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Abstract

Background: Mediation analysis aims at estimating to what extent the effect of an

exposure on an outcome is explained by a set of mediators on the causal pathway

between the exposure and the outcome. The total effect of the exposure on the out-

come can be decomposed into an indirect effect, i.e. the effect explained by the

mediators jointly, and a direct effect, i.e. the effect unexplained by the mediators.

However finer decompositions are possible in presence of independent or sequential

mediators.

Methods: We review four statistical methods to analyse multiple sequential medi-

ators, the inverse odds ratio weighting approach, the inverse probability weighting

approach, the imputation approach and the extended imputation approach. These

approaches are compared and implemented using a case-study with the aim to inves-

tigate the role of adverse reproductive outcomes and infant respiratory infections on

infant wheezing in the Ninfea birth cohort.

Results: Using the inverse odds ratio weighting approach, the direct effect of mater-

nal depression or anxiety in pregnancy is equal to a 59% (95% CI: 27%-94%)

increased prevalence of infant wheezing and the mediated effect through adverse

reproductive outcomes is equal to a 3% (95% CI: -6%- 12%) increased prevalence

of infant wheezing. When including infant lower respiratory infections in the media-

tion pathway, the direct effect decreases to 57% (95% CI: 25%-92%) and the indirect

effect increases to 5% (95% CI: -5%,15%). The estimates of the effects obtained using

the weighting and the imputation approaches are similar. The extended imputation

approach suggests that the small joint indirect effect through adverse reproductive

outcomes and lower respiratory infections is due entirely to the contribution of infant

lower respiratory infections, independently from the increased prevalence of adverse

reproductive outcomes.

Conclusions: The use of these methods allows the study of multiple mechanisms

underlying the association between an exposure and an outcome and provides a solu-

tion for the problem of intermediate confounding by considering the intermediate

confounder as a sequential mediator. The choice of the method may depend on what

is the effect of main interest, the nature of the variables involved in the analysis and

the truthfulness of the underlying assumptions.

KEYWORDS:

Causal inference, Mediation analysis, Sequential mediators, Direct and Indirect effects, Weighting,

Imputation.

1 BACKGROUND

Mediation analysis aims at estimating to what extent the effect of an exposure on an outcome is explained by a given set of medi-

ators on the causal pathway between the exposure and the outcome. This goal is achieved by decomposing the total effect of the

exposure on the outcome into a natural indirect effect, i.e. the effect explained through the given mediators, and a natural direct

effect, i.e. the effect unexplained by the mediators1. Researchers often deal with research questions that involve more than one
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mediator at a time. In the analysis of multiple mediators, the total effect of the exposure on the outcome can be decomposed into

the natural direct and indirect effects considering the mediators jointly. Finer decompositions are however possible; in a setting

with two mediators, for example, there are four possible pathways from the exposure to the outcome: through the first mediator

alone, through the second mediator alone, through both mediators, and through neither of them. Identifying and estimating each

effect is not trivial and the difficulty increases as the number of mediators increases2.

The counterfactual approach provides a set of tools to identify and estimate direct and indirect effects using both linear and

nonlinear models, with both discrete and continuous variables, and allowing interactions between the exposure and the media-

tors1,3,4,5,6. Furthermore it clearly specifies the assumptions needed to identify the direct and indirect effects and to allow their

causal interpretation1,7,8,9,10.

A number of methods, which derive from different characterisation of the non-parametric mediation formula3 have been devel-

oped to carry out mediation analysis involving multiple mediators. Among the best known, Imai et al (2010)11 proposed a

quasi-Bayesian Monte Carlo method, or alternatively, a nonparametric bootstrap procedure, to draw counterfactuals from the

outcome and mediators models and hence calculate direct and indirect effects. Lange et al (2014)12 showed how independent

mediation pathways can be modeled in a single natural effect model, which directly parameterizes natural direct and indirect

effects, using a weighting-based approach. In order to take into account the dependence among mediators, Vanderweele and

Vansteenlandt13 proposed a regression-based approach to analyse multiple sequential mediators using a combination of regres-

sion parameters obtained from models for the mediators and the outcome. This approach can be used only in the context of

continuous outcomes and continuous or binary mediators, or rare and binary outcomes with continuous mediators. When the

integration is too cumbersome to be done analytically, Monte-Carlo integration methods can be used. Daniel at al (2015)2

extended the parametric G-computation14,15 to the context of multiple mediators. Albert et al (2019)16 showed a further devel-

opment of the parametric mediation formula approach to accomodate repeatedly measured mediators and multiple mediators

at each stage and allow for multiple types of outcomes following generalized linear models. Being based on parametric mod-

els, these approaches provide valid estimates when all models are correctly specified. Furthermore the modeling complexity

depends on the functional form of the mediators, the number of mediators and their potential dependence.

In this paper, we provide a detailed overview and step-by-step implementation with the statistical software R17 of four weight-

based and/or imputation-based methods to analyse multiple sequential mediators in a causal inference framework. The paper

is organised as follows: (i) we first introduce the background and notation, (ii) then we describe the selected approaches to the

analysis of multiple mediators, (iii) and finally we analyse a case-study using the selected approaches and compare the results.

The case-study uses data of the NINFEA birth cohort18 to investigate the role of maternal mental health during pregnancy on

infant wheezing between 6 and 18 months, considering two potential mediators: adverse reproductive outcome (low birth weight

and/or preterm birth and/or delivery with caesarean section) and lower respiratory infections in the first 6 months of infant life.

2 METHODS

2.1 Marginal and conditional effects

We consider a setting with two sequential mediators. Let A denote the exposure, Y denote the outcome, and M1 and M2

denote two potential mediators on the pathway from the exposure to the outcome (with A affecting both M1 and M2, and

M1 affecting M2). Let C denote the set of confounders that may affect the exposure, the mediators and/or the outcome. The

relationships between A, M1, M2, Y and C are represented in the Directed Acyclic Graph (DAG) shown in Figure 1. Let

Y (a,M1(a
∗),M2(a

∗,M1(a
∗))) be the individual counterfactual outcome that would have been observed had the exposure A

been set to a and had M1 and M2 been set to the natural value they would have taken if A had been a∗, where a and a∗ denote

two possible exposure levels (e.g. a = 1 and a∗ = 0).

Under the composition assumption, which postulates that Y (a) = Y (a,M1(a),M2(a,M1(a)))
19 (that is, the potential outcome

Y (a), when A is set to a, is equal to the potential outcome Y (a,M1(a),M2(a,M1(a))) when A is set to a and M1 and M2 are

set to the values they would have taken if A = a), at the population level the marginal total effect of A on Y can be decomposed

with respect to the joint mediator {M1,M2} as follows:

Marginal total effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))]} − g{E[Y (a∗,M1(a

∗),M2(a
∗,M1(a

∗)))]} = (1)
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FIGURE 1 DAG representing the hypothesized causal structure. A: exposure, M1: first mediator, M2: second mediator, Y:

outcome, C: confounders of A-Y, A-M1, A-M2, M1-Y, M2-Y, M1-M2 associations.

Marginal total indirect effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))]} − g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]} + (2)

Marginal pure direct effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]} − g{E[Y (a∗,M1(a
∗),M2(a

∗,M1(a
∗)))]} (3)

where g is a link function1. If the g-scale is additive the total effect equals the sum of the pure direct and total indirect effects,

while, if the g-scale is multiplicative, the total effect equals the product of those two effects. The formula above states that the

marginal total effect (1) can be decomposed into the marginal total indirect effect that acts through at least one of the mediators

(2) and the marginal pure direct effect that does not involve any of the mediators (3). In this decomposition the indirect effect

captures the potential interaction effect between the exposure and the mediators on the outcome, hence the distinction between

total and pure effects, as an effect is named pure when it does not involve the interaction with the exposure20.

The marginal total effect expresses how much the outcome would change (on the scale defined by g) if the exposure were set

from level a∗ to level a uniformly in the population. The marginal pure direct effect expresses how much the outcome would

change if the exposure were set at A = a versus A = a∗ but both mediators were kept at the level they would have naturally

taken had the exposure been set at A = a∗. Thus this effect captures the remaining effect of the exposure on the outcome if we

were able to disable the pathways from the exposure to the mediators. The marginal total indirect effect expresses how much

the outcome would change if the exposure were fixed at the level A = a but both mediators were changed from the level they

would have taken if A = a∗ to the level they would have taken if A = a. Thus this estimand captures the effect of the exposure

on the outcome that operates through the mediators jointly.

Alternatively the total, pure direct, and total indirect effects can be defined conditionally on a set of baseline confounders C
as follows:

Conditional total effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))|C = c]} − g{E[Y (a∗,M1(a

∗),M2(a
∗,M1(a

∗)))|C = c]} = (4)

Conditional total indirect effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))|C = c]} − g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))|C = c]} + (5)

Conditional pure direct effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))|C = c]} − g{E[Y (a∗,M1(a
∗),M2(a

∗,M1(a
∗)))|C = c]} (6)

The interpretation of the conditional effects is similar to that of the marginal effects, with the difference that the former max-

imize the precision of the causal effect estimate in the study sample, while the latter is the average effect in the study sample

and subsequently in the population conditional on the sample being representative of the population.
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2.2 Assumption

The identifying and estimating assumptions for the effects reported above include the following, which are defined in terms of

counterfactuals in the Supplemental Material:

• consistency: the counterfactuals M1(a),M2(a, m1) and Y (a, m1, m2) are equal to the observed M1,M2 and Y when A =

a,M1 = m1 and M2 = m2

• positivity: there are no empty cells or zero values either biologically or by design for the probabilities of M2 given M1, A
and C , of M1 given A and C , of A given C

• no unmeasured and/or uncontrolled confounding of the exposure-outcome association, mediators-outcome association

and exposure-mediators association

• cross-world independence assumption: it assumes no confounding of the effects of the mediators M1 and M2 on the

outcome Y (i.e. no measured or unmeasured intermediate confounders) affected by the exposure A21 (Figure 2,a). This is

of particular interest because when the cross-world independence assumption does not hold, an option is to consider the

intermediate confounder as an additional mediator and consider both mediators in the analysis (Figure 2,b), extending the

cross-world independence to both mediators. The two mediators M1,M2 in Figure 2,b are sequential, i.e. M1 causes M2

and both M1,M2 may be directly affected by the exposure A.

FIGURE 2 Panel a: DAG representing the simplified causal structure in presence of intermediate confounder. A: exposure,

L: intermediate confounder, M: mediator, Y: outcome. Panel b: DAG representing the simplified causal structure where the

intermediate confounder is modeled as additional mediator. M1: first mediator, M2: second mediator.

If the assumption of absence of confounding of the exposure-outcome association holds, the conditional total causal effect

(4) can be estimated from the observed data being

g{E[Y (a,M1(a),M2(a,M1(a))|C = c)]} − g{E[Y (a∗,M1(a
∗),M2(a

∗,M1(a
∗))|C = c)]} =

g{E[Y |A = a, C = c]} − g{E[Y |A = a∗, C = c]}

If, for example, g{E[Y |A = a, C = c]} = �0 + �1a + �2c and A is binary, the conditional total effect will be equal to g−1(�1)
and the marginal total effect can be estimated using methods like inverse-probability-weighting (IPW) or standardization4,22.

For the estimation of the conditional and marginal direct and indirect effects, however, all additional assumptions reported

above must hold and specific statistical approaches are needed, including the methods described in this paper.

2.3 Effects decompositions

A two-way decomposition implies that, in presence of two sequential mediators, the total effect can be decomposed into the

total indirect effect, i.e. the portion of the effect mediated through M1 and M2 jointly including the interaction between A and

M1 and M2, and the pure direct effect, i.e. the portion of the effect not mediated from M1 and M2. However, as M1 and M2 are
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sequential, one could first consider M1 alone and estimate the portion of the effect mediated through M1 and then consider M1

and M2 jointly and estimate the portion of the effect mediated through M1 and M2. This would still be a two-way decomposi-

tion: as M1 and M2 share a common pathway (i.e. the path going from A to M1 and then to M2 and Y jointly), the difference

between the effects estimated by these two analyses may be different from the portion of the effect mediated through M2 alone.

Additionally to the assumptions mentioned above, it is necessary to assume the absence of unmeasured common causes U of

the two mediators, because, if present, U would confound the M1 − Y association when considering M1 alone, thus violating

the assumption of absence of unmeasured confounding of the mediator-outcome association. Furthermore, for the cross-world

independence assumption, those U should not be affected by the exposure irrespectively if they are measured or not. The same

reasoning applies to the two-way decomposition of the total effect into the total direct and the pure indirect effects, namely

when the effect of the interaction between the exposure and the mediators is assigned to the direct effect. However, it can be

of interest to evaluate the additional contribution of M2 beyond M1 alone, and hence to decompose the indirect effect into the

effect mediated through M1 (i.e. the two pathways A → M1 → Y , A → M1 → M2 → Y ) and the effect mediated through

M2 alone (i.e. the pathway A → M2 → Y ). As we will see in the next section, here too it is necessary to assume the absence

of unmeasured confounders of the association between the sequential mediators and the absence of the confounders of this

association if affected by the exposure.

2.4 Selected methods for multiple mediation analysis

We will consider the following four methods: the inverse odds ratio weighting approach (IOR)23,24, the inverse probability

weighting approach (IPW)13, the imputation approach25 and the extended imputation approach26. The main characteristics of

each approach are summarised in Table 1. Even if they differ for the estimation procedure, the IOR, IPW and the extended

imputation approaches are weight-based approaches, and the IPW, the imputation and the extended imputation approaches rely

on the imputation of counterfactuals.

In this section and next, when describing the implementation of the four methods, we consider that the exposure A, the medi-

ators M1 and M2, and the outcome Y are all binary. However, these methods can be implemented in scenarios with different

combinations of continuous, categorical, count and binary variables, as specified below.

The inverse odds ratio weighting approach23,24 (IOR), estimates the conditional natural direct and indirect

effects within the levels of the covariates C (expressions (4), (5), (6)). Specifically it estimates the counterfactual

g{E[Y (a,M1(a
∗),M2(a

∗,M1(a
∗)))|C]} (i.e the scenario under which the population is exposed to A = a but all the mediators

take the natural value under the scenario A = a∗) by means of the following equality:

g{E[Y (a,M1(a
∗),M2(a

∗,M1(a
∗)))|C]} = g[E(W Y |A = a, C = c)] (7)

where W is the inverse of the conditional odds ratio function relating M1 and M2 to A within the levels of C

W =
P (M1 = m01,M2 = m02|A = a, C = c)P (M1 = m1,M2 = m2|A = a∗, C = c)

P (M1 = m01,M2 = m02|A = a∗, C = c)P (M1 = m1,M2 = m2|A = a, C = c)
(8)

P (M1 = m1,M2 = m2|A;C) is the joint conditional probability of the two mediators conditional on the exposure and the

covariates, and m01 and m02 are the reference values of the two mediators.

Because of the invariance property of the odds ratio, the weight W can be also expressed as follows:

W =
P (A = a∗|M1,M2, C = c)P (A = a|M1 = m01,M2 = m02, C = c)

P (A = a|M1,M2, C = c)P (A = a∗|M1 = m01,M2 = m02, C = c)
(9)

where P (A = a|M1;M2;C) is the conditional probability of the exposure given the two mediators and the covariates.

Weighting each subject with the inverse odds ratio function (9) relating M1 and M2 to A within the levels of C makes A and

{M1,M2} independent. To obtain more stabilised weights, one can multiply each individual’s exposure-mediator odds ratio

by the predicted odds of the exposure when the mediators are fixed at their reference value obtaining an inverse odds weight

instead of inverse odds ratio weight.

In practice (when considering A,M1,M2, Y binary), to estimate the conditional total effect (4) we model the mean observed

outcome for each subject (Y ) conditional on the observed exposure (A) and the covariates (C) using a generalized linear

regression model. The conditional total effect is then equal to the exponentiated coefficient for the exposure A if the interactions
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TABLE 1 Main characteristics of each of four approaches.

Decomposition of total effect IORW∗ IPW∗∗ Imputation Extended imputation

Two-way
√ √ √ √

Three-way
√

Type of estimated effects

Marginal
√ √ √

Conditional
√ √ √

Models for

Outcome
√ √ √ √

Mediators
√

Exposure
√ √

Nested counterfactual
√ √

Exposure type

Binary
√ √ √ √

Categorical
√ √ √ √

Count

Continuous
√− √− √ √

Outcome type

Binary
√ √ √ √

Categorical
√ √ √ √

Count
√ √ √ √

Continuous
√ √ √ √

Mediator type

Binary
√ √ √ √

Categorical
√ √ √ √

Count
√ √ √ √

Continuous
√ √ √ √

Interactions

Exposure-mediators
√ √ √

Exposure-covariates
√ √ √ √

Mediator-mediator
√ √ √ √

Mediators-covariates
√ √ √ √

∗Inverse odds ratio weighting.
∗∗ Inverse probability weighting.
−The performance improves as the exposure is binary or categorical with few levels.

between A and C are not included in the model. To estimate the conditional pure direct effect (6) we model the mean observed

outcome for each subject (Y ) conditional on the observed exposure (A) and the covariates (C) using a weighted generalized

linear regression model where weights W (9) are equal to 1 for unexposed subjects and equal to the inverse odds ratio predicted

by the logistic regression model of A given M1 and M2 and C for the exposed subjects. The conditional pure direct effect is

then equal to the inverse of the exponentiated coefficient for the exposure A if the interactions between A and C are not included

in the model. Finally to estimate the conditional total indirect effect (5) we calculate the ratio between the estimated total effect

and the estimated pure direct effect. Note that all the effects are estimated using the original data with no imputations (Table 2).

Confidence intervals can be calculated by bootstrapping.

The main feature of this approach is that the mediators are not included in the regression model for the outcome, but they

are only used to calculate the weights that, in their turn, are used to make the exposure and the mediators independent. Hence
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TABLE 2 Inverse odds ratio weighting approach: example based on two subjects, one exposed (i=1) and the other one unexposed

(i=2). A: exposure of the i-subiect, M1: first mediator of the i-subiect, M2: second mediator of the i-subiect, Y : outcome of the

i-subiect.

i A M1(a) M2(a,M1(a)) Y (a,M1(a),M2(a,M1(a)))
1 1 M1(1) M2(1,M1(1)) Y (1,M1(1),M2(1,M1(1)))

2 0 M1(0) M2(0,M1(0)) Y (0,M1(0),M2(0,M1(0)))

the implementation of this approach requires to specify a regression model for the exposure given the mediators and the

covariates, and a weighted regression model for the outcome given the exposure and the covariates. The correct specification

of these models is a requisite for the validity of the proposed method. It is the invariance property of the odds ratio that allows

to perform a single regression model for the exposure conditional on the mediators and the covariates instead of modeling sep-

arately each mediator or the joint conditional probability of the multiple mediators. Interactions between the mediators can be

included in the regression model for the exposure but exposure-mediator interactions do not need to be specified. It allows one

to consider binary, categorical or continuous exposures (modeled via logistic regression, multinomial logistic regression and

linear regression respectively), but being based on a weighting procedure its performance improves as the exposure is binary or

categorical with few levels. Finally it can be used for any type of outcome through generalised linear models, including those

with nonlinear link functions and quantile regression can be fitted.

The inverse probability weighting approach(IPW)13 estimates the marginal pure direct and total indirect effects (expressions

(1), (2) and (3)). Specifically it estimates the three counterfactuals, g{E[Y (a,M1(a),M2(a,M1(a)))]},

g{E[Y (a∗,M1(a
∗),M2(a

∗,M1(a
∗)))]} and g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]} by means of the following equalities:

g
{
E[Y (a,M1(a),M2(a,M1(a)))]

}
= E

{ P (A = a)

P (A = a|C)
g[E(Y |A = a,M1,M2, C)|A = a]

}
(10)

g
{
E[Y (a∗,M1(a

∗),M2(a
∗,M1(a

∗)))]

}
= E

{ P (A = a∗)

P (A = a∗|C)
g[E(Y |A = a∗,M1,M2, C)|A = a∗]

}
(11)

g
{
E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]

}
= E

{ P (A = a∗)

P (A = a∗|C)
g[E(Y |A = a,M1,M2, C)|A = a∗]

}
(12)

The two nested counterfactuals g{E[Y (a,M1(a),M2(a,M1(a)))]} and g{E[Y (a∗,M1(a
∗),M2(a

∗,M1(a
∗)))]} can be esti-

mated from the observed data. The third counterfactual g
{
E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]

}
, which includes both two

potential outcomes under A = a and A = a∗ and cannot be obtained by the observed data, can still be estimated by standardising

the mean outcome Y in each stratum defined by the mediators M1 and M2 and the confounders C among individuals exposed

at the level A = a, to the mediator distribution of individuals exposed at the level A = a∗ and by weighting by the reciprocal

of the conditional probability of the exposure A given the covariates C. This is an imputation procedure where the observed

data are complemented with imputed data in which the same individual is evaluated at different exposure levels, a and a∗, but

corresponding to the observed mediator levels and confounders. Applying inverse probability weighting entails calculating a

weighted average of the imputed counterfactual outcomes to obtain marginal estimates of the effects.

In practice (when considering A,M1,M2, Y binary), we fit to the observed data i) an outcome model g[E(Y |A = a,M1 =

m1,M2 = m2, C = c)] conditional on the observed exposure A, the mediators M1 and M2, and covariates C using a generalized

linear regression model and, ii) an exposure model P (A|C = c) conditional on the observed covariates C using a logistic

regression model to calculate the corresponding weights. We expand the observed data by repeating each observation in the

original data set twice and we consider one additional variable A
′

which is equal to the observed exposure A for the first repli-

cation and equal to the opposite of the observed exposure for the second replication (Table 3). When A
′

is equal to the observed

A, we estimate g{E[Y (1,M1(1),M2(1,M1(1)))]} and g{E[Y (0,M1(0),M2(0,M1(0)))]} from the outcome model by using

the observed data. On the contrary, when A
′

is different from the observed A, we estimate g{E[Y (1,M1(0),M2(0,M1(0)))]}

from the outcome model by using the individual’s own values of mediators M1 and M2 and confounders C in the unexposed

subjects (A=0), but using A
′

= 1, the opposite of the observed exposure A. Hence we calculate a weighted average of these

predicted values for subjects with A = 0. Similarly we predict g{E[Y (0,M1(1),M2(1,M1(1)))]} from the outcome model by

using the individual’s own values of mediators M1 and M2 and confounders C in the exposed subjects (A=1), but using A
′

= 0,
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the opposite of the observed exposure A, and we calculate a weighted average of these predicted values for subjects with A = 1.

TABLE 3 Inverse probability weighting approach: example based on two subjects, one exposed (i=1) and the other unexposed

(i=2). Bold quantities indicate the unobserved counterfactual values for each subject. A: exposure of the i-subiect, M1: first

mediator of the i-subiect, M2: second mediator of the i-subiect, Y : outcome of the i-subiect.

i A A
′

M1(a) M2(a,M1(a)) Y (a
′

,M1(a,M2(a,M1(a))
1 1 1 M1(1) M2(1,M1(1)) Y (1,M1(1),M2(1,M1(1)))

1 1 000 M1(1) M2(1,M1(1)) Y (0,M1(1),M2(1,M1(1)))Y (0,M1(1),M2(1,M1(1)))Y (0,M1(1),M2(1,M1(1)))

2 0 0 M1(0) M2(0,M1(0)) Y (0,M1(0),M2(0,M1(0)))

2 0 111 M1(0) M2(0,M1(0)) Y (1,M1(0),M2(0,M1(0)))Y (1,M1(0),M2(0,M1(0)))Y (1,M1(0),M2(0,M1(0)))

This approach does not require models for the mediators but only for the exposure conditional on confounders and for the

outcome conditional on the exposure, the mediators, and the confounders. The correct specification of these models is a req-

uisite for the validity of the proposed method. Exposure-mediator interactions and interactions between mediators can also be

included. The use of weights makes the exposure and the covariates independent, deactivating pathways relating the exposure

and the covariates. It allows one to consider binary, categorical or continuous exposures, but being based on a weighting

procedure its performance improves as the exposure is binary or categorical with few levels. Finally it can be used for any type

of outcome. Likewise to the IOR approach23, one could first consider M1, and then consider M1 and M2 jointly to evaluate the

additional contribution of M2 beyond M1 alone.

The imputation approach25 estimates both the marginal and conditional natural direct and indirect effects. We introduce it

here focusing on the conditional effects. This approach is based on the so-called natural effects models, i.e. structural models

for nested counterfactuals that directly parameterise the natural direct and indirect effects27. The natural effects models express

the nested counterfactual g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} in terms of two newly defined ’"exposure" variables A
′

and A
′′

(defined below) to compare as follows:

g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} = �H(a
′′

, a
′

, c) (13)

where H(a
′′

, a
′

, c) is a vector depending on A
′′

= a
′′

, A
′

= a
′

, C = c and � is a vector of regression parameters to estimate. For

example, �H(a
′′

, a
′

, c) could be �0+�1a
′′

+�2a
′

+�3a
′′

a
′

+�4c.A
′

andA
′′

are two variables with the same potential levels ofA, and

their inclusion in the regression model allows to encode two causal pathways: through neither mediator (i.e direct pathways A →

Y ), or through at least one of the two mediators (i.e. indirect pathways A → M1 → Y , A → M1 → M2 → Y , A → M2 → Y , for

brevity:A → M1M2Y ). SupposeA is binary with two levels 0 and 1,A
′

andA
′′

are also binary and have two potential levels 0 and

1. If both A
′

and A
′′

are set to 1, the equation (13) is equal to g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} = �0+�1+�2+�3+�4c,

while, if both A
′

and A
′′

are set to 0, the equation (13) is equal to g{E[Y (0,M1(0),M2(0,M1(0)))|C = c]} = �0 + �4c. Hence

the conditional total effect (4) is equal to:

g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} − g{E[Y (0,M1(0),M2(0,M1(0)))|C = c]} = �1 + �2 + �3. (14)

To decompose the total effect, it is necessary to consider scenarios in which A
′′

is set to a different value than A
′

. The conditional

pure direct effect (6) is equal to:

g{E[Y (1,M1(0),M2(0,M1(0)))|C = c]} − g{E[Y (0,M1(0),M2(0,M1(0)))|C = c]} = �1 (15)

and the conditional total indirect effect (5) is equal to:

g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} − g{E[Y (1,M1(0),M2(0,M1(0)))|C = c]} = �2 + �3 (16)

Similarly to IPW approach, the nested counterfactual g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} can be estimated from

the observed data when a
′′

and a
′

equal the observed exposure A (a
′′

corresponds to a and a
′

to a∗ in the IPW) . When

a
′

is equal to the observed exposure A, while a
′′

differs from a
′

, as in one of the terms in expressions (15) and (16), then
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g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} can still be estimated according to the following equality:

g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} =
∑

m1,m2

g[E(Y |A = a
′′

,M1 = m1,M2 = m2, C)]P (M1 = m1,M2 = m2|A = a
′

, C) = E
{
g[E(Y |A = a

′′

,M1,M2, C)]|A = a
′

, C
}

(17)

It consists of standardising the mean outcome Y in each stratum defined by the mediators M1,M2 and the confounders C
among individuals exposed at the level A = a

′′

, to the mediator distribution of individuals exposed at the level A = a
′

.This gives

arise to an imputation procedure where the observed data are complemented with imputed data in which the same individual is

evaluated at different exposure levels, a
′

and a
′′

, but corresponding to the observed mediator levels and confounders. The impu-

tation approach differs from the IPW approach in the estimation of the effects: the former uses the natural effects model, while

the latter calculates a weighted average of the imputed counterfactual outcomes. Note that the imputation approach could also

be applied without resorting to natural effect models. However, this could make the analysis cumbersome as the direct/indirect

effects would have to be estimated conditionally on specific combinations of confounder values (or specific reference values

for a continuous exposure). Natural effect models enable to both summarise these conditional effects and to conduct specific

hypothesis tests by also directly parameterizing the relation between the counterfactual outcomes and the confounders (and/or

potentially continuous exposures).

In practice (when considering A,M1,M2, Y binary), we fit to the observed data an imputation model g[E(Y |A = a,M1 =

m1,M2 = m2, C = C)] to impute the outcome conditional on A,M1,M2 and C using a generalized linear regression model. The

imputation model is used to complete an expansion of the data, in which (i) each observation in the original data set is repeated

twice ii) two variables A
′

and A
′′

are added, and iii) A
′

is equal to the observed exposure A and A
′′

is equal to the observed

exposure A for the first replication and equal to the opposite of the observed exposure for the second replication (Table 4). Only

when A
′

and A
′′

are equal to the observed exposure A the counterfactual outcome g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]}
can be estimated from observed data, otherwise g{E[Y (a

′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} can be imputed using the fitted

values ĝ{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))|C = c]} obtained by the imputation model for the outcome with the exposure set to

a
′′

, the mediators M1 and M2 and the baseline covariates C set to their observed values. The imputed outcome is no longer

binary, but is substituted by conditional mean imputations. Finally a natural effects model (13) has to be fitted to the imputed

data and the conditional effects (14), (15), and (16) can be calculated.

The estimation of the marginal effects can be performed by weighting the marginal version of the natural effects model

g{E[Y (a
′′

,M1(a
′

),M2(a
′

,M1(a
′

)))]} = �H(a
′′

, a
′

) by the reciprocal of the conditional probability of the exposure A given the

covariates C estimated using a logistic regression. Confidence intervals can be calculated by bootstrapping.

TABLE 4 Imputation approach: example based on two subjects, one exposed (i=1) and the other unexposed (i=2). Bold quan-

tities indicate the unobserved counterfactual values for each subject. A: exposure of the i-subiect, M1: first mediator of the

i-subiect, M2: second mediator of the i-subiect, Y : outcome of the i-subiect.

i A A
′

A
′′

M1(a
′

) M2(a
′

,M1(a
′

)) Y (a
′′

,M1(a
′

,M2(a
′

,M1(a
′

))

1 1 1 1 M1(1) M2(1,M1(1)) Y (1,M1(1),M2(1,M1(1)))

1 1 1 000 M1(1) M2(1,M1(1)) Y (0,M1(1),M2(1,M1(1)))Y (0,M1(1),M2(1,M1(1)))Y (0,M1(1),M2(1,M1(1)))

2 0 0 0 M1(0) M2(0,M1(0)) Y (0,M1(0),M2(0,M1(0)))

2 0 0 111 M1(0) M2(0,M1(0)) Y (1,M1(0),M2(0,M1(0)))Y (1,M1(0),M2(0,M1(0)))Y (1,M1(0),M2(0,M1(0)))

This approach does not require models for the mediators (averaging is performed over the empirical distribution of the joint

mediators), while it requires a model for the outcome conditional on the exposure, the mediators, and the confounders (imputa-

tion model), and a model for the nested counterfactual (13) (natural effects model). The correct specification of these models is

a requisite for the validity of the proposed method. Exposure-mediator interactions and interactions between the mediators can

be included. The imputation approach allows binary, categorical or continuous exposures as well as binary, categorical, count
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and continuous mediators and outcomes. Similarly to the other approaches, it is possible to first consider M1 alone and then

consider M1 and M2 jointly to evaluate the additional contribution of M2 beyond M1 alone.

The imputation approach has been implemented in the medflex package in R.28.

The extended imputation approach26 estimates both the marginal and conditional direct and indirect effects by further

decomposing the indirect effect into the effect mediated through M1 and the effect mediated through M2 alone as follows:

Marginal indirect effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))]} − g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]} = (18)

Marginal indirect effect though M1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))]} − g{E[Y (a,M1(a

∗),M2(a,M1(a
∗)))]} + (19)

Marginal partial indirect effect through M2 alone

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a

∗),M2(a,M1(a
∗)))]} − g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))]} (20)

or
Conditional indirect effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))|C]} − g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))|C]} = (21)

Conditional indirect effect though M1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a),M2(a,M1(a)))|C]} − g{E[Y (a,M1(a

∗),M2(a,M1(a
∗)))|C]} + (22)

Conditional partial indirect effect through M2 alone

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
g{E[Y (a,M1(a

∗),M2(a,M1(a
∗)))|C]} − g{E[Y (a,M1(a

∗),M2(a
∗,M1(a

∗)))|C]} (23)

The indirect effect through M1 captures all pathways along M1 to Y further mediated or not mediated by M2 (A → M1Y ).

The partial indirect effect through M2 captures all pathways along M2 to Y not passing through M1 (A → M2 → Y ). In

order to estimate these effects, the two usual additional assumptions need to be satisfied, namely the absence of unmeasured

confounding of the M1 −M2 association and the lack of confounders of this association in turn affected by the exposure.

Considering conditional effects, the nested counterfactual g{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} is now defined in

terms of three newly defined "exposure" variables A
′

, A
′′

and A
′′′

(defined below) as follows:

g{E[Y (a
′′′

,M1(a
′

,M2(a
′′

,M1(a
′

)))|C = c]} = �H(a
′′′

, a
′

, a
′′

, c) (24)

where H(a
′′′

, a
′

, a
′′

, c) is a known vector depending on a
′′′

, a
′

, a
′′

, c, and � is a vector of unknown regression parameters. For

example, H(a
′′′

, a
′

, a
′′

, c) could be �0+�1a
′′′

+�2a
′

+�3a
′′

+�4a
′′′

a
′

+�5a
′′′

a
′′

+�6a
′

a
′′

+�7a
′′′

a
′

a
′′

+�8c. A
′

, A
′′

and A
′′′

are three

variables with the same potential levels of A (if A is binary with two levels 0 and 1, then A
′

, A
′′

and A
′′′

have also two hypothet-

ical levels 0 and 1), and their inclusion in the regression model allows to encode the three causal pathways of interest, through

neither of the mediators (i.e. the direct pathway A → Y ), through M1 or M1 and then M2 (i.e. the indirect pathway through

M1: A → M1 → Y , A → M1 → M2 → Y ) or through M2 alone (i.e. the partial indirect pathway through M2: A → M2 → Y ).

Suppose A is binary, the conditional total effect is equal to:

g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} − g{E[Y (0,M1(0),M2(0,M1(0)))|C = c]} = �1 + �2 + �3 + �4 + �5 + �6 + �7
(25)

the conditional pure direct effect is equal to:

g{E[Y (1,M1(0),M2(0,M1(0)))|C = c]} − g{E[Y (0,M1(0),M2(0,M1(0)))|C = c]} = �1 (26)

the conditional total indirect effect through the mediators jointly is equal to:

g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} − g{E[Y (1,M1(0),M2(0,M1(0)))|C = c]} = �2 + �3 + �4 + �5 + �6 + �7 (27)
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the conditional total indirect effect through M1 is equal to:

g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} − g{E[Y (1,M1(0),M2(1,M1(0)))|C = c]} = �2 + �4 + �6 + �7 (28)

and the partial total indirect effect through M2 is equal to:

g{E[Y (1,M1(1),M2(1,M1(1)))|C = c]} − g{E[Y (1,M1(1),M2(0,M1(1)))|C = c]} = �3 + �5 (29)

The nested counterfactual g{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} can be estimated from the observed data when a
′′′

, a
′′

and a
′

equal the observed exposure A. When a
′′′

, a
′′

and a
′

differ one from others, the nested counterfactual can be estimated

according to the following equality:

g{E[Y (a
′′′

,M1(a
′

,M2(a
′′

,M1(a
′

)))|C = c]} =

=
∑

m1,m2

g[E(Y |A = a
′′′

,M1 = m1,M2 = m2, C)]P (M1 = m1|A = a
′

, C)P (M2 = m2|A = a
′′

,M1 = m1, C) (30)

which is equal to

∑

m1,m2

g[E(Y |A = a
′′′

,M1 = m1,M2 = m2, C)]
P (M1 = m1|A = a

′

, C)

P (M1 = m1|A = a′′ , C)
P (M1 = m1,M2 = m2|A = a

′′

, C) =

= E
{ P (M1|A = a

′

, C)

P (M1|A = a′′ , C)
g[E(Y |A = a

′′′

,M1,M2, C)]|A = a
′′

, C
}

(31)

or

∑

m1,m2

g[E(Y |A = a
′′′

,M1 = m1,M2 = m2, C)]
P (M2 = m2|M1 = m1, A = a

′′

, C)

P (M2 = m2|M1 = m1, A = a′ , C)
P (M1 = m1,M2 = m2|A = a

′

, C) =

= E
{P (M2|M1, A = a

′′

, C)

P (M2|M1, A = a′ , C)
g[E(Y |A = a

′′′

,M1,M2, C)]|A = a
′

, C
}

(32)

In practice, we fit to the observed data a model for the probability of either M1 conditional on A and C or M2 conditional on

M1, A and C (according to the researchers’ preference, see the next paragraph), and we fit to the observed data an imputation

model for the outcome g[E(Y |A = a,M1 = m1,M2 = m2, C = C)] conditional on A,M1,M2 and C using a generalized

linear regression model. The imputation model is used to complete the expansion of the data, in which each observation in

the original data set is repeated four times and three variables A
′′′

, A
′′

and A
′

are added to the original exposure variable

A. If we are interested in estimating the expression (31), A
′

is equal to the observed exposure level for the first two repli-

cations and equal to the opposite of the observed exposure for the third and fourth replications, A
′′

is equal to the observed

exposure level for all four replications, and A
′′′

is equal to the observed exposure level for the first and third replications and

equal to the opposite of the observed exposure for the second and fourth replication (Table 5). Only when A
′′′

, A
′′

and A
′

are equal to the observed exposure A the counterfactual outcome g{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} can be esti-

mated from the observed data, otherwise g{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} can be imputed using the fitted values

ĝ{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} obtained on the extended dataset by the imputation model for the outcome with

the exposure set to a
′′′

, the mediators M1 and M2 and the baseline covariates C set to their observed values. Similarly the

weights
P (M1|A=a

′
,C)

P (M1|A=a
′′ ,C)

can be computed on the extended dataset by the model for the probability of M1 with the exposure set

to a
′

and the baseline covariates C set to their observed values in the numerator and the exposure and the baseline covariates

C set to their observed values at the denominator. If we are interested in estimating the expression (32), A
′

is equal to the

observed exposure level for all four replications, A
′′

is equal to the observed exposure level for the first two replications

and the counterfactual exposure 1 − A for the third and fourth replications, and A
′′′

is equal to the value of the observed

exposure A for the first and third replications and of the counterfactual exposure 1 − A for the second and fourth replication

(Table 6). Now the counterfactual outcome g{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} can be imputed using fitted values

ĝ{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))|C = c]} obtained on the extended dataset by the imputation model for the outcome with

the exposure set to a
′′′

, the mediators M1 and M2 and the baseline covariates C set to their observed values. The weights
P (M2|M1,A=a

′′
,C)

P (M2|M1,A=a
′ ,C)

can be computed on the extended dataset by the model for the probability of M2 with the exposure set to a
′′

,

the mediator M1 and the baseline covariates C set to their observed values in the numerator and the exposure, the mediator M1

and the baseline covariates C set to their observed values at the denominator. Finally the natural effects model (24) can be fitted

by regressing the imputed outcomes on a
′

, a
′′

and a
′′′

and the covariates C and weighting by weights described above.
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The estimation of the marginal effects can be performed by weighting the marginal version of the natural effects model

g{E[Y (a
′′′

,M1(a
′

),M2(a
′′

,M1(a
′

)))]} = �H(a
′′′

, a
′

, a
′′

) by the reciprocal of the conditional probability of the exposure A

given the covariates C estimated using a logistic regression. Confidence intervals can be calculated by bootstrapping.

TABLE 5 Extended imputation approach (expression (31)): example based on two subjects, one exposed (1) and the other

unexposed (2). Bold quantities indicate the unobserved counterfactual values for each subject. A: exposure of the i-subiect, M1:

first mediator of the i-subiect, M2: second mediator of the i-subiect, Y : outcome of the i-subiect.

i A A
′

A
′′

A
′′′

M1(a
′

) M2(a
′′

,M1(a
′

)) Y (a
′′′

,M1(a
′

,M2(a
′′

,M1(a
′

)))

1 1 1 1 1 M1(1) M2(1,M1(1)) Y (1,M1(1),M2(1,M1(1)))

1 1 1 1 000 M1(1) M2(1,M1(1)) Y (0,M1(1),M2(1,M1(1)))Y (0,M1(1),M2(1,M1(1)))Y (0,M1(1),M2(1,M1(1)))

1 1 000 1 1 M1(0)M1(0)M1(0) M2(1,M1(0))M2(1,M1(0))M2(1,M1(0)) Y (1,M1(0),M2(1,M1(0)))Y (1,M1(0),M2(1,M1(0)))Y (1,M1(0),M2(1,M1(0)))

1 1 000 1 000 M1(0)M1(0)M1(0) M2(1,M1(0))M2(1,M1(0))M2(1,M1(0)) Y (0,M1(0),M2(1,M1(0)))Y (0,M1(0),M2(1,M1(0)))Y (0,M1(0),M2(1,M1(0)))

2 0 0 0 0 M1(0) M2(0,M1(0)) Y (0,M1(0),M2(0,M1(0)))

2 0 0 0 111 M1(0) M2(0,M1(0)) Y (1,M1(0),M2(0,M1(0)))Y (1,M1(0),M2(0,M1(0)))Y (1,M1(0),M2(0,M1(0)))

2 0 111 0 0 M1(1)M1(1)M1(1) M2(0,M1(1))M2(0,M1(1))M2(0,M1(1)) Y (0,M1(1),M2(0,M1(1)))Y (0,M1(1),M2(0,M1(1)))Y (0,M1(1),M2(0,M1(1)))

2 0 111 0 111 M1(1)M1(1)M1(1) M2(0,M1(1))M2(0,M1(1))M2(0,M1(1)) Y (1,M1(1),M2(0,M1(1)))Y (1,M1(1),M2(0,M1(1)))Y (1,M1(1),M2(0,M1(1)))

TABLE 6 Extended imputation approach (expression (32)): example based on two subjects, one exposed (1) and the other

unexposed (2). Bold quantities indicate the unobserved counterfactual values for each subject. A: exposure of the i-subiect, M1:

first mediator of the i-subiect, M2: second mediator of the i-subiect, Y : outcome of the i-subiect.

i A A
′

A
′′

A
′′′

M1(a
′

) M2(a
′′

,M1(a
′

)) Y (a
′′′

,M1(a
′

,M2(a
′′

,M1(a
′

)))

1 1 1 1 1 M1(1) M2(1,M1(1)) Y (1,M1(1),M2(1,M1(1))

1 1 1 1 000 M1(1) M2(1,M1(1)) Y (0,M1(1),M2(1,M1(1))Y (0,M1(1),M2(1,M1(1))Y (0,M1(1),M2(1,M1(1))

1 1 1 000 1 M1(1) M2(0,M1(1))M2(0,M1(1))M2(0,M1(1)) Y (1,M1(1),M2(0,M1(1))Y (1,M1(1),M2(0,M1(1))Y (1,M1(1),M2(0,M1(1))

1 1 1 000 000 M1(1) M2(0,M1(1))M2(0,M1(1))M2(0,M1(1)) Y (0,M1(1),M2(0,M1(1))Y (0,M1(1),M2(0,M1(1))Y (0,M1(1),M2(0,M1(1))

2 0 0 0 0 M1(0) M2(0,M1(0)) Y (0,M1(0),M2(0,M1(0))

2 0 0 0 111 M1(0) M2(0,M1(0)) Y2(1,M1(0),M2(0,M1(0))Y2(1,M1(0),M2(0,M1(0))Y2(1,M1(0),M2(0,M1(0))

2 0 0 111 0 M1(0) M2(1,M1(0))M2(1,M1(0))M2(1,M1(0)) Y (0,M1(0),M2(1,M1(0))Y (0,M1(0),M2(1,M1(0))Y (0,M1(0),M2(1,M1(0))

2 0 0 111 111 M1(0) M2(1,M1(0))M2(1,M1(0))M2(1,M1(0)) Y (1,M1(0),M2(1,M1(0))Y (1,M1(0),M2(1,M1(0))Y (1,M1(0),M2(1,M1(0))

Contrarily to other approaches described above, this approach allows to estimate the mediating contribution of the second

mediator alone. However this estimate requires to model the distribution of one of the two mediators. According to the confi-

dence on the model’s correct specification, one can choose as where to model the distribution of the first or the second mediator.

This approach requires also models for the outcome conditional on the exposure, the mediators, and the confounders (imputa-

tion model), and models for the nested counterfactuals (24) (natural effects model). The correct specification of these models

is a requisite for the validity of the proposed method. Exposure-mediator interactions and interactions between mediators can

also be included. It is possible to consider binary, categorical or continuous exposures as well as binary, categorical, count and

continuous mediators and outcomes.



14

3 RESULTS

3.1 Participants

To illustrate the approaches described in this article we used data from 4797 infants of the Ninfea cohort18. Ninfea is a

web-based birth cohort with the aim of investigating the effects of early-life exposures on the health of newborns, children,

adolescents, and adults. Cohort members are children of mothers recruited between 2005 and 2016 in Italy who completed a

first online questionnaire at any time during their pregnancy and are invited to complete six follow-up questionnaires when

their child turn 6 months, 18 months, 4, 7, 10 and 13 years of age. The study was approved by the Ethical Committee of the

University Hospital Città della Salute e della Scienza di Torino (project n. 45). Informed consent was obtained from all subjects

and/or their parents. All methods were performed in accordance with the relevant guidelines and regulations.

3.2 Exposure, mediators, confounders, and outcome

Our aim was to investigate the mediating role of adverse reproductive outcomes and infant respiratory infections underlying the

effect of maternal mental health during pregnancy on infant wheezing between 6 and 18 months.

In particular, we consider a binary exposure A indicating whether or not the woman had depression or anxiety in pregnancy;

a binary mediator M1 that indicates the occurrence of at least one between low birth weight, preterm birth, or delivery with

cesarean section (hereafter collectively referred as to "adverse reproductive outcomes"); a binary mediator M2 for the occur-

rence of lower respiratory infections in the first 6 months of infant life, as reported at the 6-month follow-up questionnaire; and

an outcome Y for the occurrence of wheezing between 6 and 18 months of infant life, as reported at the 18-month follow-up

questionnaire. Maternal age, education, residence, and pre-pregnancy body mass index, parity and child’s sex are considered

as baseline confounders C . The underlying hypothesized causal structure is represented in Figure 3, in which M1 and M2 are

assumed to be sequential. Although the example is necessarily simplified, we assume that the selected set of confounders is

sufficient to satisfy the assumptions defined above. The variables involved in the analysis are described in the Supplementary

Material.

FIGURE 3 DAG representing the hypothesized causal structure of the case study. For the sake of simplicity the confounders C

are not shown.

3.3 Marginal and conditional effects

Let a and a∗ correspond to the levels of the variable depression or anxiety in pregnancy (presence vs absence); M1(a
∗) to the

level of the adverse reproductive outcomes (presence vs absence) that would have been observed had the mother not suffered

from depression or anxiety in pregnancy (if A were set to a∗); M2(a
∗,M1(a

∗)) to the level of the occurrence of lower respiratory

infections (presence vs absence) that would have been observed if the mother had not suffered from depression or anxiety in

pregnancy (if A were set to a∗) and the adverse reproductive outcomes were set to the level that would have been observed if the

mother had not suffered from depression or anxiety in pregnancy (A were set to a∗). Y (a,M1(a
∗),M2(a

∗,M1(a
∗)) corresponds
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to the level of the occurrence of wheezing between 6 and 18 months of infant life (presence vs absence) that would have been

observed if i)the mother had suffered from depression or anxiety in pregnancy (A were set to a); ii)the adverse reproductive

outcomes were set to the level that would have been observed if the mother had not suffered from depression or anxiety in

pregnancy (A were set to a∗); and iii)the occurrence of lower respiratory infections were set to the level that would have been

observed if the mother had not suffered from depression or anxiety in pregnancy (A were set to a∗) and the adverse reproduc-

tive outcomes were set to the level that would have been observed if the mother had not suffered from depression or anxiety

in pregnancy (A were set to a∗). Finally Y (a,M1(a),M2(a
∗,M1(a)) corresponds to the level of the occurrence of wheezing

between 6 and 18 months of infant life that would have been observed if i)the mother had suffered from depression or anxiety

in pregnancy (A were set to a); ii)the adverse reproductive outcomes were set to the level that would have been observed if

the mother had suffered from depression or anxiety in pregnancy; and iii)the occurrence of lower respiratory infections were

set to the level that would have been observed if the mother had not suffered from depression or anxiety in pregnancy but the

adverse reproductive outcomes were set to the level that would have been observed if the mother had suffered from depression

or anxiety in pregnancy.

The marginal total effect expresses how much the occurrence of wheezing between 6 and 18 months of infant life would

differ when comparing two hypothetical scenarios in which all women suffered from depression or anxiety in pregnancy versus

all women did not suffer from depression or anxiety in pregnancy. The marginal pure direct effect expresses how much the

occurrence of wheezing between 6 and 18 months of infant life would differ comparing two hypothetical scenarios in which

all women suffered from depression or anxiety in pregnancy versus all women did not suffer from depression or anxiety in

pregnancy but both adverse reproductive outcomes and occurrence of lower respiratory infections were kept at the level they

would have naturally taken in absence of depression or anxiety in pregnancy. The marginal total indirect effect expresses how

much the occurrence of wheezing between 6 and 18 months of infant life would differ if women suffered from depression or

anxiety in pregnancy but both adverse reproductive outcomes and occurrence of lower respiratory infections were shifted from

the level they would have taken if women did not suffer from depression or anxiety in pregnancy to the level they would have

taken if women suffered from depression or anxiety in pregnancy. Alternatively we can define the effects conditional on maternal

age, education, residence and body mass index at the beginning of pregnancy, parity and child’s sex.

3.4 Estimated effects

Out of 4797 mother-child pairs, 7% of mothers had depression or anxiety during pregnancy. The prevalence of adverse repro-

ductive outcomes, as defined above, was 31% and the prevalence of lower respiratory infections in the first 6 months of infant

life was 11%. The prevalence of wheezing between 6 and 18 months of infant life was 17%. Some 26% of the infants born to

mothers affected by depression or anxiety during pregnancy had wheezing between 6 and 18 months of life vs 16% of those

born to mothers without depression or anxiety during pregnancy. We used a Poisson regression to model risk ratio and preva-

lence ratio. We found a 37% increased prevalence of adverse reproductive outcomes in women with depression or anxiety in

pregnancy compared to those without these conditions (PR: prevalence ratio, PR adjusted for C: 1.37, CI: confidence interval,

95% CI: 1.20;1.55), a 29% increased risk of lower respiratory infection in the first 6 months (RR: risk ratio, RR adjusted for C:

1.29, 95% CI: 0.95;1.76) and a 64% increased prevalence of wheezing (PR adjusted for C: 1.64, 95% CI: 1.35: 1.99). Adverse

reproductive outcomes were associated with a 19% increased risk of lower respiratory infections in the first 6 months (RR

adjusted for A and C: RR=1.19, 95% CI: 0.98; 1.43) and a 23% increased prevalence of infant wheezing (PR adjusted for A
and C: PR=1.23, 95% CI: 1.06;1.40). Finally lower respiratory infections in the first 6 months double the prevalence of infant

wheezing between 6 and 18 months of life (PR adjusted for A, M1 and C: PR=2.03, 95% CI: 1.75;2.35).

A summary of the fitted regression models to implement each of the four approaches to sequential mediation analysis is

reported in the Supplementary Material.

Results of the sequential analyses performed using the inverse odds ratio weighting, the inverse probability weighting and the

imputation approaches are reported in Table 7, while results obtained using the extended imputation approach are reported in

Table 8.

The inverse odds ratio weighting approach suggests that being born to a mother with depression or anxiety in pregnancy

compared to a mother not suffering from these disorders increases the prevalence of infant wheezing (PR=1.64, 95% CI:
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TABLE 7 Estimates of total, direct and indirect effects of maternal depression or anxiety in pregnancy on the risk of infant

wheezing between 6 and 18 months of age from inverse odds ratio weighting, inverse probability weighting and imputation

approach. M1: adverse reproductive outcomes. M2: infant lower respiratory infections.

Through M1 Through M1 and M2

PR 95% CI* PR 95% CI

Conditional effect IOR∗ approach

Pure direct effect 1.59 1.27-1.94 1.57 1.25-1.92

Total indirect effect 1.03 0.94-1.12 1.05 0.95-1.15

Total effect 1.64 1.33-2.00 1.64 1.33-1.97

Marginal effect IPW∗∗ approach

Pure direct effect 1.60 1.30-1.94 1.57 1.27-1.87

Total indirect effect 1.02 0.99-1.04 1.04 0.99-1.09

Total effect 1.63 1.33-1.98 1.63 1.31-1.95

Conditional effect Imputation approach

Pure direct effect 1.60 1.31-1.94 1.57 1.26-1.90

Total indirect effect 1.02 1.01-1.05 1.05 1.01-1.09

Total effect 1.64 1.33-1.99 1.64 1.33-1.99

Marginal effect Imputation approach

Pure direct effect 1.60 1.30-1.91 1.57 1.24-1.88

Total indirect effect 1.02 1.00-1.04 1.04 0.99-1.09

Total effect 1.63 1.33-1.95 1.62 1.29-1.95

PR: prevalence ratio; CI: confidence interval calculated by bootstrap.
∗Inverse odds ratio weighting.
∗∗ Inverse probability weighting.

TABLE 8 Estimates of conditional total, direct and indirect effects by extended imputation approach. M1: adverse reproductive

outcomes. M2: infant lower respiratory infections.

Extended imputation approach

Conditional effect PR 95% CI

Pure direct effect 1.57 1.28-1.86

Total indirect effect through M1 and M2 jointly 1.05 1.00-1.09

Total indirect effect through M1 1.00 0.99-1.00

Partial total indirect effect through M2 1.05 1.00-1.09

Total effect 1.64 1.34-1.96

PR: prevalence ratio; CI: confidence interval calculated by bootstrap.

1.33-2.00). Being born to a mother with depression or anxiety in pregnancy compared to a mother not suffering from these con-

ditions, while setting presence of adverse reproductive outcomes as naturally observed in the absence of maternal depression

or anxiety in pregnancy, increases the prevalence of infant wheezing (pure direct effect when only M1 is considered: PR=1.59,

95% CI: 1.27-1.94). Comparing levels of adverse reproductive outcomes that would have been observed in presence of maternal

depression or anxiety in pregnancy to levels that would been observed in absence of maternal depression or anxiety in preg-

nancy, while setting maternal depression or anxiety in pregnancy as present, increases only minimally the prevalence of infant

wheezing (total indirect effect when only M1 is considered PR=1.03, 95% CI: 0.94, 1.12). Similarly being born to a mother

with depression or anxiety in pregnancy compared to a mother not suffering from these disorders, while setting the presence

of adverse reproductive outcomes and lower respiratory infections as naturally observed in absence of maternal depression or

anxiety in pregnancy, increases the prevalence of infant wheezing (pure direct effect when M1 and M2 are considered jointly:

PR=1.57, 95% CI: 1.25-1.92). Comparing levels of adverse reproductive outcomes and lower respiratory infections that would
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have been observed in presence of maternal depression or anxiety in pregnancy to levels that would been observed in absence

of maternal depression or anxiety in pregnancy, while setting the maternal depression or anxiety in pregnancy as present,

increases only minimally the prevalence of infant wheezing (total indirect effect when M1 and M2 are considered jointly:

PR=1.05, 95% CI: 0.95, 1.15).

In summary, the direct effect of maternal depression or anxiety in pregnancy is equal to a 59% (95% CI: 27%-94%) increased

prevalence of infant wheezing and the mediated effect through adverse reproductive outcomes is equal to a 3% (95% CI: -6%-

12%) increased prevalence of infant wheezing. When including infant lower respiratory infections in the mediation pathway,

the direct effect decreases slightly to 57% (95% CI: 25%-92%) and consequently the indirect effect increases slightly to 5%

(95% CI: -5%,15%). Hence although adverse reproductive outcomes and infant lower respiratory infections are both risk factors

for infant wheezing and are affected by maternal depression or anxiety in pregnancy, they explain only minimally the observed

increased risk of infant wheezing associated with maternal depression or anxiety in pregnancy29,30,31. This exposure may act

on infant wheezing through other mechanisms/pathways that are not considered in our case-study analysis.

The corresponding estimates of the natural direct and indirect effects obtained using the weighting approach and the impu-

tation approach are very similar to those described above, although the inverse odds ratio weighting approach has slightly

larger confidence intervals for the direct and indirect effects. The extended imputation approach suggests further that the small

joint indirect effect through adverse reproductive outcomes and lower respiratory infections (PR=1.05, 95% CI:1.00-1.09) is

due entirely to the contribution of infant lower respiratory infections (PR=1.05, 95% CI: 1.00,1.09), independently from the

increased prevalence of adverse reproductive outcomes.

Conditional and marginal effects are expected not to differ because interactions between the exposure and the baseline covari-

ates and between covariates are not included in the regression models. In our case-study we considered the interaction between

the two mediators, while we assumed absence of the interaction between the exposure and the baseline covariates and the three-

way interaction between the exposure and the mediators. However, all methods can further consider these interactions with the

exclusion of the inverse odds ratio weighting approach that cannot specify the three-way interaction. When we included the

latter in the analysis, similar results of lack of indirect effects were obtained.

Note that the estimated effects can be considered as causal only if the assumptions specified in the Background

and Notation section hold, and in particular if there is no residual confounding of all considered associations

(A − Y , A −M1, A −M2,M1 − Y ,M2 − Y ,M1 −M2).

4 DISCUSSION

In this paper we have reviewed four different estimation approaches recently developed to answer research questions involving

sequential mediation analysis. We also provided the codes to run the analyses applied to a specific case-study of interest for

birth cohort research. The interest in using these methods can be twofolds: on the one hand they allow the study of multiple

mechanisms underlying the association between an exposure and an outcome, on the other they provide a possible solution for

the problem of intermediate confounding by considering the intermediate confounder as a sequential mediator in the analysis.

However, the correct estimation of natural direct and indirect effects relies on several assumptions (on the top of the issue of

intermediate confounder): the absence of unmeasured confounders of the exposure-outcome, exposure-mediators, mediators-

outcome associations in all four approaches, the absence of unmeasured confounders of the association between the sequential

mediators and the absence of the confounders of this association if affected by the exposure in the extended imputation

approach, the correct specification of the models for i)the outcome in all four approaches, ii)the exposure in the inverse odds

ratio and inverse probability weighting approaches, iii)at least one mediator in the extended imputation approach, and iv)the

nested counterfactual in the imputation and the extended imputation approaches. The choice of the method may depend on the

nature of the variables involved in the analysis: for example, the inverse odds ratio and the inverse probability weighting could

be preferred when the mediators are more difficult to model than exposure (e.g. continuous mediators and binary exposure),

while the imputation approaches may be the first option when it is more difficult to specify the model for the exposure than for

mediators (e.g continuous exposure and binary mediators). It is also important to consider what is the effect of main interest:

the inverse odds ratio approach estimates the conditional direct and indirect effects, the inverse probability weighting estimates

the marginal direct and indirect effects, while the imputation and the extended imputation approaches can estimate both con-

ditional and marginal direct and indirect effects. Finally, the extended imputation approach is the only method that allows the
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decomposition of the total indirect effect into the effect mediated through the first mediator and the effect mediated through the

second mediator alone. Despite these differences, the four estimation methods led to similar conclusions in our case-study. This

is reassuring for what regards the underlying assumptions used in mediation analysis, including for example the assumption on

the correct specification of the model.

In this article we focused on the application of the methods to the context with two sequential mediators. In presence of mul-

tiple mediators, one could for simplicity consider a group of mediators as a joint mediator as we did for adverse reproductive

outcomes. Alternatively the above illustrated approaches can be extended to settings with more than two mediators with caution

in underlying identification and estimation assumptions and modelling. Steen at al (2017)26 showed how to fit the extended

imputation approach to these contexts. Some other methods provide a finer decomposition of the total effect than the methods

addressed in this paper, yet stronger assumptions may be required2,16.

For the sake of completeness, it is worth mentioning here an approach that was not applied in this tutorial. Vansteenlandt and

Daniel (2017)32 revisited and refined the interventional direct and indirect effects33 in presence of multiple mediators, and

showed how the total effect can be decomposed into these effects. Briefly, the interventional effects differ from the natural

effects because, instead of setting the mediator to the counterfactual level it would have naturally taken under different scenarios

of the exposure, it sets the mediator for each subject to a random draw from the counterfactual distribution of mediator given

the covariates under different scenarios of the exposure. Loh et al (2020)34 generalized the interventional effects framework for

multiple mediators to high-dimensional mediators.

In the sequential mediation analysis there are still unsolved methodological issues, which, although of interest, go beyond the

scope of this work, for example the degree of bias in the estimates when the underlying assumptions of each approach are

violated or when the variables involved in the mediation pathways are poorly measured.

5 CONCLUSIONS

As the need to use sequential mediation analysis is becoming increasingly common in epidemiology and the proposed methods

are not easy to implement, the aim of this work is to help applied epidemiologists to run valid sequential mediation analysis

whenever required by their research hypothesis. It provides a detailed overview and step-by-step implementation with the sta-

tistical software R of four weight-based and/or imputation-based methods to analyse multiple sequential mediators in a causal

inference framework using a case-study of interest for birth cohort research.
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