[1] R. Gélinas, F. Mailleux, J. Dontaine, et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation, Nat. Commun. 9 (2018) 374. https://doi.org/10.1038/s41467-017-02795-4.
[2] J.N. Cohn, Structural changes in cardiovascular disease, Am. J. Cardiol. 76 (1995) 34E-37E. https://doi.org/10.1016/S0002-9149(99)80501-3.
[3] K.-Q. Deng, G.-N. Zhao, Z. Wang, et al. Targeting TMBIM1 Alleviates Pathological Cardiac Hypertrophy., Circulation. (2017). https://doi.org/10.1161/CIRCULATIONAHA.117.031659.
[4] M.T. Piccoli, S.K. Gupta, J. Viereck, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction, Circ. Res. 121 (2017) 575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624.
[5] K. Wang, F. Liu, L.Y. Zhou, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489, Circ. Res. 114 (2014) 1377–1388. https://doi.org/10.1161/CIRCRESAHA.114.302476.
[6] X. Li, Y. Dai, S. Yan, et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction, Biochem. Biophys. Res. Commun. 491 (2017) 1026–1033. https://doi.org/10.1016/j.bbrc.2017.08.005.
[7] W. Ying, M. Riopel, G. Bandyopadhyay, et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate in Vivo and in Vitro Insulin Sensitivity, Cell. 171 (2017) 372-384. https://doi.org/10.1016/j.cell.2017.08.035.
[8] C. Liu, M. Jian, H. Qi, et al. Microrna 495 inhibits proliferation and metastasis and promotes apoptosis by targeting twist1 in gastric cancer cells, Oncol. Res. 27 (2019) 389–397. https://doi.org/10.3727/096504018X15223159811838.
[9] K. Xu, J. Xiao, K. Zheng, et al. MiR-21/STAT3 Signal Is Involved in Odontoblast Differentiation of Human Dental Pulp Stem Cells Mediated by TNF-α, Cell. Reprogram. 20 (2018) 107–116. https://doi.org/10.1089/cell.2017.0042.
[10] X. Yu, L. Zhong. Pioglitazone/microRNA-141/FOXA2: A novel axis in pancreatic β-cells proliferation and insulin secretion, Mol. Med. Rep. 17 (2018) 7931-7938. https://doi.org/10.3892/mmr.2018.8813.
[11] G.P. Diniz, C.A. Lino, C.R. Moreno, et al. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone, J. Cell. Physiol. (2017). https://doi.org/10.1002/jcp.25781.
[12] W.A. Heggermont, A.P. Papageorgiou, A. Quaegebeur, et al. Inhibition of MicroRNA-146a and overexpression of its target dihydrolipoyl succinyltransferase protect against pressure overload-induced cardiac hypertrophy and dysfunction, Circulation. 136 (2017) 747-761. https://doi.org/10.1161/CIRCULATIONAHA.116.024171.
[13] Y. Yang, D.P. Del Re, N. Nakano, et al. MIR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival, Circ. Res. 117 (2015) 891-904. https://doi.org/10.1161/CIRCRESAHA.115.306624.
[14] S. Yang, P. He, J. Wang, et al. Abstract 4363: Macrophage migration inhibitory factor (MIF) and miR-301b interactively enhance disease aggressiveness by targeting NR3C2 in human pancreatic cancer, Cancer Res, 74 (2014) 4363-4363. https://doi.org/10.1158/1538-7445.am2014-4363.
[15] S. Xiang, H. Chen, X. Luo, et al. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling, J. Exp. Clin. Cancer Res. 37 (2018) 184. https://doi.org/10.1186/s13046-018-0844-x.
[16] Y. Tatekoshi, M. Tanno, H. Kouzu, et al. Translational regulation by miR-301b upregulates AMP deaminase in diabetic hearts, J. Mol. Cell. Cardiol. 119 (2018) 138-146. https://doi.org/10.1016/j.yjmcc.2018.05.003.
[17] Z. Liu, R. Sun, X. Zhang, et al. Transcription factor 7 promotes the progression of perihilar cholangiocarcinoma by inducing the transcription of c-Myc and FOS-like antigen 1, EBioMedicine. 45 (2019) 181-191. https://doi.org/10.1016/j.ebiom.2019.06.023.
[18] X. Xu, Z. Liu, F. Tian, et al. Clinical significance of transcription factor 7 (TCF7) as a prognostic factor in gastric cancer, Med. Sci. Monit. 25 (2019) 3957-3963. https://doi.org/10.12659/MSM.913913.
[19] B. Ye, L. Li, H. Xu, et al. Opposing roles of TCF7/LEF1 and TCF7L2 in cyclin D2 and Bmp4 expression and cardiomyocyte cell cycle control during late heart development, Lab. Investig. 99 (2019) 807–818. https://doi.org/10.1038/s41374-019-0204-2.
[20] O.H. Cingolani, Cardiac hypertrophy and the Wnt/Frizzled pathway, Hypertension. 49 (2007) 427–428. https://doi.org/10.1161/01.HYP.0000255947.79237.61.
[21] A.K. Olson, D. Ledee, K. Iwamoto, et al. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle, J. Mol. Cell. Cardiol. 55 (2013) 156–164. https://doi.org/10.1016/j.yjmcc.2012.07.005.
[22] H. Liang, Z. Pan, X. Zhao, et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d, Theranostics. 8 (2018) 1180-1194. https://doi.org/10.7150/thno.20846.
[23] J. Xiang, Q. Hu, Y. Qin, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer, Cell Death Dis. 9 (2018) 321. https://doi.org/10.1038/s41419-018-0367-6.
[24] B.H. Cui, X. Hong, Mir-6852 serves as a prognostic biomarker in colorectal cancer and inhibits tumor growth and metastasis by targeting tcf7, Exp. Ther. Med. 16 (2018) 879-885. https://doi.org/10.3892/etm.2018.6259.
[25] L.M. Iyer, S. Nagarajan, M. Woelfer, et al. A context-specific cardiac-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart, Nucleic Acids Res. 46 (2018) 2850-2867. https://doi.org/10.1093/nar/gky049.
[26] G.P. Diniz, C.A. Lino, E.C. Guedes, et al. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor, Basic Res. Cardiol. 110 (2015) 49. https://doi.org/10.1007/s00395-015-0504-7.
[27] Z.P. Huang, J. Chen, H.Y. Seok, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress, Circ. Res. 112 (2013) 1234-1243. https://doi.org/10.1161/CIRCRESAHA.112.300682.
[28] J. Wang, Y. Song, Y. Zhang, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice, Cell Res. 22 (2012) 515-527. https://doi.org/10.1038/cr.2011.132.