RNA base editing has great potential for use in research for cell functions and genetic disease. Unlike DNA editing, which can cause unwanted mutations in other parts of the genome, RNA editing may allow researchers to mimic genetic variants that provide a health advantage. Two main RNA base editors have been used in vitro: REPAIR, which mediates A-to-I editing, and RESCUE, which can perform both C-to-U and A-to-I editing. Unfortunately, although RESCUE is more versatile, its low editing efficiency limits its applications. Now, researchers have developed an enhanced RESCUE (eRESCUE) system. eRESCUE was generated by fusing inactivated PspCas13b with ADAR2. In tests using human cell lines, eRESCUE mediated more efficient A-to -I and C-to-U RNA editing than the original RESCUE editor. eRESCUE editing of IKKβ successfully converted 177Ser to Gly, resulting in decreased phosphorylation and downregulation of downstream IKKβ-related genes. Although further optimization is needed to decrease off-target effects, the new eRESCUE system may be a useful tool for biomedical research and treatment of genetic diseases.