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ABSTRACT

Developing prediction models for emerging infectious diseases from relatively small numbers of cases is a critical need

for improving pandemic preparedness. Using COVID-19 as an exemplar, we propose a transfer learning methodology for

developing predictive models from multi-modal electronic healthcare records by leveraging information from more prevalent

diseases with shared clinical characteristics. Our novel hierarchical, multi-modal model (TRANSMED) integrates baseline risk

factors from the natural language processing of clinical notes at admission, time-series measurements of biomarkers obtained

from laboratory tests, and discrete diagnostic, procedure and drug codes. We demonstrate the alignment of TRANSMED’s

predictions with well-established clinical knowledge about COVID-19 through univariate and multivariate risk factor driven

sub-cohort analysis. TRANSMED’s superior performance over state-of-the-art methods shows that leveraging patient data

across modalities and transferring prior knowledge from similar disorders is critical for accurate prediction of patient outcomes,

and this approach may serve as an important tool in the early response to future pandemics.

Introduction

The COVID-19 pandemic revealed salient challenges in developing systems that can accurately predict outcomes associated

with an emerging infectious disease. In particular, it emphasized the need for hospitals to access risk stratification tools that

could be used to proactively identify COVID-19 patients at a greater risk of undesirable outcomes1–8. Such capabilities are

critical for institutions to prioritize resources, and bring a quantitative approach to triaging9 in an emergency, which subjects the

human caregivers to intense psychological stress. Undertaking hard and pragmatic decisions, and accepting their consequences

leads to a new crisis that is appropriately called the “hidden pandemic for healthcare workers"10–12. Due to the lack of historical

COVID-19 cases for training supervised machine learning models, early methods for COVID-19 severity prediction focused on

the analysis of a relatively small number of carefully chosen model covariates, which included demographic risk factors, prior

comorbidities, symptoms on admission, and laboratory biomarkers8, 13. These carefully chosen covariates were predominately

used to train multivariate logistic regression and boosted decision tree-based approaches1, 14–16. Electronic health records are

heterogeneous data sources that include unstructured clinical notes, structured data that are coded as ICD diagnoses and CPT

procedures, and numeric measurements such as body vitals along with various laboratory test results. Due to their size, richness,

and wide-scale adoption, the past few years have seen major progress in developing predictive models for different subsets

of such data sources, where deep learning methods have been shown to achieve state-of-the-art results for several medical

outcomes such as re-admissions, mortality prediction, and length of stay13, 17–26. However, a notable gap lies in integrating all

of the multi-modal information into a single predictive model, and the challenges are amplified by the need for large amounts

of training data. In this paper, we propose TRANSMED, a methodology for developing multi-modal predictive models, while

addressing training data scarcity issues posed by emerging (or rare) diseases through transfer learning from diseases with shared



cohort-level characteristics and similar outcomes.

To address the existing gaps in pandemic preparedness, we sought to improve on current methods to: (i) predict if a patient

will be staying in the hospital, after a certain time using the patient’s multi-modal history. This provides a better understanding

of the severity of a patient’s condition, and (ii) predict the likelihood of a patient requiring mechanical ventilation. Collectively,

these prediction tasks capture the inherent challenges of inpatient resource planning such as those to predict which patients are

most likely to experience poor outcomes over a span of next 3-7 days9, 27–30.

Figure 1 presents a case study of a real COVID-19 patient to illustrate how different modalities offer unique information

to reason about a patient’s current state and future evolution. However, making use of the information requires careful

handling of sparsity across time and data sources. Diagnostic codes provide a more definitive assertion of patient’s short- and

long-term medical conditions, but they do not provide continuous observation of the patient. In addition, they are not frequently

observed and may miss key signals related to clinical deterioration. Observing the occurrence of key procedures and laboratory

measurements provide clinical information on a patient’s immediate conditions. The drug data stream provides additional

treatment information that helps characterize a patient’s disease state; compared to clinical observations such as diagnostic

codes, procedures, and laboratory tests, which typically marks the onset of a problem, the duration of a medication allows us to

reason about the type and severity of a particular symptom and it’s short- and long-term consequences; thereby serving as a

bridge to connect other data sources that more sporadically report information.

Our contributions. TRANSMED uses a hierarchical approach for learning cross-modal interactions across medical

concepts that occur closely in time. The self-supervised methodology implemented via BERT layers31 is first used to learn the

higher-order fine grained medical concept interactions using a Severe Respiratory Disease (SRD) cohort from Stanford Hospital

with 9,348 patient hospitalizations. Next, specific layers of the model are further trained for modeling temporal trajectories of

COVID-19 patients using EHR data of 1,701 patients. Our neural architecture is distinct from the other recent BERT-based 31, 32

prediction models in multiple dimensions. Our model integrates temporal information in multiple representations, that includes

clinical notes, discrete entity-based representation of diagnostic codes, drug codes, procedure codes along with continuous

valued time-series measurement of laboratory tests. To the best of our knowledge, the proposed model demonstrates the widest

integration of EHR-based data sources across multiple modalities for COVID-19 severity prediction. Our experiments show

that our hierarchical transfer learning based approach using Severe Respiratory Disease (SRD) cohorts leads to an average

improvement of 12.9% and 10.3% in AUROC for COVID-19 patient stay and ventilation prediction. We benchmark our

implementation with three models representing distinct prediction approaches and demonstrate an improvement ranging over

5.8%-29.2% for AUROC and 3.6%-66% in F1 score measure for ventilation prediction tasks, and accurately predicting the

likelihood of short- and long-term patient stays.

We also present a new methodology to interpret and evaluate model predictions via multi-comorbidity analysis. Much of the

literature on EHR models focus on characterizing the prediction performance through univariate analysis of the well understood

risk factors29, 33. However, clinical presentation of a disease and it’s severity can markedly vary depending on the constellation of

symptoms, prior health conditions and risk factors. Deep learning models are adept at learning higher-order feature interactions.

Therefore, evaluating model recommendations solely in terms of single factors may not explain when a prediction is driven by

a hidden combination of multiple factors. We present a methodology for identifying top multi-comorbidity conditions in a

data-driven fashion and evaluate their relative impact on model predictions. We believe our analysis would motivate data-driven

discovery of key multi-comorbidities associated with a disease while advancing the interpretability and rigor for evaluating

deep learning models for clinical use.

Methods

We begin this section with a description of the available data sources and the cohort selection process. After that, the problem

statement is described followed by a description of the model architecture.

Data Sources

Our study is based on de-identified EHR data of all patients treated at Stanford Hospital, between January 1, 2015 and March

19, 2021. This dataset was provided via STAnford Research Repository (STARR)34 and was used under approval by Stanford

University Institutional Review Board (IRB) protocol: 50033 (Machine Learning of Electronic Medical Records for Precision

Medicine). Patient informed consent was waived by Stanford University Institutional Review Board (IRB) for this protocol. All

methods were carried out in accordance with relevant guidelines and regulations.

As part of the de-identification process, the actual admission dates were randomized up to 30 days. The data was

retrospectively collected during the practice of care and transformed into the OMOP Common Data Model Version 5,

(https://www.ohdsi.org/data-standardization/the-common-data-model/) by the STARR OMOP team. Using the STARR OMOP

data, we created our cohort of COVID-19 patients (Figure 2) based on the following inclusion criteria: 1) patients with inpatient

visits after January 1, 2020, 2) patient age greater than 18 at admission, 3) patient had either a positive COVID-19 test within
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Figure 1. An illustration of multi-modal data sources observed over the course of a COVID-19 patient’s stay in the hospital.

The colors indicate diagnosis (purple), drugs (green), procedures (gray), and numeric lab measurements (blue bars). Different

data modalities are observed at varying frequency in raw patient data, with lab measurements being the most sparse across

patients and across time. TRANSMED reduces the impact of sparsity by utilizing all modalities of data in a given time interval

(e.g., 24 hours), creating more informed patient state snapshots in time.

14 days prior to the admission or had a diagnosis of COVID-19 within 7 days prior to the admission. Visits that were less than 1

day in length were excluded. We also created a cohort that included hospital admissions for severe respiratory disease (SRD)

patients with influenza, pneumonia or ARDS, for our transfer learning approach. The ICD-9 codes were first mapped to OMOP

CDM V5 concept identifiers which were then used to execute queries to retrieve the cohort data. The specific codes used for the

cohort selection and mechanical ventilation are listed in the Supplementary Table 1. The cohorts were cross-referenced for

similarity in observed medical codes and ventilation outcomes. Table 1 provides the summary statistics for the two cohorts,

with a detailed comparison under the results section.

Our study cohorts include clinical observations from four data sources: 1) free-text patient notes at the time of admission, 2)

discrete codes (we also refer to them as structured data) representing diagnosis codes, prescribed drugs, laboratory tests that

were ordered, and codes for the procedures performed, 3) continuous time-series measurements that were available for a subset
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Stanford De-id cohort  

(n=3,152,447)

Inclusion Criteria:

1. Inpatient visit

2. Age>=18 on visit start date

3. Positive Covid19 test within 14 days of 

visit start date, OR diagnosis code of 

Covid19 within 7 days of visit start date 

(n=1,765)

Exclusion Criteria

1. Length of stay < 1 day

(n=64)

COVID cohort

(n=1,701)

(a) COVID Cohort

Stanford De-id cohort  

(n=3,152,447)

Inclusion Criteria:

1. Inpatient visit after Jan 2015*

2. Diagnosis codes of either 

• Pneumonia (excluding idiopathic 

pneumonia syndrome and fungal 

infections)

• Influenza

• Acute respiratory distress

(n=6,892)

SRD cohort

(n=6,892)

(b) Severe Respiratory Disease (SRD) Cohort

Figure 2. Cohort selection process for COVID-19 and Severe Respiratory Disease (SRD) patients from the Stanford Hospital.

*For the SRD cohort, the start year 2015 was chosen heuristically to ensure that the data was sufficient in terms of both quantity

and quality.

of the ordered laboratory tests, and 4) patient demographics (age/race/sex/ethnicity). We parsed each note into sections and

used the SparkNLP library35 named entity recognizer (NER) for extracting medical conditions from the clinical notes (see

Supplementary section on “Data Sources" for implementation details). The extractions were used to determine the presence or

absence of baseline risk factors for each patient at the time of admission, including: Coronary Artery Disease (CAD), diabetes,

family history, hyperlipidemia, hypertension, existing medication, obesity, and smoking. Note that most of the COVID-19

patients were de novo, without any prior medical records. Family history and existing medication were discarded due to

insufficient coverage.

Problem Statement

Let Xt = (Ct ,Mt) be the patient state at time t, where Ct ⊆ C is a set of observed codes, Mt ∈ R
|M| is a vector of lab values, and

C and |M| denote set of codes and lab values observed across the whole cohort respectively. Let d ∈ {0,1}|D| and r ∈ {0,1}|R|

be multi-hot vectors denoting patient demographics and risk factors obtained at the time of admission, respectively. The clinical

outcome at time t is denoted by Ot . The problem statement is as follows: Given demographics d, risk factors r, and a sequence

of Th historical states Xt−Th+1,Xt−Th+2, ...,Xt , predict a clinical outcome of interest Tf steps ahead into future, denoted by Ot+Tf
.

Following the tasks proposed in the introduction section, we will focus on two outcomes: patient staying at the hospital or

patient requiring mechanical ventilation at time (t +Tf ). Th and Tf are referred to as “# input time-steps" and “look-ahead",

respectively.

Model Architecture

In this section, we present the intuition behind the key components of our model and provide details of the proposed hierarchical

model architecture. The supplementary section titled “Related Work" provides a detailed overview of all prominent methods

that has been applied over diverse modalities and prediction methodologies for EHR data. Figure 3 presents the data-flow

through our hierarchical multi-modal model with two primary components: 1) Transfer learning driven top layers that accept

patient state at a given time (subsequently referred to as “patient context") as input and produces a contextualized representation,

capturing feature interactions across all modalities of data in a single time step. 2) The bottom temporal modeling layer to

model patient evolution over time. This layer takes as input, the contextualized vector representations output from top layers for

each time interval augmented with positional encoding (indicating the time of observation) and produces a vector representing

patient evolution over time.

The transfer learning component is implemented using BERT layers due to their proven effectiveness in learning contextual
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relationships between set of observations 31. The choice for specific implementation of the temporal modeling layer is flexible,

and we discuss the different options for this layer in detail below. Overall, we use the SRD cohort to train the cross-modal

interaction layers during transfer learning. We train the temporal layers on the COVID-19 patient data only and keep the

multi-modal transformer layers fixed from the training of SRD cohort.

Multi-Modal Patient Context Encoders We begin with describing the “patient context" data structure that captures the

state of a patient over a single aggregation interval, across all modalities of patient data. We define the patient context as a

collection of labeled sets that contains both static attributes (such as demographics and risk factors) and all multi-modal EHR

information available during a specific interval in time.

We map numeric age values into 11 bins, based on CDC criteria (https://www.cdc.gov/coronavirus/2019-ncov/covid-

data/investigations-discovery/hospitalization-death-by-age.html). Age, race, and ethnicity are represented as categorical

variables, while the rest of the variables such as sex and presence of risk factors are represented as boolean variables (shown in

Figure 3a). The temporal information associated with the patient context at a given time interval can be naturally recognized as

a collection of sets, where each set represents a type of information such as diagnosis codes, drugs, procedures, laboratory tests

and contains the discrete identifiers of associated diagnosis codes, drugs, etc. (shown in Figure 3b). The multi-modal patient

context encoder module takes in the collection of sets as described above and returns a single vector representing the patient

context. We encode each boolean and categorical variables as a one-hot vector. The last component in the patient context

are laboratory measurements, which are represented as a dictionary of key-value pairs representing a test and it’s associated

numeric value. We only used the laboratory measurements from the COVID-19 cohort due to unit consistency issues in the

SRD data. A concatenation of all these vectors yields the final embedding, representing the patient context.

Learning Contextual Representation of Patient State in a Time Interval. Our first component focuses on learning a

contextualized representation of the patient state per time interval. This contextualization is important. For example, a drug

may be recommended as an “if-then" measure, where it is used if the patient descends into a critical condition. If a physician

were to read a chart with such information, they would understand this series of events and recognize why the drug exists on the

patient record. On the contrary, if the patient was already in a condition where the drug had to be administered, it would be

reflected through the presence of other diagnostic codes and lab measurements. The BERT layer in Figure 3 accomplishes this

contextualization effect, and generates a different vector embedding for each entity (such as the drug) depending on the input

patient context.

Transfer Learning We adopt a self-supervised learning approach36, 37 to train the BERT-based multi-modal patient context

encoder layer (green box in Figure 3c). Given a patient context Ct = (c1
t , ...,c

|Ct |
t ), we generate a random mask mt ∈ {0,1}|Ct | to

replace a specified number of condition, drug or procedure codes with a special [MASK] token. and train the model to predict

the missing values from the rest of the patient context using categorical cross-entropy loss.

Ĉt = (ĉ1
t , ..., ĉ

|Ct |
t ) where ĉi

t =

{

[MASK], if mt [i] = 1

ci
t , otherwise

(1)

Unlike existing self-supervised methods for EHR data19, 31, 32 that mask and predict codes encoded within the complete patient

trajectory, we perform contextualization within a small time step (e.g., 12 to 24 hours) without encoding time. This facilitates

learning a more fine-grained contextualization model from SRD, which is essential for transfer learning across diseases where

the patient conditions may evolve at different time-scales7, 14. The masked patient context Ĉt is then passed through a BERT

module to get contextualized patient state at time t. hC
t denotes the embedding for the entire context.

hC
t ,h

1
t , ...,h

|Ct |
t = BERT (ĉ1

t , ..., ĉ
|Ct |t ) (2)

which are passed through a linear layer to predict the masked codes.

c̃t
i = so f tmax(wT hi

t) ∈ R
|C | ∀i = 1, ..., |Ct | (3)

Learning over time from the entire history. Finally, the temporal modeling step introduces additional layers on top of the

pre-trained layers to specialize the model for specific prediction tasks. All encoded patient contexts (hC
i , i = 1, ...,Th) are further

augmented with a relative positional encoding (r
pos
i )36 to produce the inputs (denoted as X̂i below) going into the temporal

layer (purple box in Figure 3c). The position encoding represents the offset in time as measured from the beginning of the

patient stay, and allows us the model to reason about variable gaps in the patient data. For example, assuming we aggregate a

patient’s information using a 24 hour interval, and we have 3 diagnosis codes being reported at 3 PM (day 1), 9 AM (day 3),

and 3 AM (day 4), they would be associated with a positional index of 1, 3, and 4. For the static patient attributes, we encode

them as shown in Figure 3a and pad appropriately to produce a vector of same size as the {hC
i }, and further combine with the

positional offset of zero to produce X̂0.
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Figure 3. TRANSMED architecture. Patient context encoders are shown in (a) for static attributes and (b) for multi-modal

temporal attributes. The proposed hierarchical transfer learning model is shown in (c). The transfer learning components take

as input the patient’s multi-modal encoded state and produce a contextualized vector. The vectors for all time steps are

combined along with static attributes to model patient’s (task-specific) evolution over time.

H ′ = fselect(GRU(X̂0, X̂1, ..., X̂Th
)), fselect returns the last element from GRU output sequence. (4)

H ′ = fselect(BERT (X̂0, X̂1, ..., X̂Th
)), fselect returns the first element from BERT output corresponding to “CLS". (5)

H ′ = FFN(X̂0 ⊕ X̂1 ⊕ ...⊕ X̂Th
),where ⊕ represents tensor concatenation operation (6)

ôt = FFN(H ′) (7)

Finally, the resultant sequence from static patient attributes and the encoded vector embeddings from each time step

(X̂0, X̂1, ..., X̂Th
) are fed into a temporal layer (denoted as fT (·)). We experimented with fT (·) using the following: a GRU (Gated

Recurrent Unit)38 layer, a feed forward network (FFN), and a multi-ahead attention layer36. The temporal layer is followed by

a dense layer, and the output from the dense layer is passed through a non-linear function that produces the final scalar output.

Handling of the input ({X̂i}) and the output from fT (·) changes depending on the specific choice of the temporal layer, and the

specific implementations are described by equations (4)-(6). We use the binary cross-entropy as the loss function for training

the temporal prediction layers combining fT (·) and the final dense layer.

Results

Comparison of SRD and COVID-19 Cohorts

Our motivation to adopt a transfer learning approach for training a COVID-19 outcome prediction model was inspired by the

strong similarity between the vocabularies in SRD and COVID-19 cohorts (Table 1). 88.8% of the diagnosis codes in our

COVID-19 cohort were also found in the SRD cohort. Similarly, the drugs, procedures and laboratory measurement codes in

the COVID-19 cohort have an overlap of 94.04%, 63.2% and 90.57%, respectively. The SRD cohort also provided a strong

coverage for patients with severe outcomes, even though the distributions of outcomes are slightly different from the COVID-19

cohort (Fisher’s exact test, P < .05). 14.6% of the patients in the SRD cohort required ventilation as compared to 11.4% in

the COVID-19 cohort. Proportion of ICU days and mortality incidents in the SRD cohort are 23.4% and 8.34%, compared to

5.76% and 6.46% in the COVID-19 cohort, respectively.
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Table 1. Summary of the COVID and SRD cohorts.

COVID SRD P

Number of patients 1701 6892

Number of hospitalizations 1701 9348

Quarter-wise distribution of hospitalization

Before 2020 0 8574

2020-Q1 35 559

2020-Q2 329 202

2020-Q3 350 13

2020-Q4 566 0

2021-Q1 421 0

Length of stay, median (Interquartile range) 4.8 (2.8 – 8.8) 5.0 (2.0 – 13.0) .42

Age at encounter, mean (SD) 56.8 (18.6) 38.14 (30.9) <.001

Age at encounter among adults, mean (SD) 56.8 (18.7) 60.11 (18.4) <.001

Age groups <.001

<18 0 (0%) 3689 (39%)

18 –30 166 (10%) 492 (5%)

30 – 65 903 (53%) 2534 (27%)

>=65 632 (37%) 2633 (28%)

Race <.001

White 582 (34%) 3522 (51%)

Black or African American 70 (4%) 314 (5%)

Asian 228 (13%) 1157 (17%)

American Indian or Alaskan Native 10 (1%) 21 (0%)

Native Hawaiian or Other Pacific Islander 46 (3%) 173 (3%)

Other/Unknown 765 (45%) 1705 (25%)

Ethnicity <.001

Hispanic or Latino 691 (41%) 1687 (24%)

Not Hispanic or Latino 989 (58%) 5099 (74%)

Other/Unknown 21 (1%) 106 (2%)

Sex <.001

Male 854 (50%) 3108 (45%)

Female 847 (50%) 3784 (55%)

Clinical Outcomes

ventilation (yes/no) 194 / 1507 1365/7983 <.001

ICU admissions (yes/no) 98 / 1603 2188/7160 <.001

mortality (died/survived) 110 / 1591 780/8568 .01

Input Codes, [common codes/COVID total], [SRD total]

Diagnosis 2310/2599 6293

Procedure 1204/1905 5778

Drugs 2147/2283 4592

Lab Measurements 1355/1496 2431
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In terms of demographics, the COVID-19 cohort is quite different from the SRD cohort. In particular, the age distribution

of patients in the two cohorts is significantly different (chi-squared P < .001, see Table 1). This is partly due to the fact that we

restricted the COVID-19 cohort to adults only. However, if we restrict the analysis to adults only in both cohorts, the difference

persists – while the proportion of patients in the age group 18 – 30 is quite similar (9.8% and 8.7% in COVID-19 and SRD

cohorts, respectively), the COVID-19 cohort has a significantly higher proportion of patients in the 30 – 65 age group (53.1%)

than the SRD cohort (44.8%) (chi-squared P < .001), and consequently, the mean age among adults in the COVID-19 cohort is

significantly less than in the SRD cohort (Mann-Whitney U-statistic P < .001). The cohorts are significantly different with

respect to sex (Fisher exact test P < .001), with the COVID-19 cohort being more balanced than the SRD cohort. There are

significant differences between the cohorts with regard to race as well (chi-squared P < .001, ignoring the "Other/Unknown"

class). Finally, the "Hispanic or Latino" ethnicity is significantly over-represented in the COVID-19 cohort compared to the

SRD cohort (chi-squared P < .001).

Training and Evaluation Setup

As mentioned earlier, we evaluate the model on two binary classification tasks on the COVID-19 dataset. To generate input

dataset per patient, first, each patient’s stay duration is segmented into intervals of fixed length (aggregation windows) and the

visit data within each interval is aggregated. For interpretability reasons, we use a 24-hour aggregation interval. We then use

the sliding window approach to generate individual samples for all the models by considering each timestep in the visit as the

current timestep. No timesteps containing or following the first occurrence of a positive outcome can be part of an input.

We benchmark our model against three methodologies: logistic regression (LR)16, a Gated Recurrent Unit (GRU)-based

approach17, and BEHRT31 which is a state-of-the-art extension of BERT36 models for electronic healthcare records. Similar to

BEHRT, MedBERT 32 proposed training at patient visit sequence level, and uses only the diagnosis codes from a patient cohort.

Hence, we only empirically compare with BEHRT which uses a much wider scale of structured EHR data and is more suitable

for the in-stay patient study. We did not consider any time-series model due to the sparse and highly irregular nature of the

time-series based laboratory measurements. The COVID-19 cohort was split randomly into 60% train, 20% validation, and

20% test dataset for evaluation purposes. The same split of patient cohorts was used for evaluating all of the methods. The

models are evaluated using the AUROC (Area under Receiver Operating Characteristic curve) and the F1-score measure. The

F1-score captures both the precision (positive predictive value) and recall (aka sensitivity, the fraction of relevant instances

correctly retrieved) capability of the model. If TP, FP, and FN indicate “True Positive", “False Positive" and “False Negative",

respectively, F1-score measure is given by:

recall =
T P

T P+FN
, precision =

T P

T P+FP
, F1 =

2× recall × precision

recall + precision

For each outcome task (the likelihood of the patient staying in the hospital and ventilation risk) we study two variations of

prediction into the future: predict short-term (3 days) and long-term (7 days) (Tf = 3,7) patient outcomes. For all variations,

we feed 2 days of patient’s past history (Th) to the model. A detailed performance analysis of TRANSMED as a function of

input history size and look-ahead duration is provided in Supplementary Table 4.

Implementation Details

Baselines: For LR, we use an aggregated view of patient’s diagnoses, procedures, drugs, lab codes, lab measurements,

demographics, and risk factors over time. The model is trained using all variables encoded with the one-hot encoding scheme.

BEHRT model adapts the BERT layers for structured EHR data. It considers the sets of medical codes occurring across multiple

visits of a patient as a single instance of training sample. Analogous to the NLP domain, each code is embedded similar to

a word, and a time-offset embedding is added for each token depending on the visit id. To ensure a fair comparison , the

BEHRT model is pre-trained on SRD and fine-tuned on COVID-19 dataset as well. For the GRU baseline, we encode each

input timestep as a multi-hot vector of diagnosis, procedure, and medication codes. Additional implementation details for the

baseline methods can be found in Supplementary section titled “Methods: Implementation details."

TRANSMED: The BERT encoder layers in our model are implemented using the PyTorch BERT implementation available

from Huggingface https://github.com/huggingface/transformers and used 2 layers and 2 heads with a hidden size of 64 for

most configuration (refer to Supplementary section titled “Methods: Implementation details" for hyperparameter search). We

noticeably used a low number of parameters in the model to ensure training convergence with limited data. We mask and

predict one token for every patient state input to the model. The model was trained for a maximum of 300 epochs (both at visit

level and patient temporal level) or if the validation loss stopped reducing for 15 consecutive epochs. Training was performed

using a single NVIDIA Tesla V100 GPU of 16 GB memory capacity, leading to average training time of 2 hours for the transfer

learning step and 30 minutes for the temporal modeling layer using COVID-19 cohort. For reproducibility purposes, our code

will be made publicly available upon the acceptance of this paper.
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Table 2. Performance comparison of TRANSMED with other methods. The methods are evaluated for predicting patient stay

and ventilation risk in short-term (next 3 days) as well as long-term (next 7 days). TRANSMED’s best performance was

observed using BERT as fine tuning layer for long term ventilation prediction while feed-forward layer did best for other tasks.

(a) Patient stay prediction results.

Model

3 days 7 days

AUROC F1 AUROC F1

LR 0.79 (0.77 - 0.81) 0.67 (0.65 - 0.71) 0.74 (0.71 - 0.77) 0.68 (0.65 - 0.72)

BEHRT 0.68 (0.64 - 0.71) 0.43 (0.42 - 0.44) 0.62 (0.58 - 0.65) 0.43 (0.42 - 0.44)

GRU 0.84 (0.81 - 0.86) 0.77 (0.75 - 0.79) 0.80 (0.76 - 0.83) 0.67 (0.61 - 0.72)

TRANSMED 0.84 (0.82 - 0.86) 0.72 (0.70 - 0.74) 0.80 (0.77 - 0.83) 0.73 (0.70 - 0.76)

(b) Ventilation risk prediction results.

Model

3 days 7 days

AUROC F1 AUROC F1

LR 0.64 (0.52 - 0.78) 0.31 (0.28 - 0.35) 0.68 (0.56 - 0.80) 0.31 (0.28 - 0.34)

BEHRT 0.63 (0.60 - 0.66) 0.43 (0.42 - 0.44) 0.66 (0.63 - 0.69) 0.2 (0.19 - 0.22)

GRU 0.62 (0.48 - 0.77) 0.5 (0.5 - 0.5) 0.72 (0.59 - 0.87) 0.51 (0.49 - 0.54)

TRANSMED 0.83 (0.77 - 0.89) 0.52 (0.49 - 0.56) 0.77 (0.67 - 0.87) 0.53 (0.49 - 0.57)

Performance Analysis

We perform extensive experiments to allow us to answer following major questions: 1) which method is the best modeling

approach for a specific prediction task? 2) What is the impact of using transfer learning for predicting COVID-19 patient

outcomes? 3) How effective are different modalities of data in capturing patient state over various complexities of prediction

objective?

Table 2 provides a comparison of TRANSMED with respect to other benchmarks on all prediction tasks. We experimented

with different combinations of input data sources for TRANSMED, logistic regression, GRU, and BEHRT, and report the

best performance for each model. All studies are performed in sliding window setting as described in the evaluation setup.

A primary observation from Table 2 is that the performance gaps between the benchmarked methods vary depending on the

prediction task. Arguably, the patient stay prediction is a simpler task since it requires developing a coarser-level understanding

of patient’s severity. A patient can stay in the hospital for a variety of reasons and learning the association between all potential

factors and a severity level is key to accurate prediction. On the other hand, predicting a patient’s ventilation risk requires

reasoning about a more specific set of symptoms. Also, accurate prediction of ventilation risk requires robustness against label

imbalance due to the rareness of the outcome. TRANSMED performs on par with GRU for the patient stay prediction task and

consistently outperforms logistic regression and BEHRT. For the two ventilation prediction tasks, TRANSMED demonstrates

an average improvement of 17.5% for AUROC and 34.84% for F1 measure over logistic regression, the next best performing

method. A detailed comparison of the AUROC profiles for TRANSMED and other baselines is provided in Supplementary

Figure 1.

Impact of transfer learning and hierarchical model With regards to self-supervised learning approaches, TRANSMED

demonstrates an average gain of 25.6% for AUROC and 45.8% for F1 measures over BEHRT across four tasks. The significant

out-performance of TRANSMED over BEHRT demonstrates the impact of our hierarchical modeling approach beyond adapting

BERT and pre-training on multiple cohorts. The impact of transfer learning and multi-modality is studied in Table 3.

Transfer learning makes a significant impact in improving performance across all four tasks, with an average improvement

of 12.9% and 10.3% in AUROC for patient stay and ventilation prediction, respectively. Noticeably, transfer learning is the

primary contributing factor in the significant performance difference between TRANSMED and other baseline methods for

the ventilation prediction tasks. This demonstrates transfer learning helps learn the fine grained interactions between medical

concepts that are essential to accurate prediction of complex medical outcomes, in presence of limited training data. For

multi-modality, we see that, using only the procedure codes can offer significant predictive performance for all methods
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Table 3. Ablation study results of the proposed TRANSMED model analyzing the impact of transfer learning and data

modalities on the final performance. Ablation study was performed with a fixed set of hyper-parameters and feed forward

network fine tuning layer. See Supplementary “Methods: Implementation details" for description of hyperparameter tuning.

Method Short-term patient stay Long-term patient stay Short-term ventilation Long-term ventilation

Impact of Transfer Learning AUROC F1 AUROC F1 AUROC F1 AUROC F1

TRANSMEDw/o T L 0.71 0.62 0.72 0.67 0.72 0.47 0.71 0.48

TRANSMEDwith SRD 0.81 0.69 0.78 0.70 0.79 0.50 0.74 0.49

TRANSMEDwith SRD+COV ID 0.83 0.71 0.79 0.72 0.84 0.52 0.77 0.51

Impact of Data Modalities

TRANSMEDstruct 0.82 0.70 0.76 0.69 0.81 0.54 0.74 0.50

TRANSMEDstruct+NLP 0.83 0.71 0.77 0.69 0.79 0.53 0.75 0.51

TRANSMEDstruct+NLP+demo 0.83 0.72 0.77 0.70 0.81 0.53 0.75 0.51

TRANSMEDstruct+NLP+demo+lab 0.83 0.71 0.79 0.72 0.84 0.52 0.77 0.51

for the patient stay prediction task (see Supplementary Table 5). Introduction of risk factors from clinical notes, laboratory

measurements and demographics however improves the accuracy of ventilation prediction by 3.7% and 4.0% in AUROC,

respectively. The combination of demographics, laboratory measurements, clinical notes and procedure codes consistently

produces the best performance for TRANSMED across four prediction settings. Supplementary Table 5 provides the details

for all input variations that were experimented with and reports the performance breakdown for TRANSMED as a function of

input features.

Model Interpretability via Single and Multicomorbidity Analysis

This section presents two different evaluations of our model’s ability to account for important clinical factors. First, we begin

with profiling the model’s predicted risk score distribution in terms of well-established univariate risk factors in the clinical

literature28, 29, namely the chronic conditions extracted from clinical notes and demographics information such as age, gender,

and sex. Next, we examine the ability of the model to account for important multi-comorbidities. Taking inspiration from the

literature on recommendation systems39, we demonstrate a new methodology to identify top multi-comorbidities present in the

patient population. We then compute a ranked list of the top multi-comorbidities associated with patients with a ventilation

outcome, and compare the top-ranked multi-comorbidities as predicted by the model. This is a significantly harder test and we

demonstrate that TRANSMED successfully ranks the majority of the multi-comorbidities using this top-k verification approach.

Defining clinical risk factors Figure 4(a) shows the distribution of different chronic conditions and risk factors in the entire

population vs ventilated population. We observe that the admitted patients had high prevalence of hypertension, obesity,

smoking, and diabetes (present in around 60-65% of the population), while hyperlipidemia and coronary artery disease (CAD)

were observed in 40% and 23% of the cohort, respectively. However, the prevalence of all risk factors was substantially higher

in the ventilated population. Diabetes, obesity, and hypertension were present in more than 90% of patients, establishing these

as important risk factors for ventilation, while CAD and diabetes patients had the highest ratio of ventilated/total population.

(a) (b)

Figure 4. (a) Risk factor prevalence in ventilated patients compared to the total population. (b) The distribution of model

predicted risk scores for ventilation outcomes across the test cohort. The bars show the range while the mean score is showed

as a line across the bar. All chronic conditions lead to a higher predicted risk while the mean scores were highest for patients

with CAD and Diabetes (consistent with the ground truth trends observed for ventilated patients in (a)).
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Univariate analysis of model predicted risk scores Figure 4(b) provides the model predicted ventilation risk score for patients

with or without a risk factor. Patients with any of the risk factors were predicted to have a higher risk than patients without a

risk factor, which is consistent with ground truth observation. The average predicted risk scores were highest for CAD and

diabetes patients, with CAD patients having the largest variance. Between all risk factors, diabetes and hypertension patients

had the highest increase in risk compared to the non-diabetic or non-hypertension patients.

We further studied the model predicted risk scores across different patient demographics in terms of age and sex (shown

in Fig. 5). Patient race was excluded from our analysis due to insufficient coverage across different racial groups. Amongst

male and female sex, the model predicted higher risk scores for male patients compared to their female counterparts, consistent

with the ground truth for ventilation cases observed at 7.9% in male and 4.3% in female patients, respectively. For different

age groups, the patients under 30 years of age were predicted to be at very low risk even in the presence of risk factors, again

consistent with ventilation outcomes observed in the data (1/164 patients under 30). The model predicted risk increased for

patients with age when they did not have any risk factor. However, in the presence of a chronic condition, the model gave a

larger range of risk scores to CAD patients between ages 30-65, although the mean scores for other chronic conditions remained

similar across ages 30-65 (ventilated = 51/883) and the 65+ age group (ventilated = 50/614). A detailed analysis of model

performance for these sub-cohorts via AUROC measures is provided in Supplementary Table 2 and 3.

Figure 5. The influence of chronic risk factors across sex and age groups on the TRANSMED predicted risk scores for

ventilation outcome (Tf = 3).

Multivariate analysis of model predicted risk scores Finally, we introduce our methodology for evaluating the model

predictions in terms of multi-way feature interactions. Details of the multi-comorbidity generation and ranking process are

provided in Supplementary “Implementation of Multi-Comorbidity Ranking" section. We compare a ranking of the top

multi-comorbidities from six clinical risk factors as determined by their prevalence in the ventilated sub-cohort with a ranking

derived through model predicted scores (Figure 6). The model predicted risk ranking on the right closely agrees with the ground

truth ranking of comorbidities for ventilated patients, with top-5 (out of 30) ground truth comorbidity interactions, in top-9

comorbidities identified by the model. Our analysis establishes that the TRANSMED learns reliable risk scores across salient

clinical risk factors and captures multi-way feature interactions consistent with ground truth observed for ventilation outcomes.

Figure 6. Size-3 comorbidities by prevalence in ventilated patients vs model predicted risk score. The top 5 (out of 30)

comorbidities in the ground truth were found within the top 9 risk scores predicted by the model.
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Discussion

Set against the backdrop of COVID-19, we reviewed a number of challenges faced by health systems worldwide to develop

improved risk stratification tools for pandemic responses. We created a rigorous model evaluation framework dedicating

significant effort to explore the best settings for the benchmark methods, exploring different pre-training strategies (pre-train

on only SRD cohort, or a merged SRD and COVID-19 patient cohort) and evaluating impact of data source selection (see

results for 12 different combinations in Supplementary Table 5. The evaluations were performed across the four prediction task

settings of varying complexity. Our conclusions are drawn from the resultant space of models representing the widest possible

variation of data and neural architectures for our study cohorts.The following are key observations that emerge from our study.

Transfer learning from existing disease can be key to modeling emerging infectious (and rare) diseases. Pre-training

TRANSMED’s transformer-based multi-modal patient encoder layers on the larger SRD cohort consistently provided perfor-

mance boost ranging from 8-17% for our model performance. While our insight into the experiments with transfer learning

primarily arose from clinical intuitions, we confirmed the “transfer potential" by inspecting the overlap in the vocabularies, as

well as similarities in outcomes as detailed in the previous section. To our knowledge, no other work has demonstrated the

ability to train an effective deep learning model for COVID-19 by training on other pre-existing patient cohorts.

Building models with imperfect multi-modal data. Much of the initial literature on predictive models for electronic

healthcare records is overwhelmingly biased towards models with diagnostic codes and drug codes. Studies based on procedure

codes or time-series measurements constitute a small fraction. TRANSMED’s best performance was driven by a combination

of procedure codes, numeric laboratory measurements, demographics and knowledge of risk factors extracted from clinical

notes. Given the historical importance of diagnosis codes and drug codes in building predictive models and their relative

under-performance in our study raises key questions about the utility of each data source. As Figure 1 illustrates, we found

diagnostic codes are coded in sparsely. While medication data is available more continuously, it does not change frequently to

suggest changes in a patient’s condition. From this perspective, our best performing input combination is strongly intuitive.

Observing critical procedures such as a radiological test or heparin therapy allows a model to escalate a patient’s severity level,

observing measurements such lymphocyte counts over time allows the model to reason about the trend of infection levels, and

the knowledge of demographic information such as age, race, and sex coupled with prior knowledge of baseline risk factors

such as diabetes, hypertension, and CAD can guide a model’s association with other symptoms and outcomes.

Guiding training data complexity. We observe that in a setting with imperfect data, we need to explicitly reason about the

discriminative value of each data source. We also ensured the availability of sufficient training data for each feature introduced

in every data source. We only included 8 laboratory measurements out of 1496 unique laboratory measurement codes by

considering the number of patients who had available data (we set 1200 patients as a minimum threshold) and the minimum

number of days results were available for each patient (set to two). Ensuring high overlap between medical codes was critical to

the benefit of transfer learning as well. Considering that procedure codes have an overlap of 63.2% across SRD and COVID-19

patient cohorts, as compared to 88.88% for diagnostic codes, 94.04% for drugs, and 90.57% for laboratory measurements, it

is safe to say that the discriminative nature of procedure codes was a dominant factor over vocabulary overlap. Introduction

of each feature affects the learning complexity by increasing the number of model parameters. Implicitly and intuitively, we

sought to maximize the ratio of information entropy in our training data for each model parameter.

Merit of hierarchical approach for learning from sparse data. We conclude this discussion by noting that our approach

outperformed others by explicitly recognizing the sparsity in the training data. Instead of learning the association of different

medical codes or laboratory measurements at an entire patient stay level, we sought to learn the dependencies at finer granularity

of time. However, we also used the demographics information and risk factors as static attributes associated with each

time interval. Given that most of the multi-modal data streams occur sparsely and irregularly, this design decision reduced

the complexity of learning the association between “everything" but provided less ambiguous input for each sample in the

transfer learning step. In short, we ensured that the information flowed across modalities within a single time interval via the

pre-training/transfer learning step, and then across time through the temporal layer during the fine-tuning step. Given that both

TRANSMED and BEHRT were trained on identical transfer learning settings, the strong performance gap of TRANSMED over

BEHRT demonstrates the merit of our hierarchical modeling approach.

Summary and conclusions

Our work shows that a transfer-learning approach that learns from prior and related EHR databases is a promising way to build

predictive models for diseases with limited data. A key conclusion from our study is that hierarchical learning, that first models

the interaction between various medical concepts over shorter intervals, and then learns temporal dependencies is effective

for transfer learning across diseases where patient conditions evolve at different time-scales. Our methodology demonstrates

that a neural architecture that integrates both static (such as demographics and clinical risk factors) and dynamic information

(such as temporal lab measurements) in a fashion that is robust to the sparsity and irregularity of multi-modal data sources
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is likely to provide the best predictive model for complex outcomes. We also propose a method for multi-way comorbidity

analysis that can be extended to include a richer set of phenotypes and evaluate a model’s ability to capture complex interactions

between them. TRANSMED’s ability to improve the prediction accuracy on complex tasks such as predicting the likelihood of

ventilation seven days into the future by an average of 17.5% on AUROC and 34.84% for F1 score demonstrates the promise of

our method and motivates further investigation.

Data and Code Availability

The data that support the findings of this study are available from STAnford medicine Research data Repository(STARR)

(https://starr.stanford.edu) but restrictions apply to the availability of these data, which were used under license for the current

study, and so are not publicly available. The code will be made available upon request.
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