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1.1 abstract 

 In this paper, the nonlinear free vibration responses of functionally graded 

nanocomposite fluid-conveying tube reinforced by single-walled carbon nanotubes 

(SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in 

the thickness direction of the tube forms different reinforcement patterns. The materials 

properties of the functionally graded carbon nanotube-reinforced composites (FG-

CNTRC) are estimated by rule of mixture. A higher-order shear deformation theory and 

Hamilton’s variational principle are employed to derive the motion equations 

incorporating the thermal and fluid effects. A two-step perturbation method is 

implemented to obtain the closed-form asymptotic solution for these nonlinear partial 

differential equations. The nonlinear frequency under several patterns of reinforcement 

are presented and discussed. We conducted a series of studies aimed at revealing the 

effects of the flow velocity, environment temperature, geometrical ratios /i oR R  and 

carbon nanotube volume fraction on the nature frequency. 

Keywords: nonlinear vibration; fluid-conveying tube; carbon nanotube; thermal 

load; two-step perturbation method; 

1.2 Introduction 

Due to carbon nanotubes have excellent mechanical properties, i.e. high specific 

strength, high specific modulus and low density[1-5]. Since they were discovered by 

Iijima[6], they have been considered as excellent reinforcement of composite materials. 

Studies by many scholars show that， the mechanical[7], electrical[8] and thermal 

properties[9] of the polymer can be significantly improved by mixing carbon nanotubes 
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with the polymer matrix at a certain mass fraction. Functionally graded materials (FGM) 

was first proposed by Japanese researchers in the 1980s. The principle is that reinforced 

materials are distributed inhomogeneous in space, which can change the mechanical 

properties of beams, plates and shells. Shen[10] first applied the concept of functionally 

graded materials to SWNTS reinforced nanocomposite plates, allowing the SWNTS to 

be graded distributed along the desired direction in an isotropic matrix. Since then, 

many scholars including Shen have studied FG-CNTRC beam, tube, plate, shell and 

other structures [10-26]. Readers can refer to the comprehensive literature review 

prepared by Liew[27] for relevant researches. 

Tube is the basic unit of many engineering structures, which is widely used in oil, 

chemical and nuclear industry. Therefore, many researchers have used different 

analytical and numerical methods to study the stability and vibration analysis of fluid 

conveying tube. Zhen[28] first studied the nonlinear vibration of the supercritical fluid‐

conveying tube composed of FGM with initial curvature. Liang[29] investigate the 

stability and nonlinear parametric vibration of a spinning fluid-conveying tube using 

analytical and numerical methods. Rahim Abdollahi[30] studies the stability of a 

spinning fluid-conveying tube under simultaneous internal and external fluid loads 

using Euler-Bernoulli beam theory. Zhu[31] studies the free and forced vibration of a 

fluid-conveying tube composed of FGM under elastic support based on Euler-Bernoulli 

beam theory and considering von Karman assumption and damping effect. Zhou[32] 

explore the nonlinear vibrations of cantilever fluid-conveying tube under axial 

excitation. Tan[33] studies forced vibration of fluid-conveying tube under supercritical 

condition by using Timoshenko beam theory. Based on Euler-Bernoulli beam theory, 

Shahali[34] studies the nonlinear dynamic response of fluid-conveying tube under the 

action of uniform external cross flow. A.R. Askarian[35] studies the vibration response 

of fluid-conveying tube under general boundary conditions using Euler-Bernoulli beam 

theory. Lu[36] first studies the influence of vibration on fatigue performance of FGM 

fluid-conveying tube based on Euler-Bernoulli beam theory. Khodabakhsh[37] studies 

the post-buckling and nonlinear vibration of FGM fluid-conveying tube based on the 

Timoshenko beam theory. M. Heshmati[38] studies the stability and free vibration of 

FGM fluid-conveying tube with eccentric geometric defects. 

As far as we know, there are no researches on nonlinear vibration of functionally 

graded carbon nanotube reinforced fluid-conveying tube in thermal environment by 

using higher-order shear deformation theory. In this paper, an investigation on the 



 

 

nonlinear free vibration responses of functionally graded nanocomposite fluid-

conveying tube reinforced by SWNTs in thermal environment is presented. A higher-

order shear deformation theory and Hamilton’s variational principle are employed to 

derive the governing equations incorporating the thermal and fluid effects. A two-step 

perturbation method is implemented to obtain the closed-form asymptotic solution for 

these nonlinear partial differential equations. The nonlinear frequency under several 

patterns of reinforcement are presented and discussed. We conducted a series of studies 

aimed at revealing the effects of the flow velocity, environment temperature, 

geometrical ratios /i oR R and carbon nanotube volume fraction on the nature frequency. 

1.3 Material properties of FG-CNTRC tube 

Consider a fluid-conveying FG-CNTRC tube shown in Fig. 1. The tube, having 

length L, inner radius Ri and outer radius Ro, are simply supported at both ends. It is 

assumed that the tube is subjected to a transverse load q and uniform thermal loading. 

The reference coordinate system is also depicted in Fig.1. It is clear that 

cos , siny r z rθ θ= =  . 
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Fig. 1 Schematic diagram of a nanocomposite fluid-conveying tube with simply support. 

The effective material properties of FG-CNTRC beams can be estimated by the 

rule of mixture [39]. 

11 1 11
CNT CNT m mE V E V Eη= +  (1) 

2

22 22

CNT m

CNT m

V V
E E E
η

= +  (2) 

With 11 22 12, ,CNT CNT CNTE E G  being the Young’s modulus and shear modulus of the 

SWCNT, respectively, and ,m mG E being the corresponding material properties of the 

matrix. ,CNT mV V are the volume fractions of the carbon nanotube and the matrix, with 

the relationship of 1CNT mV V+ = . Carbon nanotube efficiency parameters ( 1,2,3)i iη =

are introduced to characterize the interaction between matrix and CNT and load transfer. 



 

 

They can be determined by the Molecular dynamic simulations and the rule of mixture 

model. Following the rule of mixture, Poisson’s ratio and mass density of the FG-

CNTRC tube are as follows. 

( )12 12
CNT CNT m mv r v V v V= +  (3) 

( ) CNT CNT m mr V Vρ ρ ρ= +  (4) 

In which, 12 ,CNT mv v  and ,CNT mρ ρ  are defined as the Poisson’s ratios and mass 

density of the CNT and matrix, respectively. 

In this paper, five types of the FG-CNTRC tube were considered, which have the 

form as: 

( )CNT CNT
reV r V=  (5) 

( ) 2CNT CNTi
re

o i

r RV r V
R R

 −
=  − 

 (6) 

( ) 2CNT CNTi
re

o i

r RV r V
R R

 −
= −  − 

 (7) 

( ) 22 1 2

o i

CNT CNT
re

o i

R Rr
V r V

R R

 + 
− 

 = − ⋅
− 

 
 

 (8) 

( ) 24

o i

CNT CNT
re

o i

R Rr
V r V

R R

+
−

= ⋅
−

 (9) 

Where, equations (5)-(9) represent UD-beam, V-beam, ∧-beam, O-beam and X-

beam, respectively. 
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Fig2.  Volume fractions of the carbon nanotube distribution along thickness for different FG-

CNTRC tube types 

It can be seen that the UD-beam has uniformly distributed SWCNT reinforcement. 

By using the same rule, the thermal expansion coefficients have the form: 

( ) 11 11
11

11

CNT CNT CNT m m m

CNT CNT m m

V E V Er
V E V E

α αα +
=

+
 (10-1) 

( )
( )
( )

12 22

22

12 11

1

1

CNT CNT CNT

m m m

v V
r

v V v

α
α

α α

 +
 =
 + + − 

 (10-2) 

With 12 22, ,CNT CNT mα α α  being thermal expansion coefficients of CNT and matrix, 

respectively. 

We select (10,10) SWCNT as reinforcement agents, and Poly-methyl methacrylate 

(PMMA) for matrix. the material properties 
12,CNT CNTvρ and ,m mvρ  are assumed to depend 

weakly on the temperature variation. The CNT Efficiency parameters 1η  and 2η are 

obtained by matching the Young’s modulus of CNTRC obtained by the rule of mixture 

to those from the MD simulations given by [40]. The mechanical properties of composite 

beams such as elastic modulus and thermal expansion coefficient) change significantly 

at high temperatures, so it is necessary to consider the temperature dependence of 

materials in order to accurately predict the behavior of FG-CNTRC tube. The Eqs.11-

12 shows the relationship between the elastic modulus and thermal expansion 

coefficient of PMMA matrix and temperature. 

( ) 645 1 0.0005 300 10 /m T Kα −= × + − ×    (11) 



 

 

( )3.52 0.0034mE T GPa= −  (12) 

Table 1 shows the material properties of (10,10) SWCNT at different temperatures. 

The relationship is nonlinear. The CNT material properties (such as Young's modulus, 

shear modulus, thermal expansion coefficients are expressed as a continuous function 

of temperature by using polynomial fitting of 4th order, 

( ) 2 3 4
0 1 2 3 4

mP T P P T P T P T P T= + ⋅ + ⋅ + ⋅ + ⋅  (13) 

Table 1 Temperature-dependent material properties of (10,10) SWCNT ([13],[41] ). Tube length = 
9.26 nm, tube mean radius = 0.68 nm, tube thickness = 0.067 nm 

Temperature 

(K) 

11
CNTE

(GPa) 

22
CNTE  

(GPa) 

12
CNTG  

(GPa) 

11
CNTα

(x10-6/K) 

22
CNTα

(x10-6/K) 

CNTρ

(Kg/m3) 
12
CNTv (-) 

300 5646.6 7080 1944.5 3.4584 5.1682 1400 0.175 

400 5567.9 6981.4 1970.3 4.1496 5.0905 1400 0.175 

500 5530.8 6934.8 1964.3 4.5361 5.0189 1400 0.175 

700 5474.4 6864.1 1964.4 4.6677 4.8943 1400 0.175 

1000 5281.4 6622 1945.1 4.280 4.7532 1400 0.175 
Table 2 Temperature-dependent properties of PMMA ([13], [42]) 

Temperature(K) mE (GPa) mα (x10-6/K) mρ (Kg/m3) mv (-) 

300 2.5 45 1190 0.3 

400 2.16 47.25 1190 0.3 

500 1.82 49.5 1190 0.3 
Table 3 Fourth order interpolation coefficients 

 0P  1P  2P  3P  4P  
11
CNTE (TPa) 5.4744 5.5308 5.5679 5.6466 5.4744 
22
CNTE (TPa) 6.8641 6.9348 6.9814 7.08 6.8641 
12
CNTG (TPa) 1.9644 1.9643 1.9703 1.9445 1.9644 

11
CNTα (x10-6/K) 4.28 4.6677 4.5361 4.1496 3.4584 

22
CNTα (x10-6/K) 4.7532 4.8943 5.0189 5.0905 5.1682 

Table 4 Efficiency parameters for PMMA/CNT ([13]) 
CNT

reV  1η  2η  3η  

0.12 0.137 1.022 1.022 

0.17 0.142 1.626 1.626 

0.28 0.141 1.585 1.585 
 



 

 

1.4 Governing equations 

Based on the higher-order shear deformation beam model for tubes[43], the 

displacement field of the tubes is expressed as: 

( ) ( ) ( )

( )
( ) ( )

1

2

3

( , ), , , , ,

, , , 0

, , , ,

w x tu x y z t u x t f g x t
x

u x y z t

u x y z t w x t

ϕ∂
= + +

∂
=

=

 

 (14) 

Here, ( ) ( ), , ,u x t w x t  are the longitudinal (x) and transverse (z) displacement at 

the middle plane of the tube, and ( ),i x tϕ  is the bending rotation of the cross-section, 
and  

( )
( )

2 2 2 2

2 2

3

3
o i

o i

z R R r r
f g f z

R R

− −
= = +

+
， , 2 2 2r y z= +  (15) 

It should be mentioned that, the position of neutral axis and centroid of the cross 

section is the same for present tubes. Based on the von Karman assumption, the 

nonlinear geometrical relationship of the tube can be expressed as: 

22

2

1
2xx

xy

xz

du d w d dwf g
dx dx dx dx
f dw
y dx
g dw
z dx

ϕε

γ ϕ

γ ϕ

 = + + +  
 

∂  = + ∂  
∂  = + ∂  

 

 (16) 

The constitutive relationships of the tube considering a uniform temperature field 

are as follows: 

11 11

12

13

xx xx x

xy xy

xz xz

E E T
G
G

σ ε α
τ γ

τ γ

= − ∆

=

=

 (17) 

Where 11 12 13, ,E G G  are Young’s modulus and shear modulus, xα  is the thermal 

expansion coefficient along x direction, and T∆  is the temperature offset from the 

reference temperature at which the tube in a stress free state. 

The Hamilton’s variational principle is implemented to derive the partial 

differential equation of the motion as follows: 



 

 

( )2

1

0
t

s k wt
U U U dtδ δ δ− + =∫  (18) 

The virtual strain energy of the tube sUδ  is given by 

( )

( )
0

1
2s xx xx xy xy xz xzV

L

xx xx xy xy xz xzA

U dV

dAdx

δ δ σ ε τ γ τ γ

σ δε τ δγ τ δγ

= + +

= + +

∫

∫ ∫
 (19) 

Substitute Eq.16 into Eq.19 results in the following relations: 

2

2

0

x x
L

s

x xr

d u dw d w d wN M
dx dx dx dx

U dx
d d wP Q
dx dx

δ δ δ

δ
δϕ δ δϕ

  + +  
  =

  + + +  
  

∫  (20) 

Where 

[ ], , , , , ,x x x xr xx xx xx xy xzA

f gN M P Q f g dA
y z

σ σ σ τ τ
  ∂ ∂

= +  ∂ ∂  
∫  (21) 

The virtual kinetic energy of the fluid-conveying tube kUδ  is given by 

3 31 1

2

0

2

0

1
2

1
2

V

L

k f f f

L

f f

u uu u dV
t t t t

u uU m v v dx
t x

m v dx
t x

δδρ ρ

δ δ

ω ωδ

 ∂ ∂ ∂ ∂ +  ∂ ∂ ∂ ∂  
 ∂ ∂ = + + +  ∂ ∂  
 ∂ ∂  + +  ∂ ∂  

∫

∫

∫

 (22) 

Substitute Eq.16 into Eq.22 results in the following relations: 

2 2

0 0 1 2

20

2 3

1 0 1 1

0 1

L

k

f
f f f x f

f
x f f

u u w w w wI I I I
t t t t x t t x t

U dx
wI I

x t t t

u u u u u u u uI I I N I
t t t x t x t x
u uN I I
x x t t

ϕδ δ δ
δ

ϕ ϕδ

δ δ δ δ δ

ω ωδ δ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    =   ∂ ∂ ∂ + + ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

∫




10

L

f

f
x

I dx
x t t x

N
x x

ω ω ω ωδ δ

ω ωδ

 
 
 

∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂
 ∂ ∂ +
 ∂ ∂ 

∫

 (23) 

With 



 

 

[ ] 2 2
0 1 2 3, , , , , ,

A
I I I I f fg g dAρ ρ ρ ρ =  ∫  (24) 

2
0 1, , , ,f

f f x f f f f fI I N m m v m v   =     (25) 

Where  

f fm Aρ= , fρ  is the density of the fluid, fv  is the velocity of the flow and A  

is the cross sectional of the flow. 

The virtual work of the external pressure wUδ  is given by 

0

L

wU q wdxδ δ= −∫  (26) 

Where q is the load per unit length along z direction. 

When the in-plane inertia is neglected, according to Hamiltonian variational 

principle, the governing equation represented by general force and moment is: 

( )
2 2

0 02 2

4 3 2 2

1 2 12 2 2 2

3 2

2 32 2

0

0
2

0

x

x xr
x f

f
f x

x
xr

N
x

M Qw wN I I
x x x x t

wI I q I N
x t x t x t x

P wQ I I
x x t t

ϕ ω ω

ϕ

∂
− =
∂

 ∂ ∂∂ ∂ ∂ − + − + +  ∂ ∂ ∂ ∂ ∂   =
 ∂ ∂ ∂ ∂
− − − + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂

− + + + =
∂ ∂ ∂ ∂

 (27) 

From the first equation in Eq.27, we can find that the xN is a constant value. Due 

to the simply supported boundary conditions ( (0) ( ) 0u u L= = ), the expressing of xN

can be given as, 

2
1

02
L T

x x
AN dx N
L x

ω∂ = − ∂ ∫  (28) 

Substituting Eq.17 back into Eq.21 results in the following relations: 



 

 

2

1

2

2 32

2

3 42

5

1
2

T
x x

x

x

xr

du dwN A N
dx dx

d w dM A A
dx dx

d w dP A A
dx dx

dwQ A
dx

ϕ

ϕ

ϕ

  = + −     

= +

= +

 = + 
 

 (29) 

With 

[ ] 2 2
1 2 3 4 11 11 11 11

2 2

5 12 13

11

, , , , , , ,
A

A

T
x xA

A A A A E E f E fg E g dA

f gA G G dA
y z

N E TdAα

 =  

  ∂ ∂ +    ∂ ∂    

= ∆

∫

∫

∫

=  (30) 

Substituting Eq.30 into Eq.27, the governing equations represented by 

displacement components can be given as, 

( )

24 3 2 2
1

2 3 54 3 2 20

2 2 4 3

0 0 1 2 02 2 2 2 2

2 2

1 2

3 2 3

3 4 5 23 2 2

2

2

L

T
x f

f
f x

Ad w d d w dA A A dx
dx dx dx dx L x x

N I I I I q
x t x t x t

I N
x t x

w wA A A I I
x x x x t

ϕ ϕ ω ω

ω ω ω ϕ

ω ω

ϕ ωϕ

   ∂ ∂ + − + −    ∂ ∂   
 ∂ ∂ ∂ ∂ + + + − − =

∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ + +

∂ ∂ ∂  
∂ ∂ ∂ ∂ + − + − − ∂ ∂ ∂ ∂ ∂ 

∫

2

3 2 0
t
ϕ∂
=

∂

 (31) 

For generality, the following dimensionless parameters are introduced: 

  

    



    

 



0

0

2 2 2
32 4

1 1 2 3 4 5 52 2 2

2 3
0 0 0 0

0 0 1 1 2 2 3 3 0 02 4
0 0 0 0

2 2 2
20 0

0 0 1 1 02 2 2
0 0

, ,

; ; ; ; ;

; ; ; ;

; ; ;

T T
x x

f f
f f f f x x A

Ex tx
L L L

AA AL L LA A A A A A A N N
J J J J J J

E E E EL LI I I I I I I I q q
J J J J J

E EL L LI I I I N N J E z dA
J J J

π ω ϕ πω ϕ τ
π ρ

π π π

π ρ ρ ρ ρ π

π ρ π ρ π

= = = =

= = = = = =

= = = = =

= = = = ⋅∫

 (32) 

In which 3
0 02.5 , 1150 /E GPa Kg mρ= =  are the reference values of Young’s 



 

 

modulus and mass density. 

Considering the dimensionless parameters, the governing equations of the FG-

CNTRC fluid-conveying tube in thermal environment based on higher-order shear 

deformation beam theory are rewritten in the following form, 



































 ( ) 



 ( )








































 





2
4 3 2 2

2 3 5 14 3 2 20

2 2 4

0 0 1 02 22 2

3 2

2 12

3 2 3

3 4 5 23 2

2

2

f T
x x f

f

A A A A d x
x xx x x x

N N I I I q
x x

I I
x x

A A A I
x xx x

πω ϕ ω ϕ π ω ω

ω ω ω
τ τ

ϕ ω
τ τ

ω ϕ ω ωϕ
τ

    ∂ ∂ ∂ ∂ ∂ ∂ + − + −       ∂ ∂∂ ∂ ∂ ∂   
 
 ∂ ∂ ∂
+ + + + − = ∂∂ ∂ ∂ 
 ∂ ∂ − +
 ∂ ∂ ∂ ∂
 

 ∂ ∂ ∂ ∂
+ − + −  ∂ ∂ ∂∂ ∂  

∫ 





2

3 22
0I ϕ

τ
∂

− =
∂

 (33) 

One thing to be noted that the present higher-order shear deformation model can 

be degenerated to other beam models by choosing different shape functions f. For Euler 

beam, f z= − . For Timoshenko beam, 0f = . For Reddy’s beam, 
3

2

4
3

zf
h

= − . 

1.5 Solving method 

A two-step perturbation technique[44] is used to solve the nonlinear partial 

differential equations. In this case, the displacements and transverse load are expended 

as the following from, 
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ε λ ε
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∑

∑

 

 

 

 (34) 

Here, theε is a small perturbation parameter with no physical meaning. It should 

be mentioned that, t ετ=  is introduced to delay the dynamic terms to higher-order 

perturbation equations. 

Substituting Eq.34 into Eq.33, collecting the terms ofε with the same order, we 

can obtain each order of perturbation equations, The first three order of perturbation 

equations are as follows, 
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The solution of Eq.35 is assumed as follows, 

( )  ( ) 

1 10 1 10, ( )sin( ), , ( ) cos( ), 1, 2,3x t A t mx x t B t mx mω ϕ= = =   

 (38) 

Substituting Eq.38 into Eq.35 results in 
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The solution of Eq.36 is assumed as follows 

( )  ( ) 
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  (41) 

Substituting Eq.41 into Eq.36 results in 
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The solution of Eq.37 is assumed as follows 
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Substituting Eq.44 into Eq.37 results in 
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(46) 

Therefore, the final asymptotic solution is as follows 

 ( ) ( ) ( ) ( )2 3 4
0 1 2 3, , , , , ( )q x t x t x t x t Oε λ ε λ ε λ ε ε= ⋅ + ⋅ + ⋅ +     (47) 

Since the nonlinear free vibration has no transverse load, i.e. 0 0q =  . we can 

obtain the following duffing equation based on Galerkin method, 
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Where the t has been replaced byτ . 
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 (49) 

The closed-form solution of Eq can be expressed as, 
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1 0.75NL L
K w
K L
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 (50) 

Where NLω and Lω are the dimensionless nonlinear and linear frequencies and the 

form of Lω  is, 

1
L

K
M

ω =  (51) 

According to Equation, the dimension nonlinear and linear frequencies, NLΩ  and 

LΩ , can be expressed as 

0

0
NL NL

E
L
πω

ρ
Ω =  (52) 

1.6 Results and discussions 

1.6.1 Comparison studies 

To verify the accuracy of the theory in this paper, two comparison examples are 

provided in this section.  

Table 5 gives the comparisons of dimensionless fundamental frequencies of FGM 

tube composed of metal and ceramics, with that in Ref. [45]. In this example, the tube is 

not supported on an elastic foundation. For detailed material parameters, please refer to 

the original paper. It can be clearly found that the results are highly consistent with the 

literature. 

Table 5 Comparisons of dimensionless fundamental frequencies of FGM tube 

 1 2 3 4 5 6 

Ref. [45] 0.011554 0.049112 0.106331 0.178023 0.25975 0.348242 

Present 0.011792 0.049329 0.106546 0.178239 0.25997 0.348468 



 

 

Fig.3 presents a comparison on dimension natural frequencies of an isotropic tube 

with parameters 310 , 0.1 , 0.08 , 210 , 7850 /L m Ro m Ri m E GPa Kg mρ= = = = =   with 

the results solved by commercial software. As seen from this figure, the results obtained 

by refined beam model are in good agreement with FEM results. The results using Euler 

beam model are larger at high frequency. 
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Fig. 3 Comparisons of dimension natural frequencies of isotropic tube 

1.6.2 Parameters studies 

1.6.2.1 Vibration amplitude 

Fig.4 gives the nonlinear vibration frequency-amplitude curves of different 

patterns of reinforcement where 400 , 0.17, 0.5 , / 30CNT
re i o oT K V R R L R= = = =  , 

Matrix is PMMA, without fluid. It can be seen that, with the increase of amplitude, the 

nonlinear fundamental frequency ( NLΩ  ) and nonlinearity ( /NL Lω ω  ) both increase. 

Fig.4(a) displays that the nonlinearity of ∧ beam is the most sensitive to amplitude 

change, followed by O-beam, UD-beam, X-beam, and V-beam. Fig.4(b) exhibits that，

compared with large amplitude, the nonlinear fundamental frequency ( NLΩ  ) and 

nonlinearity ( /NL Lω ω ) increase more slowly with the amplitude of vibration at small 

amplitude. With the increase of amplitude, the difference of nonlinear fundamental 

frequency with different patterns of reinforcement is almost unchanged. That is to say, 

the sensitivity of nonlinear frequency to amplitude change is the same. 

Fig.5 present the nonlinear vibration frequency-amplitude curves of different 

volume fraction coefficients where 400 , 0.5 , / 30i o oT K R R L R= = =  , Matrix is 

PMMA, without fluid, UD-beam. The results show that, with the increase of volume 



 

 

fraction coefficient, the nonlinearity ( /NL Lω ω ) and nonlinear fundamental frequency 

( NLΩ ) are more sensitive to the amplitude change. 

Fig.6 shows the nonlinear vibration frequency-amplitude curves of different 

temperatures where 0.17, 0.5 , / 30CNT
re i o oV R R L R= = =  , Matrix is PMMA, without 

fluid, UD-beam. It can be found that, the nonlinearity is more sensitive to amplitude 

variation at high temperature. Compared with small amplitude, the difference of 

nonlinear fundamental frequency becomes smaller at large amplitude under different 

temperatures. 
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(a)                                    (b) 
  Fig. 4 Nonlinear vibration frequency-amplitude curves of different patterns of reinforcement. 

(a) nonlinear-to-linear frequency ratio. (b) dimension nonlinear frequency 
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Fig. 5 Nonlinear vibration frequency-amplitude curves of different volume fraction coefficients. 

(a) nonlinear-to-linear frequency ratio. (b) dimension nonlinear frequency 
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Fig. 6 Nonlinear vibration frequency-amplitude curves of different temperatures . (a) nonlinear-to-

linear frequency ratio. (b) dimension nonlinear frequency 
 

1.6.2.2 Flow velocity 

The changes of nonlinear fundamental natural frequency ( NLΩ ) with flow velocity 

of the FG-CNTRC tube for different patterns of reinforcement, volume fractions and 

geometrical ratio /Ri Ro  are shown in Fig.7-9.  

It can be seen from Fig.7 that, the nonlinear fundamental frequency ( NLΩ  ) 

decreases as the flow velocity increases, while the change rate increases. A fundamental 

frequency of zero corresponds to a critical buckling flow velocity. V-beam has the 

highest critical buckling flow velocity, followed by X-beam, UD-beam, O-beam and 

∧-beam. Fig.8 shows that the higher the volume fraction coefficient, the higher the 

critical buckling flow velocity of the tube. Fig.9 shows that the critical buckling flow 

velocity increases as the ratio of inner diameter to outer diameter ( /Ri Ro ) increases. 
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Fig. 7 Relationships between nonlinear frequency and flow velocity for various reinforced type  
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Fig. 8 Relationships between nonlinear frequency and flow velocity for various volume fraction 

coefficients 
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Fig. 9 Relationships between nonlinear frequency and flow velocity for various geometrical ratio 

/Ri Ro   
 

1.6.2.3 Temperature  

Fig.10-13 shows the relationships between nonlinear fundamental frequency and 

temperature for various patterns of reinforcement, volume fraction coefficients, 

geometrical ratio /L Ro  and geometrical ratio /Ri Ro .  

As can be seen from Fig.10, the nonlinear fundamental frequency decreases as the 

temperature increases. When the fundamental frequency is zero, it corresponds to the 

critical buckling temperature. Same as Fig.7, V beam has the highest critical buckling 

temperature among several patterns of reinforcement, followed by X beam, UD beam, 



 

 

O beam and ∧ beam. Although the higher the volume fraction coefficient is, the 

higher the critical buckling flow velocity is, Fig.11 shows that the critical buckling 

temperature is the lowest when the volume fraction is 0.28. Fig.12 gives that as the 

geometrical ratio /L Ro  increases, the critical buckling temperature decreases, but the 

rate of change decreases. Fig.13 shows that the critical buckling temperature increases 

with the increase of the ratio of inner to outer diameter ( /Ri Ro  ), but the change 

decreases when the ratio is small. 
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Fig. 10 Relationships between nonlinear frequency and temperature for various reinforced type 
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Fig. 11 Relationships between nonlinear frequency and temperature for various volume fraction 
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Fig. 13 Relationships between nonlinear frequency and temperature for various geometrical ratio 

/Ri Ro  

Fig.14-15 show the influence of / oL R   and /i oR R   on nonlinear fundamental 

frequency, respectively. It can be seen from Fig.14 that the fundamental frequency 

decreases as the geometrical ratio / oL R   increases, and when the fundamental 

frequency is zero, it corresponds to the critical buckling geometrical ratio. The 

nonlinearity varies greatly near the critical buckling geometrical ratio. Fig.15 shows 

that, with the /i oR R  increases, the nonlinear fundamental frequency increases. On the 

contrary, the nonlinearity decreases. 
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Fig. 14 Effect of parameter / oL R  on natural frequency of FG-CNTRC tube 
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Fig. 15 Effect of parameter /i oR R  on natural frequency of FG-CNTRC tube 

 

1.7 Conclusion 

In this paper, an investigation on the nonlinear free vibration responses of 

functionally graded nanocomposite fluid-conveying tube reinforced by single-walled 

carbon nanotubes (SWNTs) in thermal environment is presented. A higher-order shear 

deformation theory and Hamilton’s variational principle are employed to derive the 

motion equations incorporating the thermal and fluid effects. A two-step perturbation 

method is implemented to obtain the closed-form asymptotic solution for these 



 

 

nonlinear partial differential equations. 

1) Compared with large amplitude, the nonlinear fundamental frequency ( NLΩ ) 

and nonlinearity ( /NL Lω ω  ) increase more slowly with the amplitude of 

vibration at small amplitude. 

2) V beam has the highest critical buckling flow velocity and temperature among 

several patterns of reinforcement, followed by X-beam, UD-beam, O-beam 

and ∧-beam. However, the nonlinearity of ∧-beam is the most sensitive to 

amplitude variation, followed by O-beam, UD-beam, X-beam, and V-beam. 

3) Although the higher the volume fraction coefficient is, the higher the critical 

buckling flow velocity is, the critical buckling temperature is the lowest when 

the volume fraction is 0.28. With the increase of volume fraction coefficient, 

the nonlinearity ( /NL Lω ω ) and nonlinear fundamental frequency ( NLΩ ) are 

more sensitive to the amplitude variation. 

4) The nonlinearity ( /NL Lω ω ) is more sensitive to amplitude variation at high 

temperature. Compared with small amplitude, the difference of nonlinear 

fundamental frequency ( NLΩ  ) becomes smaller at large amplitude under 

different temperatures. 

5) The critical buckling flow velocity and temperature increases as the ratio of 

inner diameter to outer diameter ( /Ri Ro ) increases, as does the nonlinear 

fundamental frequency ( NLΩ  ) increases. On the contrary, the nonlinearity 

decreases. 

6) As the geometrical ratio /L Ro  increases, the critical buckling temperature 

decreases, but the rate of change decreases. 
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