1. Twidell, J. and T. Weir, Renewable energy resources. 2015: Routledge.
2. Asif, M. and T. Muneer, Energy supply, its demand and security issues for developed and emerging economies. Renewable and sustainable energy reviews, 2007. 11(7): p. 1388-1413.
3. Yu, J., Polymers, 2014, 6, 2473–2509;(d) L. Lu, T. Zheng, Q. Wu, AM Schneider, D. Zhao and L. Yu. Chem. Rev, 2015. 115: p. 12666-12731.
4. Lin, Y. and X. Zhan, Oligomer molecules for efficient organic photovoltaics. Accounts of chemical research, 2016. 49(2): p. 175-183.
5. Huang, J., et al., Highly efficient organic solar cells consisting of double bulk heterojunction layers. Advanced Materials, 2017. 29(19): p. 1606729.
6. Kaltenbrunner, M., et al., Ultrathin and lightweight organic solar cells with high flexibility. Nature communications, 2012. 3(1): p. 1-7.
7. Krebs, F.C., et al., 25th anniversary article: rise to power–OPV‐based solar parks. Advanced Materials, 2014. 26(1): p. 29-39.
8. Bruton, T., General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 2002. 72(1-4): p. 3-10.
9. Khalil, A., et al. Review on organic solar cells. in 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD). 2016. IEEE.
10. Walker, B., C. Kim, and T.-Q. Nguyen, Small molecule solution-processed bulk heterojunction solar cells. Chemistry of Materials, 2011. 23(3): p. 470-482.
11. Ni, W., et al., Open-circuit voltage up to 1.07 V for solution processed small molecule based organic solar cells. Organic Electronics, 2014. 15(10): p. 2285-2294.
12. Dennler, G., M.C. Scharber, and C.J. Brabec, Polymer‐fullerene bulk‐heterojunction solar cells. Advanced materials, 2009. 21(13): p. 1323-1338.
13. Ans, M., et al., Designing Three‐dimensional (3D) Non‐Fullerene Small Molecule Acceptors with Efficient Photovoltaic Parameters. ChemistrySelect, 2018. 3(45): p. 12797-12804.
14. Nielsen, C.B., et al., Non-fullerene electron acceptors for use in organic solar cells. Accounts of chemical research, 2015. 48(11): p. 2803-2812.
15. Trukhanov, V. and D.Y. Paraschuk, Non-fullerene acceptors for organic solar cells. Polymer Science Series C, 2014. 56(1): p. 72-83.
16. Wen, S., et al., Benzodithiophene‐based poly (aryleneethynylene) s: Synthesis, optical properties, and applications in organic solar cells. Journal of Polymer Science Part A: Polymer Chemistry, 2014. 52(2): p. 208-215.
17. Yan, C., et al., Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018. 3(3): p. 1-19.
18. Chen, C., et al., Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy, 2016. 23: p. 40-49.
19. Gao, C., et al., Rational design on D–A conjugated P (BDT–DTBT) polymers for polymer solar cells. Polymer Chemistry, 2014. 5(18): p. 5200-5210.
20. Wang, Y.-L., Q.-S. Li, and Z.-S. Li, Novel benzodithiophene-based polymer acceptors for efficient organic solar cells. Physical Chemistry Chemical Physics, 2017. 19(34): p. 23444-23453.
21. Ye, L., et al., Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Accounts of chemical research, 2014. 47(5): p. 1595-1603.
22. Xie, R., et al., Efficient Non‐Fullerene Organic Solar Cells Based on a Wide‐Bandgap Polymer Donor Containing an Alkylthiophenyl‐Substituted Benzodithiophene Moiety. ChemPhysChem, 2019. 20(20): p. 2668-2673.
23. Zhou, J., et al., Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. Journal of the American Chemical Society, 2013. 135(23): p. 8484-8487.
24. Lee, S.M., et al., Horizontal‐, Vertical‐, and Cross‐Conjugated Small Molecules: Conjugated Pathway‐Performance Correlations along Operation Mechanisms in Ternary Non‐Fullerene Organic Solar Cells. Small, 2020. 16(5): p. 1905309.
25. Lange, A.W. and J.M. Herbert, A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach. The Journal of chemical physics, 2010. 133(24): p. 244111.
26. Adamo, C., et al., Exploring excited states using time dependent density functional theory and density-based indexes. Coordination Chemistry Reviews, 2015. 304: p. 166-178.
27. Adamo, C. and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The m PW and m PW1PW models. The Journal of chemical physics, 1998. 108(2): p. 664-675.
28. Yanai, T., D.P. Tew, and N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical physics letters, 2004. 393(1-3): p. 51-57.
29. Finley, J.P., Using the local density approximation and the LYP, BLYP and B3LYP functionals within reference-state one-particle density-matrix theory. Molecular Physics, 2004. 102(7): p. 627-639.
30. Mennucci, B., R. Cammi, and J. Tomasi, Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. The Journal of chemical physics, 1998. 109(7): p. 2798-2807.
31. Ullrich, C.A. and Z.-h. Yang, A brief compendium of time-dependent density functional theory. Brazilian Journal of Physics, 2014. 44(1): p. 154-188.
32. Deschenes, L.A. and A. David A. Vanden BoutUniversity of Texas, Origin 6.0: Scientific Data Analysis and Graphing Software Origin Lab Corporation (formerly Microcal Software, Inc.). Web site: www. originlab. com. Commercial price: 595.Academicprice: 446. 2000, ACS Publications.
33. Tenderholt, A., PyMOlyze, Version 1.1. 2006, Stanford University, Stanford, CA.
34. Lu, T. and F. Chen, Multiwfn: a multifunctional wavefunction analyzer. Journal of computational chemistry, 2012. 33(5): p. 580-592.
35. Baser-Kirazli, N., R.A. Lalancette, and F. Jäkle, Tuning the Donor− π–Acceptor Character of Arylborane–Arylamine Macrocycles. Organometallics, 2021. 40(4): p. 520-528.
36. Malmqvist, P.Å., Calculation of transition density matrices by nonunitary orbital transformations. International journal of quantum chemistry, 1986. 30(4): p. 479-494.
37. Ans, M., et al., Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. Journal of molecular modeling, 2019. 25(8): p. 1-12.
38. Shehzad, R.A., et al., Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Computational and Theoretical Chemistry, 2020. 1181: p. 112833.
39. Bilal Ahmed Siddique, M., et al., Designing triphenylamine‐configured donor materials with promising photovoltaic properties for highly efficient organic solar cells. ChemistrySelect, 2020. 5(25): p. 7358-7369.
40. Rasool, A., et al., Designing of benzodithiophene (BDT) based non-fullerene small molecules with favorable optoelectronic properties for proficient organic solar cells. Computational and Theoretical Chemistry, 2021. 1203: p. 113359.
41. Zahid, S., et al., Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications. Journal of Molecular Modeling, 2021. 27(9): p. 1-14.
42. Ans, M., et al., Designing of non-fullerene 3D star-shaped acceptors for organic solar cells. Journal of molecular modeling, 2019. 25(5): p. 1-12.
43. Tang, S. and J. Zhang, Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo (thienylenevinylene) toward solar cells. Journal of computational chemistry, 2012. 33(15): p. 1353-1363.
44. Bibi, S., et al., Effect of different topological structures (D-π-D and D-π-A-π-D) on the optoelectronic properties of benzo [2, 1-B: 3, 4-B́] dithiophene based donor molecules toward organic solar cells. Solar Energy, 2019. 186: p. 311-322.
45. Xie, X., et al., Performance Regulation of Thieno [3, 2-b] benzothiophene π-Spacer-Based D-π-A Organic Dyes for Dye-Sensitized Solar Cell Applications: Insights From Computational Study. Frontiers in chemistry, 2019. 6: p. 676.
46. He, L.-J., et al., Fine-tuning π-spacer for high efficiency performance DSSC: a theoretical exploration with D− π− A based organic dye. Dyes and Pigments, 2017. 141: p. 251-261.
47. Pode, R., On the problem of open circuit voltage in metal phthalocyanine/C60 organic solar cells. Advanced Materials Letters, 2011. 2(1): p. 3-11.