1. Cage GW, Dobson RL: Sodium Secretion and Reabsorption in the Human Eccrine Sweat Gland. The Journal of clinical investigation 1965, 44:1270-1276.
2. Gagnon D, Jay O, Kenny GP: The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J Physiol 2013, 591(11):2925-2935.
3. Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, Blanpain C, Fuchs E: Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 2012, 150(1):136-150.
4. Sun X, Xiang J, Chen R, Geng Z, Wang L, Liu Y, Ji S, Chen H, Li Y, Zhang C et al: Sweat Gland Organoids Originating from Reprogrammed Epidermal Keratinocytes Functionally Recapitulated Damaged Skin. Adv Sci (Weinh) 2021:e2103079.
5. Sun S, Xiao J, Huo J, Geng Z, Ma K, Sun X, Fu X: Targeting ectodysplasin promotor by CRISPR/dCas9-effector effectively induces the reprogramming of human bone marrow-derived mesenchymal stem cells into sweat gland-like cells. Stem Cell Res Ther 2018, 9(1):8.
6. Cai S, Pan Y, Han B, Sun TZ, Sheng ZY, Fu XB: Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands. Chinese medical journal 2011, 124(15):2260-2268.
7. Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U: A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of molecular and cellular cardiology 2012, 53(3):323-332.
8. Yang R, Zheng Y, Li L, Liu S, Burrows M, Wei Z, Nace A, Herlyn M, Cui R, Guo W et al: Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nature communications 2014, 5:5807.
9. Lim KT, Lee SC, Gao Y, Kim KP, Song G, An SY, Adachi K, Jang YJ, Kim J, Oh KJ et al: Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Rep 2016, 15(4):814-829.
10. Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S: Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep 2014, 6(5):951-960.
11. Srivastava D, DeWitt N: In Vivo Cellular Reprogramming: The Next Generation. Cell 2016, 166(6):1386-1396.
12. Zhou J, Sun J: A Revolution in Reprogramming: Small Molecules. Current molecular medicine 2019, 19(2):77-90.
13. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K et al: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341(6146):651-654.
14. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H et al: Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 2016, 352(6290):1216-1220.
15. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y et al: Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014, 14(3):370-384.
16. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G: Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 2014, 15(4):497-506.
17. Eming SA, Murray PJ, Pearce EJ: Metabolic orchestration of the wound healing response. Cell metabolism 2021, 33(9):1726-1743.
18. Srivastava AK, Durmowicz MC, Hartung AJ, Hudson J, Ouzts LV, Donovan DM, Cui CY, Schlessinger D: Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice. Human molecular genetics 2001, 10(26):2973-2981.
19. Cui CY, Yin M, Sima J, Childress V, Michel M, Piao Y, Schlessinger D: Involvement of Wnt, Eda and Shh at defined stages of sweat gland development. Development 2014, 141(19):3752-3760.
20. Lu CP, Polak L, Keyes BE, Fuchs E: Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science 2016, 354(6319).
21. Blecher SR, Kapalanga J, Lalonde D: Induction of sweat glands by epidermal growth factor in murine X-linked anhidrotic ectodermal dysplasia. Nature 1990, 345(6275):542-544.
22. Graf T, Enver T: Forcing cells to change lineages. Nature 2009, 462(7273):587-594.
23. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L: Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011, 475(7356):386-389.
24. Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, Wada R, Katsumata Y, Kaneda R, Nakade K et al: Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circulation research 2012, 111(9):1147-1156.
25. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455(7213):627-632.
26. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM: Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009, 460(7259):1154-1158.
27. Cui CY, Kunisada M, Esibizione D, Douglass EG, Schlessinger D: Analysis of the temporal requirement for eda in hair and sweat gland development. J Invest Dermatol 2009, 129(4):984-993.
28. Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, Bal E, Chassaing N, Vincent MC, Viot G et al: Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Human mutation 2011, 32(1):70-72.
29. Chen R, Zhu Z, Ji S, Geng Z, Hou Q, Sun X, Fu X: Sweat gland regeneration: Current strategies and future opportunities. Biomaterials 2020, 255:120201.
30. Hu T, Xu Y, Yao B, Fu X, Huang S: Developing a Novel and Convenient Model for Investigating Sweat Gland Morphogenesis from Epidermal Stem Cells. Stem Cells Int 2019, 2019:4254759.
31. Mammadova A, Zhou H, Carels CE, Von den Hoff JW: Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016, 92(5):326-335.
32. Kudoh T, Wilson SW, Dawid IB: Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 2002, 129(18):4335-4346.
33. Wright DM, Buenger DE, Abashev TM, Lindeman RP, Ding J, Sandell LL: Retinoic acid regulates embryonic development of mammalian submandibular salivary glands. Developmental biology 2015, 407(1):57-67.
34. Cho KW, Kwon HJ, Shin JO, Lee JM, Cho SW, Tickle C, Jung HS: Retinoic acid signaling and the initiation of mammary gland development. Developmental biology 2012, 365(1):259-266.
35. Bilousova G, Chen J, Roop DR: Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol 2011, 131(4):857-864.
36. Zhang M, Lin YH, Sun YJ, Zhu S, Zheng J, Liu K, Cao N, Li K, Huang Y, Ding S: Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell 2016, 18(5):653-667.
37. Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L, Chen L, Jin P et al: Small Molecules Efficiently Reprogram Human Astroglial Cells into Functional Neurons. Cell Stem Cell 2015, 17(6):735-747.
38. Zhong H, Ren Z, Wang X, Miao K, Ni W, Meng Y, Lu L, Wang C, Liu W, Deng CX et al: Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. International journal of biological sciences 2020, 16(8):1450-1462.