach at λ =
0.5, σ1 = 0.1, θ1 = −0.1, θ2 = 2, τ1 = −0.1, τ2 = 1, τ3 = 0.1.
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Figure 5: Graph of (49) using the Expa function approach at λ = 0.5, β = 1, µ = 1, α0 =
0.01, θ1 = 0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3.
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We shown the graph of (49) using the Expa function approach at λ = 0.5, α0 = 0.01, θ1 =
0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3 with different values of µ and β in
Fig. 6.
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Figure 6: Graph of (49) using the Expa function approach at λ = 0.5, α0 = 0.01, θ1 =
0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3.

The graph of (55) using the Expa function approach at λ = 0.5, β = 1, µ = 1, α0 =
0.01, θ1 = 0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3 is introduced in Fig. 7.

- 15 - 10 - 5 0 5 10 15

0.00

0.05

0.10

0.15

0.20

x


g
(
x
,t
)
 t=5

t=3

t=0

Figure 7: Graph of (55) using the Expa function approach at λ = 0.5, β = 1, µ = 1, α0 =
0.01, θ1 = 0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3.

Finally, we introduced the graph of (55) using the Expa function approach at λ = 0.5, α0 =
0.01, θ1 = 0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3 with different values of
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µ and β in Fig. 8.
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Figure 8: Graph of (55) using the Expa function approach at λ = 0.5, α0 = 0.01, θ1 =
0.1, θ2 = 0.3, τ1 = 0.01, τ2 = 0.1, τ3 = 0.1, β1 = 2, d = 3.

5 Conclusion:

In this paper, the perturbed Gerdjikov-Ivanov (GI) equation with conformable M-fractional
derivative has been worked out and found its dark and other optical soliton solutions. For
this, a fractional wave transformation was used for reducing the perturbed GI equation
with truncated M -fractional derivative into a nonlinear ODE. Then, by applying modified
extended tanh expansion and the Expa function methods, the novel soliton solutions are
obtained. The achieved results are verified by software computation as well as explain with
the help of 2-dimensional and 3-dimensional graphs.
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