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Abstract 19 

Reggeization and response to external stimulus is an important part of artificial intelligence, which would 20 

significantly improve the quality of life in the future. The development of new materials for the design of 21 

sensitive and responsive sensors has become a crucial component. Here, two silver cluster-based 22 
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polymers (Ag-CBPs), including one-dimensional (1D) {Ag22(L1)8(CF3CO2)14(CH3OH)2}n chain and two-23 

dimensional (2D) {[Ag12(L2)2(CO2CF3)14(H2O)4(AgCO2CF3)4](HNEt3)2}n film, are designed and used to 24 

simulate the human nose⎯an elegant sensor to smells, to distinguish organic solvents. We study the 25 

relationship between the atomic structures of Ag-CBPs determined by X-ray diffraction and electrical 26 

properties in the presence of organic solvents (e.g. methanol, ethanol). The ligands, cations and the ligated 27 

solvent molecules not only play an important role in the self-assembly process of Ag-CBP materials, but 28 

also determine their physiochemical properties. An application of cluster-based polymers is demonstrated 29 

in the artificial intelligent sensors.  30 

Introduction 31 

The emerging artificial intelligence technology based on big data collected by various sensors is 32 

becoming a hot topic, which also boosts the demand for new multifunctional materials in order to design 33 

highly sensitive and high-precision sensors. The precise, selective, and swift measurement of volatile 34 

alcohols is of critical importance in various areas such as the food industry,[1,2] occupational safety,[3] and 35 

forensics.[4,5] In this direction, the multi-dimensional nanoscale materials have garnered a lot of attention 36 

owing to their peculiarity in structures and properties, such as atomic/molecular thickness, optical 37 

transparency and large surface areas.[6,7] The fabrication of alcohol sensing devices is an important aspect 38 

for the application of these materials. For instance, graphene-based nanomaterials are considered as the 39 

frontier of investigated sensing materials.[8-11] And the changes in conductivity of graphene-based 40 

materials upon the adsorption of gas molecules lead to the gas detection. Besides this, some other two-41 

dimensional materials including nanostructures based on metal oxides,[12,13] nanoporous silicon,[14] hybrid 42 

carbon-based nanostructures,[15] metal organic frameworks (MOFs),[16] and hybrids of fiber optics with 43 

nanostructures[17] have also displayed great promise in sensing of the alcohols. 44 

Recently, the burgeoning metal nanoclusters with well resolved-crystal structures show great 45 

prospect in fundamental researches and applications in various aspects including luminescence, medicine, 46 

catalysis, energy, and biology[18-24] owing to their unique physiochemical properties originated from 47 
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structures. Meanwhile, multi-dimensional (e.g. 1D,[26-29] 2D,[27,30-34] and 3D[30,35-42]) self-assembled 48 

structures of metal clusters have recently been designed to tailor their properties. Mak and co-workers 49 

have made enormous contribution on the synthesis and structural determination of multidimensional 50 

silver nanocluster-based materials.[30-32] Sun et al. have reported a series of multi-dimensional self-51 

assembled nanocluster-based clusters with polyoxometallate (POM) as an anion template, where organic 52 

ligands and halide atoms were used as linkers to connect clusters.[36,37] Zhu and co-workers synthesized 53 

two 3D structures comprised of [Au1Ag22(SAdm)12](SbF6)2Cl and [Au1Ag22(SAdm)12](SbF6)3 (SAdm = 54 

adamantanethiolate) as structural units.[35] These metal cluster-based materials have been well-developed 55 

as fluorescence probes to detect organic compounds[23-24] due to their unique fluorescence properties. 56 

However, the study of metal cluster-based materials applied as electrochemical sensors is still quite rare 57 

so far. 58 

Herein, we present the synthesis of two novel silver cluster-based polymers (Ag-CBPs) with 59 

atomically precise structures, including {Ag22(L1)8(CF3CO2)14(CH3OH)2}n (L1 = 3-(prop-2-yn-1-yloxy)-60 

benzonitrile) chains and {[Ag12(L2)2(CO2CF3)14(H2O)4(AgCO2CF3)4]-(HNEt3)2}n (L2 = 1-(3-61 

mercaptoprop-1-en-2-yl)-2-methoxypyridin-1-ium) film (abbreviated as Ag22-CBP and Ag16-CBP, 62 

respectively, for clarity hereafter), which are determined by single crystal X-ray diffraction. Interestingly, 63 

they show different conductivity under an external voltage in the presence of different organic solvents, 64 

which is proved to be related to their structural differences. We further find that the charge transfer and 65 

the species of carriers have an important influence on the conductivity of Ag-CBPs. The different 66 

responses of Ag-CBPs with the variation of organic solvents hold promise in the design of artificial 67 

intelligent sensors to distinguish solvents like the nose to differentiate various smells. 68 

Results 69 

Preparation and structure determination of Ag-CBPs. The cluster-based polymeric materials in this 70 

study with compositions of Ag22-CBP and Ag16-CBP were synthesized through a bottom-up synthetic 71 

strategy. Briefly, these polymeric materials were produced by the reaction and self-assembly of the 72 
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corresponding silver precursors (Ag-L1 and Ag-L2) with AgCO2CF3, respectively (see SI for details). 73 

Here the alkynylate and thiolate ligands are selected to construct highly stable Ag-CBPs for their strong 74 

interaction and the flexible coordination between ligands and Ag atoms.[31,43] 75 

The compositions and atomic structures of the Ag-CBPs are determined by single crystal X-ray 76 

diffraction (SCXRD). The Ag22-CBP crystallizes in the C2/c space group. The minimum asymmetry unit 77 

of Ag22-CBP is constructed by four ingredients, including 11 Ag atoms, 7 trifluoroacetate anions, 4 L1 78 

anions, and a methanol molecule, as depicted in Fig. 1a. An asymmetry unit rotates 180 o around a C2 axis 79 

forming the monomer in Ag22-CBP (Fig. 1b). And thus, a metal framework constructed by 22 Ag atoms is 80 

furnished in a monomer, where the distances between the silver atoms range from 2.798(4) Å to 3.353(3) 81 

Å. The monomers connect with each other in a head to tail manner, giving a 1D silver chain along c-axis 82 

(Fig. 1c) through Ag-Ag bonds (3.302(4) Å), Ag-O-C(CF3)-O-Ag and Ag-Otrifluoroacetate-Ag motifs, and 83 

Ag-alkynylate bonds (Supplementary Figure 1), which looks like the millipede in nature. The obtained 84 

silver chains are covered by L1 ligands and trifluoroacetate ions through various bonds. For the L1 85 

ligands, both the terminal C≡C and C≡N groups are bonded to Ag atoms (Supplementary Figure 2). Three 86 

types of coordination modes of terminal C≡C group are observed: (i) the μ4-η1, η1, η2, η2 mode 87 

(Supplementary Figure 3a), in which the C≡C group bonds to two Ag atoms via σ-bond and to another 88 

two Ag atoms through π-bond; (ii) the μ5-η1, η1, η1 η2, η2 mode (Supplementary Figure 3b), in which the 89 

C≡C group links to three Ag atoms via σ-bond and to another two Ag atoms through π-bond; and (iii) the 90 

μ4-η1, η1, η1, η2 mode (Supplementary Figure 3c), in which the C≡C group bond to three Ag atoms via σ-91 

bond and to another Ag atom through π-bond. Only the C≡N-Ag σ-bonding mode is detected between the 92 

C≡N group and Ag, Supplementary Figure 2. Besides, three coordination modes are observed between 93 

trifluoroacetate ions and Ag atoms, namely, μ1-Otrifluoroacetate, μ2-Otrifluoroacetate, and μ3-Otrifluoroacetate bonding 94 

modes. Besides L1 ligands and trifluoroacetate ions, it is worth noting that the non-ionized methanol 95 

molecules bind with Ag atoms through Ag-Omethanol bond (2.425(2) Å), which is shorter than the Ag-96 

Otrifluoroacetate bonds in length (2.688(5) Å), Fig. 1a and Supplementary Figure 4. These obtained silver 97 
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chains are discrete but bridged to each other by C≡C groups and C≡N groups of L1 ligands to form the 98 

final 3D structure of Ag22-CBP, as shown in Fig. 1d. 99 

Fig. 1 | Structural anatomy of Ag22-CBP. 100 

 101 

a The asymmetric structure of Ag22-CBP. b The monomer structure of Ag22-CBP. c 1D silver chain along 102 

c-axis. d 3D structure. Color code: Ag, purple; F, cyan; O, red; N, blue; C, gray and black; H, white. 103 

A 2D structure of Ag16-CBP in P-1 was obtained when the bidentate L1 ligand was replaced by the 104 

unidentate L2 ligand under the otherwise similar experimental conditions. As shown in Supplementary 105 

Figure 5, eight Ag atoms, nine CF3CO2
- ions, one L2 ligand, two aqua molecules and one [HNEt3]+ are 106 

found in the minimum asymmetry unit. The S atom of L2 ligand bonds to five Ag atoms via Ag-S bonds 107 

(2.447(3)-2.979(2) Å) forming the main body of the inverted 6-figured Ag6 unit as depicted in Figs. 2a 108 

and S6a, where the Ag-Ag bond length is in the range of 2.936(4)-3.043(3) Å. Furthermore, two Ag6 units 109 

connect with each other generating a Z-motif Ag12 cluster (Fig. 2b and Supplementary Figure 7), which is 110 

covered by 14 trifluoroacetate ions via Ag-O bonds (2.215(3)-2.428(5) Å). A molecular cavity is formed 111 

a) d)

b) c)
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where two water molecules and one [HNEt3]+ ion settle down through Ag-Owater bonds of 2.481(5)-112 

2.669(3) Å and hydrogen bond with a D---A distance of 2.798(3) Å between [HNEt3]+ ion and aquo 113 

molecule (Supplementary Figure 8). These Ag12 clusters are connected with each other by head to tail 114 

along b-axis via (Ag12)-Otriflouroacetate-(Ag12) motifs (Fig. 2c), where the shortest Ag---Ag distance between 115 

Ag12 clusters is ~ 3.572 Å, beyond the limit of Ag-Ag bond. Further, the Ag2(CF3CO2)2 units (noted as 116 

Ag2, highlighted in green in Fig. 2 and Supplementary Figure 6b) serve as the linkers to connect 117 

neighboring Ag12 clusters in bc plane, i.e. the Ag12 clusters interact with four neighboring Ag12 clusters 118 

through four Ag2 units by the (Ag12)-Otriflouroacetate-(Ag2) motifs (Fig. 2c) to form a 2D plate. Finally, the 119 

2D plates are packed into 3D structure through hydrogen bonds and Van Der Waals force between layers 120 

(Fig. 2d). 121 

Fig. 2 | Structural anatomy of Ag16-CBP. 122 

 123 

a Ag6 unit in asymmetry. b Ag12 unit in monomer. c 2D structure and d 3D structure of Ag16-CBP. Color 124 

code: Ag, purple and green; S, yellow; F, cyan; O, red; N, blue; C, grey and black; H, white. 125 

a) b)

c)d)
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Sensing response to alcohol. Different from the common silver complexes,[44] silver clusters[18,19] and 126 

even silver wires,[22] herein we have obtained the silver frameworks, silver chains in Ag22-CBP and silver 127 

plates in Ag16-CBP with unique and continuous features, which provide good channels for electrons to go 128 

through and prompt us to study their conductivity in the solid state. 129 

We investigated the sensing property of the prepared 1D Ag22-CBP chains and 2D Ag16-CBP plates 130 

on a home-made setup in a clean-room at ambient temperature of ~ 24 °C. During the tests, the powder of 131 

Ag-CBPs was painted on a flexible PET board equipped with Cu wires giving a polymer film, which was 132 

further connected to a Source Meter 2450 forming a closed circle (Supplementary Figures 9-10). Initially, 133 

the films made of Ag22-CBP and Ag16-CBP samples were insulated under dry conditions as the reference. 134 

Once organic solvents (including protic solvents: methanol and ethanol, and aprotic solvents: acetone and 135 

toluene) were sprayed on the films, their conductivity differs, becoming conducting for methanol and 136 

ethanol, and insulating for acetone and toluene (Fig. 3 and Supplementary Figure 11). As shown in Figure 137 

3a, the electric current turns to zero again with the removal of methanol or ethanol from the thin films 138 

under the irradiation of near-infrared light, indicating that the protic organic solvents should interact with 139 

Ag22-CBP and Ag16-CBP to make them conductive. On the contrary, the electric current was almost zero 140 

when the aprotic solvents, such as acetone or toluene, were sprayed on the sample films (Fig. 3a and 141 

Supplementary Figure 11), which corroborates that the Ag22-CBP and Ag16-CBP cannot detect these 142 

aprotic solvents, as the aprotic solvents cannot make the Ag22-CBP and Ag16-CBP nanomaterials 143 

conductive. 144 

These different responses to organic solvents suggest that both Ag22-CBP and Ag16-CBP could serve 145 

as good sensors for the protic organic solvents (e.g., methanol and ethanol), like the nose to distinct and 146 

recognize different smells in air. The Ag22-CBP and Ag16-CBP nanomaterials showed excellent dynamic 147 

response to the methanol and ethanol detection, which is due to the robust nature of these Ag-CBP 148 

nanomaterials. It is worthy to note that the responding electric current to methanol is ~ 15 to 25-fold that 149 

of the ethanol detection, and the responding time for methanol is longer as well (Supplementary Figures 150 
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11-12), suggesting that the interaction between methanol and Ag22-CBP or Ag16-CBP is much stronger 151 

than that with ethanol, which could be further confirmed by the fact that the small holes in Ag22-CBP and 152 

Ag16-CBP formed by the surface ligands of silver frameworks are suitable for small molecules like 153 

methanol and water only. 154 

Fig. 3 | Dynamic response and recovery characterization of artificial intelligent Ag-CBP sensors. 155 

 156 

a Dynamic response and recovery curves of Ag22-CBP thin film sensor under different organic solvents 157 

(protic solvents: methanol and ethanol; aprotic solvents: acetone and toluene). b Dynamic response and 158 

recovery curves of Ag22-CBP and Ag16-CBP films in the presence of methanol. All the sprays were 159 

measured at 0.1 V bias. 160 

Furthermore, the current intensity of the Ag16-CBP film (about 600 nA) is ~ ten-fold that of the Ag22-161 

CBP film (~ 60 nA) under the identical experimental conditions (Fig. 3b), though the recovery time of 162 

Ag16-CBP film (~ 20 s) is much longer than that of Ag22-CBP film (~ 5 s). All these results suggest that 163 

the Ag16-CBP film is much more sensitive to methanol than the Ag22-CBP film, which should be caused 164 

by the methanol absorption capability of the sensing material, for which the factors including the high-165 

density Ag atoms arrangement, rich hydrogen bonds, ion features, and the mass transfer in the 2D film of 166 

the Ag16-CBP should be responsible. 167 
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Titivate mechanism. The sensitivity to solvents of sensors is closed to the conductivity of Ag-CBP 168 

materials with solvents. Compared with the silver chains (1D) (Fig. 4a) in Ag22-CBP, the silver planes 169 

(2D) (Fig. 4b) in Ag16-CBP are more convenient for electrons to transfer in solid state where free 170 

electrons serve as the carriers and often move along a specific direction under the applied voltage, 171 

generating a current. Furthermore, the positive pyridine rings and [HNEt3]+ in Ag16-CBP are helpful for 172 

the transformation of free electrons, beside the silver planes. In fact, the dry Ag-CBP powders are 173 

insulator since the silver chains in Ag22-CBP and the silver planes in Ag16-CBP are disconnected like a 174 

mess of broken electric wires, and no current can be generated even the voltage was applied. However, 175 

once the Ag-CBP powders get wet by some solvents, such as methanol, countless micro-electrolytic tanks 176 

(deep colored areas in Fig. 4) are formed among broken silver chains and plans in Ag-CBPs, where ions 177 

dissociated from the Ag-CBPs work as carriers in the electrolyte solution. Therefore, the sensitivity to 178 

solvents of sensors made of Ag-CBPs depends on the conductivity of micro-electrolytic tanks among 179 

silver chains and planes in Ag-CBP nanomaterials as the charge transformation in solid of Ag-CBPs is 180 

immune from solvents outside. 181 

Fig. 4 | Titivate mechanism of the charge transformation in the Ag-CBPs. 182 
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Charge transformation intra and inter a 1D silver chain of Ag22-CBP and b 2D Ag16-CBP film. Notes: 184 

Ag+, purple ball; H, light blue ball; [CF3CO2]-, orange ball; [HNEt3]+, blue ball; micro-electrolytic tanks, 185 

deep colored areas. 186 

The saturated methanol solutions of Ag22-CBP and Ag16-CBP were used to simulate micro-187 

electrolytic tanks between silver chains (1D) in Ag22-CBP and the silver planes (2D) in Ag16-CBP, 188 

respectively. The conductivity of saturated methanol solution of Ag16-CBP was determined as 608 μS cm-
189 

1, ~ 3 fold over that of Ag22-CBP (228 μS cm-1), indicating the micro-electrolytic tanks among silver 190 

planes in Ag16-CBP showed better conductivity than that among silver chains in Ag22-CBP. For the better 191 

conductivity of Ag16-CBP in solution, the following structural factors may be responsible: (i) In species of 192 

carriers, Ag+, CF3CO2
-, [HNEt3] species and even H+ or [H3O]+ in Ag16-CBP could serve as carriers in 193 

solution, but only Ag+ and CF3CO2
- could be disassociated from Ag22-CBP and serve as carriers in 194 

solution. (ii) In the coordination models of Ag, all the Ag+ cations were limited around L1 ligands through 195 

strong σ- and π-bonds, which is hard for Ag+ to disassociate; while the Ag2(CF3CO2) units are free in 196 

Ag16-CBP except the Ag+ ions bonded to L2 ligand via Ag-S bond. (iii) The ligated waters and [HNEt3]+ 197 

ions in Ag16-CBP could provide more H+ ions, which are the fastest ionic carrier (mass transfer) in 198 

solution till now. All of these structural factors determine the superior conductivity of Ag16-CBP in 199 

solution and more sensitive response to methanol. Furthermore, the conductivity of Ag-CBPs in ethanol 200 

was measured as ~ 50 μS cm-1, ~ 0.45 μS cm-1 in acetone, and near zero μS cm-1 in toluene, which could 201 

well explain the weak electron response to ethanol and null to acetone and toluene. 202 

Discussion  203 

In summary, we have designed and prepared two novel nanocluster-based polymers, comprised of Ag 204 

nanoclusters linked with each other. Their crystal structures are determined by X-ray diffraction, which 205 

indicates that the coordination modes of ligands have an important influence on the self-assembly of 206 

cluster-based materials. Furthermore, the conductivity of the two polymers in the solid state could be 207 
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altered through organic solvents. Interestingly, the electric response to methanol is found on the Ag 208 

cluster-based polymers, suggesting the cluster-based materials may be used to design artificial intelligent 209 

sensors to detect organic solvents, especially methanol. Finally, we discussed the plausible mechanism of 210 

how the cluster-based materials work as a sensor to detect organic solvents in the presence of ambient 211 

atmosphere. This study on the synthesis and application of cluster-based materials enriches the artificial 212 

intelligent application of metal nanoclusters. 213 

Methods  214 

Synthesis of Ag22-CBP and Ag16-CBP.  215 

All the operations were carried out in dark. Generally, 10 mg of Ag-L1 was dispersed into 5 mL MeOH, 216 

followed by the addition of AgCO2CF3 (88 mg 0.4 mmol) dissolved into 5 mL MeOH generating a white 217 

suspension. After 20 minutes later, a light-yellow solution was obtained from the mixture through 218 

filtration, which was then exposed to ethyl ether to crystalize in dark in ice refrigerator. The clear yellow 219 

block crystals of {Ag22(L1)8(CO2CF3)14(CH3OH)2}n (denoted as Ag22-CBP) were obtained in a few weeks.  220 

Ag16-CBP was obtained in a similar procedure. 10 mg Ag-L2 was dispersed into 5 mL MeOH was 221 

used in the preparation of Ag16-CBP. The light-yellow plate crystal of 222 

{[Ag12(L2)2(CO2CF3)14(H2O)4(AgCO2CF3)4](HNEt3)2}n (denoted as Ag16-CBP) was obtained after weeks 223 

in dark in ice refrigerator. The synthetic yields of Ag16-CBP and Ag22-CBP were 87% and 79%, 224 

respectively. 225 

Sensor fabrication. For the preparation of cluster thin film sensor, 30 mg of the synthesized cluster-226 

based materials were firstly dispersed in 5 mL of ethanol and then, the 5 mL of hydroxyl propyl methyl 227 

cellulose (HPMC) aqueous solution (4 mg mL-1) was added to improve the viscosity. Next, 3 mL of 228 

cluster mixed solution obtained from the previous step was dripped on PET and dried at 60 oC in the oven 229 

for 10 min. Finally, the Cu wires were attached to the two ends of the film for providing the connection to 230 

the power supply. 231 
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The conductivity of samples in solution was determined by a DDS-307 conductivity meter. Crystal 232 

samples were dispersed into different solution and then filtrated with pinhole membrane filter generating 233 

saturated solutions to be tested. Before measurement, the conductivity meter was calibrated by stander 234 

solution of 1408 μs/cm. 235 

Data Availability 236 

The X-ray crystallographic coordinates for structures reported in this study have been deposited at the 237 

Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2111374 and 2111687. 238 

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 239 

www.ccdc.cam.ac.uk/data_request/cif. The datasets generated and/or analyzed during this study are 240 

available from the corresponding author upon reasonable request. 241 
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