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Abstract
Background

Relapse and drug resistance of lymphomas are common, howerver the treatment e�cacy of current
therapeutic strategies remains unsatis�ed. Our current study revealed that the extract of Ophiorrhiza
pumila (OPE) has a potential anti-liver cancer activity. In this study, we aimed to investigate the effect of
OPE on preventing lymphomas and explored the underlying mechanisms.

Methods

CCK-8 assay was applied to detect the effect of OPE on cell proliferation. Flow cytometry was used to
analyzed the effect of OPE on cell cycle distribution, and apoptosis. Xenograft mouse model was
conducted to determine the anti-tumor activity of OPE. TNUEL assay was performed to detect the
apoptosis in tumor tissues. Western blot and immunohistochemistry were used to determined protein
expression.

Results

OPE decreased A20 cell proliferation in a dose- and time-dependent manner. OPE treatment induced cell
cycle arrest at S phase and elevated apoptosis in A20 cells. Moreover, OPE displayed a signi�cant
inhibition in tumor growth in a mouse model. OPE increased apoptosis in tumor tissues revealed by
TUNEL assay, which was companied with enhanced cleaved caspase 3 expression and Bax/Bcl2 ratio. In
addition, our data showed that OPE suppressed A20 cell viability partially by reducing EGFR
phosphorylation.

Conclusions

Our data showed that OPE has an inhibitory effect on A20 cell proliferation and tumor growth, which is
mediated by inactivation of EGFR and enhanced apoptosis.

Background
Lymphomas are a heterogeneous group of molecularly, biologically, and clinically distinct
lymphoproliferative malignancies [1]. Multiple therapies, such as chemotherapy, radiotherapy,
immunotherapy, and target therapy, have been developed for the treatment of lymphomas [2]. Although
promising effects have been achieved by approaches, relapse and drug resistance are common.
Therefore, developing novel strategies for lymphomas remains a primary concern currently [3]. We had
previously identi�ed that the soluble form of CXCL16 and TNF-α may be used as prognostic markers and
their combinational use is a promising approach in the context of diffuse large B-cell lymphoma
therapy [4]. 
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Anti-cancer agents derived from natural plants have been reported to exhibit low toxicity and effective
therapeutic activity in different types of tumors [5-7]. Ophiorrhiza pumila (O. pumila) is a
Rubiaceae family plant that grows in many Asia countries, such as Japan, Vietnam, Philippines and
China [8]. O. pumila has been considered to be a valuable alternative source of camptothecin (CPT),
which is wildly used to treat various cancers, such as colorectal, ovarian, and lung cancer [9,10]. Studies
refer to the biosynthesis process of CPT in O. pumila are decumulating [8,11,12], but the function of O.
pumila compounds in cancer have rarely been explored. Previously, we reported that treatment with O.
pumila extract (OPE) suppresses the proliferation and migration of liver cancer cells, indicating an anti-
cancer activity of OPE in hepatocarcinoma [13]. However, the effect of compounds of O. pumila on other
type of cancers remains unknown. 

In this study, we aimed to investigate the cytotoxicity of OPE in lymphomas by using a mouse model,
which may expand our understanding of the anti-cancer activity of OPE and may pay a foundation for the
discovery of novel compounds against B cell lymphomas from O. pumila.

Methods
Reagents and materials

Antibodies against cleaved caspase-3, Bcl-2, Bax, GAPDH, and HRP-conjugated secondary antibodies
were purchased from Cell Signaling Technology (Beverly, MA, USA.). Antibodies against Cylcin D1, Cyclin
A2, Cyclin B1 were purchased from Proteintech (Chicago, USA). OPE was obtained as reported
previously [13].

Cell culture

A20 cells were purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA). A20
cells were maintained in 1640 medium plus 10% FBS and 1% penicillin/streptomycin and were incubated
in an incubator with 5% CO2 at 37°C.

Cell viability analysis

CCK-8 assay was performed to determine the viability of A20 cells after treatment with OPE. In brief,
A20 cells (8~1.2 × 103 per well) in 100 µL completed 1640 medium were placed in 96-well plates and
were exposed to different concentrations of OPE (0, 6.25, 12.5, 50, 100, and 200 µg/ml). After treatment
for 24 h, 48 h, and 72 h, 10 µL of CCK-8 reagent (Dojindo, Japan) was added to each well and incubation
for 2~4 h. The absorbance was then measured at 450 nm on a microplate spectrophotometer. 

Cell cycle analysis

Flow cytometry was applied to investigate the in�uence of OPE on cell cycle distribution as described
previously [13]. Brie�y, A20 cells were incubated with different concentration of OPE (0, 25, 50, and 100
μg/mL). After treatment for 48 h, A20 cells were harvested, washed with PBS, and stained using the Cell
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Cycle Staining Kit (MultiSciences, China). The distribution of cell cycle was analyzed by the CytoFlex-LX
�ow Cytometer (Beckman, USA).

Apoptosis analysis

The apoptosis of A20 cells treated with OPE was detected by using the Annexin V-FITC apoptosis
detection kit (BD, USA). A20 cells (3 × 105 cells per well) were placed in 6-well plates and were exposed to
different concentration of OPE (0, 25, 50 100 µg/mL). 48 h post-incubation, A20 cells were collected and
washed once with PBS. A20 cells were incubated with 5 μl Annexin V-FITC and 5 µL PI in 200 µL
1×binding buffer. Then 200 µL 1×binding buffer was added to each sample. Samples were analyzed on a
�ow cytometer (BD Biosciences) and the data was analyzed using the CytExpert software (BD
Biosciences). 

Western blot analysis

A20 cells were exposed to different concentrations of OPE (0, 25, 50, and 100 μg/mL) for 48 h. A20 cells
were resuspended in RIPA buffer with proteinase inhibitors (Sigma, USA) and incubated on ice for 20 min.
The lysate was then centrifuged at 12,000 rpm at 4 °C for 20 min. The supernatant was collected
and protein concentration was determined with the BCA protein Assay Kit (Thermo Scienti�c, USA). Total
proteins from different samples were separated and transferred to PVDF membranes (Millipore,
USA). The membrane was blocked with 5% milk in TBS-Tween for 1 h at room temperature, and was
incubated with primary antibodies at 4 °C overnight. After 3 washes with TBS-Tween, the membrane was
incubated with HRP-conjugated secondary antibodies at room temperature for 1 h. An enhanced
chemiluminescence (ECL) kit (Millipore) was used to detect the protein bands and Image J software was
used to determine the relative protein expression. 

Animal experiments

Balb/c mice (6-8 weeks old) were used for the in vivo experiments. 5 × 106 A20 cells in PBS were
subcutaneously injected into the right oxter of Balb/c mice. When the tumors reached 50~100 mm3, mice
were randomly derived into three groups: the control group, low-dose group and high-dose group (n=4).
Mice in the control group were gavagely administered with PBS. Mice in the low-dose group were
gavagely administrated with 15 mg/kg OPE, while mice in the high-dose group was gavagely
administrated with 45 mg/kg OPE every other day. The administration was last for 10 days. Then the
mice were sacri�ced and tumors were isolated. The animal experiments were approved by the
Institutional Animal Care and Use Committee of Foshan University. 

TUNEL analysis

Tumor tissues were �xed and embedded in para�n. Tissue sections were cut, depara�nized, repaired
with protease K, and permeabilized. Then sections were stained with the Fluorescein (FITC) TUNEL Cell
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Apoptosis Detection Kit (Servicebio, Wuhan, China). The nuclei were stained with DAPI. Tumor sections
were visulized under a �uorescence microscopy (Zeiss, Germany).

Immunohistochemistry

Tumor tissues were �xed with 4% paraformaldehyde and embedded into para�n. Para�n sections (4
μm-think) were depara�nized, antigen-retrieved, and treated with 3% hydrogen peroxide. Then, sections
were blocked with 3% BSA, followed by incubation with primary antibodies (cleaved casepase-3 and Ki-67
antibodies, Cell signaling technology) overnight at 4 °C. After washed with PBS, sections were incubated
with HRP-conjugated secondary antibodies and color was detected using a DAB detection kit. Sections
were counterstained with hematoxylin. Three random �elds per tumor were selected and Cleaved caspase
3 and Ki-67 positive cells in each �eld were counted.

Statistical analysis

All experiments were repeated three times and the data were represent as means ± SD.
Comparisons among more than two groups were performed by the one-way analysis of variance
(ANOVA) using the SPSS 19.0 software. A p < 0.05 was considered statistically signi�cant.

Results
OPE suppresses the proliferation and induces S phase arrest in A20 cells

To determine the effect of OPE on cell viability, CCk-8 assay was performed in A20 cells treated with
different concentration of OPE for 24 h, 48 h, and 72 h, respectively. The results showed that treatment
with OPE signi�cantly reduce A20 cell viability, which was in a time- and dose-dependent manner (Fig.1 A-
C). The IC50 value (50% inhibition) of OPE was 223.75 μg/mL at 24 h, 27.95 μg/mL at 48 h, and
26.4 μg/mL at 72 h. 

Cell cycle arrest is an important event related to cell growth. Hence, OPE may affect the viability of A20
cells by inducing cell cycle arrest. Flow cytometry analysis showed that administration of OPE highly
altered the cell cycle distribution. The percentages of A20 cells at S phase for 0 μg/mL, 25 μg/mL,
50 μg/mL, and 100 μg/mL groups were 29.7%, 37.3%, 59.5%, and 67.5%, respectively (Fig. 1D and E). In
consistent with these results, Western blot analysis showed that the expression of Cyclin A2, a key
mediator of S phase program was markedly reduced (Fig. 1F). Together, these results suggest that OPE
could induce S phase cell cycle arrest in A20 cells.

OPE triggers apoptosis of A20 cells

Apoptosis is a key process regulated cell death. Therefore, we determine whether OPE had an impact on
A20 cell apoptosis. A20 cells were treated with different concentrations of OPE, and the apoptotic rate
was ascertained by �ow cytometry. Exposure to OPE led to a remarkable increase in apoptotic cell
population, which was in a dose-dependent manner (Fig. 2A and B). The percentages of apoptotic cells in
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0 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL groups were 0.38%, 13.27%, 22.28%, and 38.95%,
respectively. In agreement with these results, OPE treatment signi�cantly elevated the expressions of
apoptosis proteins, Bax and cleaved-caspase 3, but had no signi�cant effect on Bcl2 expression (Fig. 2C).
The expression ration of Bax/Bcl2 was detected after OPE exposure (Fig. 2D). Together, these results
indicate that OPE inhibit A20 cell growth via triggering apoptosis.

OPE represses A20 cell growth in vivo

Next, we determine whether OPE had an anti-lymphoma activity in vivo by using a xenograft mouse
model. Treatment with OPE signi�cantly decreased the tumor development of derivate from A20 cells,
which was in a time- and dose-dependent manner (Fig. 3). The inhibitory rates at Day 21 for 15 mg/kg
and 45 mg/kg were 58.4% and 77.9%, respectively (Fig. 3A). There was no signi�cant difference in the
body weight among different groups (Fig. 3B). 

OPE induces apoptosis in A20-derived tumors

To access the effect of OPE on the apoptosis in A20-derived xenografts, TUNEL staining was performed.
Consistent with in vitro results, increased TUNEL-positive cells were observed in OPE-treated groups (15
mg/kg and 45 mg/kg) compared with the NC group (Fig. 4A). Western blot analysis of the tumor tissue
samples also showed that the expression levels of cleaved caspase 3 and Bax were dose-dependently
increased following the treatment of OPE, while no signi�cance in the expression of Bcl2 was observed
(Fig. 4B). Consistently, treatment with OPE resulted in an increase in the expression ratio of Bax/Bcl2 in
tumor tissues (Fig. 4C). In agreement with these results, immunohistochemistry staining showed that
there were more cleaved caspase3-positive cells and fewer Ki67-postive cells in OPE-treated groups than
in the NC group (Fig. 4D). Together, these results suggested that OPE induces A20 cell apoptosis in vivo.

OPE suppresses A20 cell proliferation via inactivation of EGFR

EGFR signaling plays a vital role in the regulation of apoptosis. Therefore, we investigated whether OPE
had an effect on the activation of EGFR. Indeed, Western blot analysis showed that administration of OPE
remarkable reduced the phosphorylation of EGFR in A20 cells (Fig. 5A). Similarly, the levels of p-EGFR in
tumors isolated from mice treated with OPE (15 mg/kg and 45 mg/kg) was signi�cantly decreased (Fig.
5B). Treatment with EGF could partially restore the cell viability of A20 cells (Fig. 5C). Moreover,
administration of EGF restrained the enhanced effect of OPE on the apoptosis rate of A20 cells (Fig. 5D).
Together, these results implied that EGFR suppression partially accounted for the anti-proliferative activity
of OPE in A20 cells.

Discussion
Exploring the functional activity of the extract of a certain plant is an important step for discovering novel
anti-cancer agents. In addition to alkaloids, O. pumila also produce anthraquinones, glucosides, and
chlorogenic acid, which are potential chemoprotective compounds against cancers [10,14,15]. Although
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we reported that OPE has an anti-liver cancer activity [13], but its activity in lymphoma remains unclear. In
the present study, we found that OPE inhibits the proliferation and induces cell cycle arrest and apoptosis
in A20 cells. Moreover, OPE suppresses A20 tumor growth in vivo. Thus, our �ndings highlight an anti-
lymphoma of OPE. 

Anti-cancer compounds commonly trigger tumor cell death via inducing cell cycle arrest [16-18]. For
example, ethanolic extract of Cordyceps cicadae exerts its antitumor activity in gastric cancer cells by
inducing S phase arrest [19]. Withaferin A suppresses glioblastoma cell growth in triggers G2/M
arrest [20]. In our study, OPE induced S phase arrest in A20 cells. Of note, we previously reported that OPE
could induced a G2/M arrest in liver cancer cells [13]. Thus, these results indicate that the action of OPE
on cell cycle distribution is cell type-dependent. 

Given the critical role of apoptosis in cancer cell survival [21], we also accessed the effect of OPE on
apoptosis. As expected, a signi�cant increased number of apoptotic cells was visualized in OPE-treated
group compared with the control group. Consistent with the in vitro result, TUNEL assay also showed a
higher apoptotic rate in A20 tumor tissues isolated form OPE-treated mice compared with those from the
control mice. Furthermore, Western blot analysis showed that the expression of apoptosis-related
proteins, cleaved caspase 3 and Bax, two key mediators in apoptosis process [22,23], were signi�cantly
elevated, con�rming the enhanced effect of OPE on A20 cell apoptosis. 

EGFR is a member of ErbB family which plays vital roles in many processes associated with tumor
development, such as proliferation, survival, migration and apoptosis [24,25]. Thus, targeting EGFR
signaling is considered to be a crucial strategy of cancer therapy [26]. Recent evidence has revealed that
EGFR signaling is implicated in the progression of lymphoma. It has been reported that EGFR activation
contributed to PDGFD induced-ibrutinib resistance in diffuse large B-cell lymphoma (DLBCL) [27].
LncRNA TUC338 promotes the proliferation of DLBCL cells via activating EGFR pathway [28]. These
studies indicate that activation of EGFR signaling confers the malignance of DLBCL. Our data showed
that OPE could signi�cantly reduce the phosphorylation of EGFR. The suppression of EGFR signaling
could induce apoptosis and lead to cell death, consistent with previous studies [29,30]. Moreover,
restoration of EGFR activity partially reversed the effects of OPE on cell viability and apoptosis. Hence,
our results indicate that EGFR suppression contributes to the anti-proliferative effect of OPE in A20 cells.

Conclusion
In conclusion, OPE mediated A20 cell growth suppression by inducing cell cycle arrest. In addition, OPE
displayed a signi�cant inhibition in tumor growth in a mouse model, which might be related to enhanced
cleaved caspase 3 expression and Bax/Bcl2 ratio. Moreover, OPE exerts the proliferation-suppressive
activity in A20 cells via inactivation of EGFR. Our �ndings imply that OPE might be a promising target for
lymphoma therapy. However, the extract molecular mechanisms of the anti-lymphoma activity of OPE are
still needed further investigations.
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Abbreviations
OPE: ethanol extract of O. pumila; CCK-8: cell counting kit-8; Bcl-2: B cell lymphoma/lewkmia-2; Bax:
BCL2-associated X protein; CPT: camptothecin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase;
EGFR: epidermal growth factor receptor.
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Figure 1

OPE inhibits the proliferation and induces S phase arrest in A20 cells. (A-C) OPE inhibits the proliferation
of A20 cells. A20 cells were treated with different concentrations of OPE (0, 6.25, 12.5, 25, 50, and 100
μg/mL) for 24 h (A), 48 h (B), and 72 h (C), respectively, and cell viability was examined by CCK-8 assay.
(D, E) OPE induces arrest in A20 cells. A20 cells were treated with different concentrations of OPE (0, 25,
50, and 100 μg/mL) for 48 h, and cell cycle distribution was accessed by �ow cytometry. Data are
presented as means ± SD of at least three independent experiments. (*p < 0.05; **p < 0.01;***p < 0.001,
compared to the untreated control).
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Figure 2

OPE enhances apoptosis in A20 cells. (A, B) Flow cytometry analysis of apoptosis of A20 cells after
treatment with OPE (0, 25, 50, 100 μg/mL) for 48 h. (C) Western blot analysis of the expression levels of
apoptosis-related proteins. A20 cells were treated with OPE (0, 6.25, 12.5, 25, 50, and 100 μg/mL) for 48 h,
and Western blot was conducted with the indicated antibodies. (D) The alteration of the Bax/Bcl2 ratio in
A20 cells following treatment with OPE. Data are presented as means ± SD of at least three independent
experiments. (*p < 0.05; ***p < 0.001, compared to the untreated control).
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Figure 3

OPE suppresses A20 cell growth in vivo. (A) The effect of OPE on the volume of tumor derived by A20
cells. A20 cells were subcutaneously injected into the right oxter of Balb/c mice followed by the treatment
with DMSO (NC), 15 mg/kg, or 45 mg/kg OPE (n=4). The tumor volume was measured every other day.
(B) The body weight of Balb/c mice after tumor cell inoculation and treatment. (C) The representative
images of isolated tumors from Balb/c mice. Data are presented as means ± SD. (*p < 0.05; ***p < 0.001,
compared to the untreated control).
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Figure 4

OPE induces apoptosis in A20-derived tumors. (A) The effect of OPE on tumor apoptosis. The tumor
apoptosis was evaluated by TUNEL staining (green). DAPI (blue) was used to stained nuclei. (B) Western
blot analysis of apoptosis-related proteins in tumor tissues. (C) The alteration of the Bax/Bcl2 ratio in
tumor tissues following treatment with OPE. (D) Immunohistochemistry staining analysis of the cleaved
caspase3-positive cells and Ki67-postive cells in tumor tissues. Data are presented as means ± SD of at
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least three independent experiments. (*p < 0.05; **p < 0.01; ***p < 0.001, compared to the untreated
control).

Figure 5

OPE suppresses A20 cell proliferation via inactivation of EGFR. (A) Western blot analysis of the
expression and phosphorylation of EGFR in A20 cells. (B) Western blot analysis of the expression and
phosphorylation of EGFR in A20 cell-derived tumors. (C) The viability of A20 cells after treatment with
OPE (μg/mL) together with or without EGF (50 ng/mL). (D) The apoptosis of A20 cells after treatment
with OPE (μg/mL) together with or without EGF (50 ng/mL). (E) Flow cytometry analysis of apoptosis of
A20 cells treatment with OPE (μg/mL) together with or without EGF (50 ng/mL) for 48 h. Data are
presented as means ± SD of at least three independent experiments. (*p < 0.05; ***p < 0.001, compared to
the untreated control).


