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Abstract: The density and phase structure uniformity of the IZO ceramic target would have 
an effect on the optoelectronic properties of the sputtered film. In this work, a uniformly 
dispersed IZO slurry was used to obtain high-density green IZO compacts by the slip casting 
process. Based on the grain size and shrinkage data of IZO ceramics, the densification process 
was investigated, while the apparent activation energy and growth activation energy were also 
calculated. The results of XPS showed that sintering in an oxygen atmosphere can increase the 
concentration of oxygen vacancies of IZO ceramic to improve its electrical properties. Finally, 
IZO ceramics with a grain size of 3-6 μm and resistivity of 1.5 mΩ·cm were obtained by a two-
step sintering method. 
Keywords: IZO, Slip casting, Sintering, Grain size 

1. Introduction 

The continuous development of TCO (transparent conductive oxide) films in terms of 
electrical conductivity and optical transmittance performance has laid the foundation for 
promising applications in the semiconductor, flat panel display, solar cell, and energy-saving 
glass industries. The field of screen display, especially OLED, is leading the development trend 
of the flexible display market. Facing the innovative demand for flexible, bendable, and 
foldable display devices, a TCO film with a smooth surface, low stress, good thermal stability, 
and stable bonding to the substrate has been constantly developed[1, 2]. In the indium oxide-
based system, the doping element Zn can promote the amorphization of the film to obtain a 
TCO film with low surface roughness, low internal stress, and good etching performance[3]. 
Meanwhile, the visible light transmittance of the film can reach about 90% and possess certain 
thermal stability characteristics[4, 5]. Several strengths are worth mentioning, indium zinc 
oxide (IZO) thin film can be deposited at near room temperature and its crystallization 
temperature greater than 600°C[6]. These performance advantages indicate that IZO films have 
great potential for development. 

So far, the properties and applications of IZO films have been made by several scholars. 
The sputtering parameters of IZO films were optimized to greatly improve the electrical 
conductivity (1962±3.84 S/cm) and the surface roughness (0.55±0.03 nm), while severely 
reducing the residual internal stress (-0.52±0.04 GPa)[7]. All of the above demonstrates that 
IZO films can be used in next-generation OLED flexible devices. To decrease gate driver power 
consumption, Jun-Wei Chen[8] prepared a single-negative-source gate driver using IZO film. 
It consumes only 101 μW per stage at a clock frequency of 66.7 kHz, which is much lower than 
that of a dual-negative-source gate driver. In a study, it has been confirmed the feasibility of 
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IZO thin films in preparing non-volatile memory (NVM) devices [9]. The IZO/TiO2 thin film 
devices with a 6:4 In/Zn atomic ratio were fabricated. The research shows that the device has 
many superior properties, such as excellent stability, high content of oxygen vacancies 
(27.49%), high switching current ratio (> 103), and ultra-low switching voltage (close to 0). 
Magnetron sputtering is a common process for preparing thin films. To improve the purity, 
denseness, and composition uniformity of thin films, sputtering targets need to have the 
characteristics of high purity, high density, multiple components, and uniform grains. The 
microstructure of the green body has a great influence on ceramic performance after sintering. 
The preparation process of the original powder determines its particle size and morphological 
structure[10]. Nanoparticles without agglomerated structure and uniform particle size can 
reduce the coordination number of micropores and be gradually eliminated during the sintering 
process, thus enhancing ceramic densities[11]. The pressure casting technique, unlike the 
traditional casting process, takes the dual action of external pressure and the capillary force (50 
-100 KPa) of the plaster mold itself to improve the density and performance of the green 
body[12, 13]. However, little research has been done on the process of preparing high-
performance IZO ceramic targets. 

In this study, the uniformly dispersed IZO slurry with high solid content and low viscosity 
were firstly prepared to produce a uniform density of green IZO compact by pressure slip 
casting. In addition, the densification behavior and grain growth mechanism of IZO ceramics 
are investigated in detail. Besides, the apparent activation energy required for densification and 
grain growth was calculated by constructing MSC models and the brook dynamic model. 
Finally, the two-step sintering method was used to optimize the densification process and 
control the grain size and second phase distribution, thereby obtaining IZO ceramics with high 
densification and excellent optoelectronic properties. 

2. Experimental 

2.1 Sample Preparation 

High-purity indium oxide (99.99%) and zinc oxide (99.99%) powder were 
homogeneously mixed at a mass ratio of 89.3:10.7 to prepare IZO ceramics. Ammonium 
polyacrylate (dispersing agent) and polyvinyl alcohol (PVA, bonding agent) were added to the 
In2O3-ZnO mixed powders in a wet milling process with zirconia balls and deionized water. 
The solid content of the IZO slurry was 75 wt.% and the ball milling time was generally 
controlled at 24-48 h. The ball-to-powder mass ratio is 1:1, and the rotation speed is 250 r/min. 
Followed by that, uniformly dispersed IZO slurry was poured into the plaster mold via an 
external pressure (0.1-0.5 MPa) after vacuum-treated for de-airing. To increase the packing 
density of the IZO slurry, the pressure duration is often set to about 6 h. After demolding, the 
green IZO compacts were dried at a constant temperature (30℃) with high relative humidity 
(80%) for 48h to ensure a slow drying rate. Finally, the green IZO compacts with a relative 
density of 60±1%were obtained. In the convenient sintering process, the green IZO compacts 
were heated at a heat rate of 1℃/min to 750℃ soaking 10 h for removing the organic residues, 
and then the sintering temperature was increased at a rate of 3 ℃/min to 1400℃, 1500℃ for 
20 h. At the same time, a two-step sintering process was applied to the sintering of IZO ceramics, 
samples were first heated to a higher temperature T1 (1400-1600℃), then cooled to T2 (1350-
1500℃) at 10 ℃/min for 20-30 h. 



2.2 Characterization 

A digital rotational viscometer (DV2TLV, USA) was adopted to perform the rheological 
properties of the IZO slurry. Measurement and analysis of the particle size distribution of IZO 
slurry through Granulometric Analysis (NanoPlus HD, American). The thermal dilatometer 
(PCY-1600, China) was utilized to record the densification behavior of green IZO compacts at 
different heating rates. The size of the green IZO compacts was set at 40×10 mm to facilitate 
accurate data. At the same time, the master sintering curve (MSC) was further studied for 
predicting the densification behavior and calculating the activation energy of IZO ceramics. Cu 
K radiation was applied by X-ray diffraction (XRD, Empyrean, Netherlands) mode to 

investigate the phase composition of the IZO targets. For each sample under different sintering 
processes, the morphologies of IZO ceramics were visualized by scanning electron microscopy 
(SEM, Quanta 250 FEG, USA) after polishing and thermal etching at 1000℃ for 1 h. Research 
on the elemental chemical states of In, Zn, and O in IZO ceramics was inspected by X-ray 
photoelectron spectroscopy (XPS, AXIS Supra, Japan). Electronic probes (EPMA, EPMA-
1720, Japan) were used to analyze and quantify the elements of In, Zn, and O in micro-regional. 
Based on the Archimedes method, the density of IZO ceramics was calculated precisely and the 
resistivity of IZO ceramics was measured by four-probes (RTS-8, China). 

3. Results and discussion 

3.1. The rheological properties and particle size distribution of the IZO slurry 

The powder needs to be pretreated to improve the rheological properties of the slurry, thus 
ensuring a uniform particle distribution and no agglomeration in the green compact. To ensure 
the stability of the particles in the slurry, 1.8 wt.% NH4PAA was added to improve the dispersion 
effect[14]. The viscosity curves and shear stress curves (Fig. 1) illustrated the variation of the 
rheological properties of the slurry with the ball milling time. It can be seen the apparent 
viscosity value of the slurry with a ball milling time for 40 h is 45 mPa·s from 20 s-1 to 80 s-1, 
which is slightly lower than that of 32 h and 48 h. Other than that, the suspensions with a ball 
milling time of 40 h showed a lower yield shear stress. The data indicates that 40 h ball milling 
time is the most suitable slurry for pressure slip casting. 

  

Fig. 1. Variation of rheological properties of IZO slurry with ball milling time: (a) Viscosity-Shear rate, 
(b) Shear stress-Shear rate. 

However, it is not enough to rely on the rheological properties of the slurry alone for the 
performance of the green IZO compacts, but also to consider the degree of dispersion of 



agglomerated particles as an important parameter. The nanoparticle size distribution of the IZO 
slurry was also examined while sampling at different ball milling times. Fig. 2 depicts the 
relationship between different ball milling times and particle size distribution. It verifies that 
with the increase of ball milling time, the slurry D50 particle size firstly decreases from 510 
nm to 365 nm and then slightly increases to 386 nm. As the agglomeration phenomenon 
weakens, the total surface area of uniformly dispersed nanoparticles increases, generating large 
surface energy, and the interparticle attraction increases again, which leads to the re-
agglomeration of particles. As a result, the slurry with 40 h ball milling time has the best 
rheological properties and smaller nanoparticle size distribution, so it will be selected to prepare 
the green IZO compact. 

 
Fig. 2. The nanoparticle size distribution of IZO slurry with different ball milling times: (a) 24 h, (b) 32 h, (c) 40 h, 

(d) 48 h. 

3.2. Densification behavior of IZO ceramics and calculation of activation energy 
based on constructing MSC. 

The shrinkage behavior of green IZO compacts in the temperature range of 0-1500℃ was 
recorded using a thermal dilatometer. As shown in Fig. 3, the effect of different heating rates 
(3, 5, and 7 ℃/min) on the degree of densification is compared. It is obvious that when the 
heating rate is 3 ℃/min, the shrinkage is 16.1%, which is higher than others. From the shrinkage 
rate curves of the three samples, there are two large peaks around 1080℃ (0.11, 0.19, 
0.27 %/min, respectively) and 1305℃ (0.11, 0.17, 0.23 %/min, respectively), and the trend of 
the three curves is consistent. For the densification behavior in Fig.3, the sintering process was 
divided into three periods based on factors such as reduced porosity, decreased surface energy, 
and grain growth: Pre-sintering, Mid-sintering, and After-sintering. The initial stage of sintering 
(Fig.3 a-Ⅰ) is mainly characterized by the formation and growth of interparticle necks, and the 
shrinkage of green IZO compact at this stage is about 5%, corresponding to a temperature range 



of 900-1050℃. The next stage (Fig.3 a-Ⅱ) is the period of rapid grain growth, intergranular 
pores migrate and eventually transform into a closed state. At the later stage (Fig.3 a-Ⅲ) of 
sintering, the closed pores continue to decrease and nearly spherical pores appear at the triple 
junction, and the relative density reaches more than 95%. 

 

Fig. 3. Sintering densification process of the green IZO compacts at different heating rates: (a) 
Variation of shrinkage with time (a-Ⅰ, a-Ⅱ, a-Ⅲ are the fracture profiles of three sintering periods), (b) 

Curvature of shrinkage rate with temperature. 
Dilatometric shrinkage data not only monitor the densification process of the samples but 

also predict the final density of the ceramics and calculate the apparent activation energy. 
Johnson constructed a master sintering curve theory (MSC) for pressureless sintering by 
utilizing a full-term sintering model[15]. The model of MSC starts from the densification rate 
equation, which is derived as follows: 
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Eq. 1 is the instantaneous linear shrinkage in the sintering process, where L is the length 
of the sample, t is the time, T is the temperature. γ is the surface energy, Ω is the atomic volume, 
k is the Boltzmann constant, G is the grain size, δ is the grain boundary width; The value of Γ 
is related to the driving force, the average diffusion distance and the mean grain size of different 
sintering rate; Db and Dv are the grain boundary diffusion coefficient and volume diffusion 
coefficient, respectively. In the case of isotropic sintering, the linear shrinkage rate can be 
transformed into the densification rate according to Eq. 2. 
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where ρ is the relative density. Assuming that there is only one diffusion mechanism (grain 
boundary diffusion or volume diffusion) in the sintering process. By simplifying Eq. 1 and Eq. 



2 and substituting the diffusion coefficient formula, it can obtain  
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Here, if Γ(ρ) and G(ρ) are functions of only density and the sintering kinetic influence on 
the structural evolution during the sintering process is denoted by Φ(ρ), the left of Eq. 3 can 
become 
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The right of Eq. 3 is related to the atomic diffusion process. The function only depends on 
variables such as t, T, Q. 
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Consequently, Eq.3 becomes 

  ( )= ,t T t                  (6) 

The main sintering curve (MSC) can be defined by a functional relationship between Φ(ρ) 
and ρ. Since the derivation process requires extensive numerical calculations, V. Pouchly et al. 
designed software to simplify the solution process of Q[16]. The curve of IZO ceramics about 
MSC can be obtained from the shrinkage data of three different heating rates, as shown in Fig. 
4. The Mean Perpendicular Curve Distance (MPCD) in the inset is a standard statistical method 
to determine the overlap of the MSC curves, enabling more accurate Q values to be obtained. 
The data show that the curves with different heating rates have good overlap, to get precise 
apparent activation energy Qd=580 kJ/mol). The calculation of the grain growth activation 
energy in the next section can provide theoretical support for the subsequent two-step sintering 
process. 

 

 

 



Fig. 4. Construct MSC and MPCD to calculate the activation energy of IZO ceramic. 

3.3. Calculation of the grain growth activation energy for IZO ceramics 

To analyze the grain growth mechanism of IZO ceramics, the grain sizes were counted at 
different sintering temperatures and holding times. Brook dynamic model can be used to 
evaluate the activation energy of grain growth for different atomic regimes[17, 18], as 
expressed in Eq. (7), 

0

n n

t
G G kt               (7) 

Where n is the grain-growth exponent, k is the grain growth rate constant, t is the sintering 
time, Gt and G0 are the grain sizes at sintering times t and 0, respectively. Since the particle size 
of the original powder is so small and negligible, the Eq. 7 becomes 

n

t
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Then take the logarithm of both ends of Eq. 8, 
1 ln

In In
t

k
G t

n n
          (9) 

Eq. 9 is shown as a function of grain size and sintering time, where n is the inverse of the 
slope of the function. Fig. 5 contains the grain size statistics of IZO ceramics held at 1500℃ 
for 0.5 h, 10 h, 20 h, respectively. With the extension of holding time, the grain grows 
continuously from 2.73 μm to 5.28 μm. According to the linear position, it can get n= 6.52 and 
k=5.37×1020, as in Fig. 6.  

The value of k can be elaborated in further detail using the Arrhenius formula, then Eq. 8 
can be expressed as 

0 exp( )n

t

Q
G k t

RT
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Substituting the previously found value of n, Eq. 10 can become 

06.52In (In In )
t

Q
G k t

RT
      (11) 

Eq. 11 can be considered as a function of grain size and sintering temperature, where -Q/R 
is the slope of the line. The IZO compacts were sintered at 1300°C, 1400°C, 1500°C, and 
1600°C for 10 h with grain sizes of 2.35 μm, 2.71 μm, 3.90 μm, and 7.50 μm, respectively, as 
shown in Fig. 7. The grain growth activation energy Qg=690 kJ/mol is from processing data in 
Fig. 8. Consequently, the apparent activation energy (580 kJ/mol) calculated by MSC is less 
than the grain growth activation energy, which can prove the rational implementation of two-
step sintering. 

 

 

 



 

Fig. 5. Grain size distribution and morphology of IZO ceramics sintered at 1500℃: (a) 0.5 h, (b) 10 h, 
(c) 20 h. 

 



Fig. 6. Linear plot of InGt versus Int for IZO ceramic. 

 

 

 

 

Fig. 7. Grain size distribution and morphology of IZO ceramics: (a) 1300℃, (b) 1400℃, (c) 1600℃.  



 

Fig. 8. Linear plot of 6.52InGt versus 1/T for IZO ceramics. 

3.4. Control the grain size of IZO ceramic targets by two-step sintering method 

The conventional sintering process has the problem of not being able to separate the 
densification and grain growth processes of ceramics. Although IZO ceramic targets can be 
completely densified, the grains also grow rapidly in the late sintering stage, showing a gradual 
coarsening phenomenon. Fortunately, the two-step sintering method was proposed by wang et 
al[19]. The temperature is first increased to a higher temperature T1 to induce rapid 
densification of the ceramic, and then cooled down to T2 and held for a long time. Holding at 
lower temperatures can inhibit grain boundary migration and avoid abnormal grain growth. 
Therefore, this section will explore the optimal T1 & T2 combination application and the two-
step sintering process parameters are listed in Table 1. 

 

Table 1. Sintering process condition and density of IZO ceramics.  

Sample T1 (°C) t1 (h) T2 (°C) t2 (h) ρrelative (%) Mean grain size (μm) 
CS1 1300 10 — — 95.9 1.9 

CS2 1400 10 — — 98.7 2.8 

CS3 1500 0.5 — — 98.9 2.6 

CS4 1500 10 — — 99.0 3.8 

CS5 1500 20 — — 98.9 4.7 

CS6 1600 10 — — 98.1 7.3 

TSS1 1450 0 1300 20 97.9 2.3 

TSS2 1450 0 1350 20 98.6 2.6 

TSS3 1450 0 1400 20 98.8 2.9 

TSS4 1500 0 1300 20 98.8 2.9 

TSS5 1500 0 1350 20 98.9 3.0 

TSS6 1500 0 1400 20 99.5 3.1 

TSS7 1500 0 1400 30 99.2 3.9 

TSS8 1550 0 1400 20 99.1 4.7 

TSS9 1600 0 1450 20 99.2 6.3 

 



Fig. 9 shows the variation pattern of grain distribution with adjusting T1 and T2. It is known 
that the 1400-1600°C is the rapid grain growth stage from the conventional sintering process. 
The mean grain size of CS1 was only 1.9 μm, so the starting temperature of T2 was set to 1300°C 
and incremented by 50°C to obtain high-density IZO ceramics with smaller grains. When the 
sintering temperature T2 increased, the aggregation of small particles was gradually eliminated 
and the porosity of IZO ceramics decreased significantly. By adjusting T1 and T2 properly, the 
relative density of TSS 6 increased from 97.9% to 99.5%, while the average grain size of IZO 
ceramics changed from 2.3 to 3.1 μm without excessive grain growth. Therefore, the grain size 
is effectively controlled by the TSS method in the densification process of IZO ceramics. 

 

Fig. 9. Grain microstructure of IZO ceramics sintered by the two-step sintering method: (a) T1=1450℃, 
T2=1300℃; (b) T1=1500℃, T2=1300℃; (c) T1=1500℃, T2=1350℃; (d) T1=1500℃, T2=1400℃. 

Further, the effect of increasing the holding time and sintering temperature on grain growth 
of IZO ceramics was investigated, as shown in Fig. 10. The average grain size of TSS 7, TSS 
8, TSS 9 is 3.89 μm, 4.68 μm, and 6.28 μm, respectively. The increasing the holding time and 
sintering temperature induce the grain growth to continue and, at the same time, lead to a 
decrease in IZO ceramics density due to the volatilization of Zn elements at high temperatures. 
Sintering at high temperatures causes larger pores between grains, which increases the grain 
boundary potential and decreases the electron mobility, and thus increases the resistivity of IZO 
ceramics. Grain size, relative density, and resistivity changes of IZO ceramics are shown in 
Fig. 11. The sintering process of TSS 6 is optimal, where the relative density of IZO ceramic 
is 99.5%, the average grain size is about 3 μm, and the resistivity is 1.5 mΩ·cm. When the T1 > 
1500℃ will cause rapid grain growth, Zn element volatilization and lead to the reduction of 
density so that the ceramic electrical properties deteriorate. 



 

Fig. 10. Grain microstructure of IZO ceramics with TSS method: (a) T1=1500℃, T2=1400℃, t=30 h; 
(b) T1=1550℃, T2=1400℃, t=20 h; (c) T1=1600℃, T2=1450℃, t=20 h. 

 

Fig. 11. Grain size, relative density, and resistivity of IZO ceramics sintered by the TSS method. 

3.5. Chemical state analysis and elemental distribution of IZO ceramics 

The XPS was used to detect the chemical state of IZO ceramics, narrow-spectrum analysis 
of In3d, Zn2p, and O1s is given in Fig. 12 (b-d). The valence content of the elements is shown 
in Table 2. The indium peak can be split to fit into 2 valence states with binding energy positions 
at In3d5/2

Ⅰ (443.8 eV) and In3d5/2
Ⅱ (444.5 eV). In3d5/2

Ⅰ, In3d5/2
Ⅱ are oxygen deficiency In2O3-x 

state and In2O3 state[6, 20], respectively. The In2O3-x state of green IZO compacts after sintering 
rises significantly and is more abundant under an oxygen atmosphere (89.58%). The Zn2p peak 
was fitted with another component Zn2p3/2

Ⅱ, which could be attributed to metallic Zn (1021.5 
eV)[21]. The change in the position of the Zn2p peak for the three specimens was almost 
negligible, and the valence state of Zn was more stable[22]. There are 3 states of oxygen present 
in IZO ceramics centered at O1sⅠ (529.3 eV), O1sⅡ (531.3 eV), and O1sⅢ (533.1 eV). The 
binding energy at 529.3 eV would be owing to the bond of In-Zn-O. O1sII (531.3 eV) can be 
attributed to the oxygen vacancies and O1sⅢ (533.1 eV) is caused by adsorbed oxygen[9, 23, 
24]. The variation of oxygen vacancy content O1sⅡ in sintering under different atmospheres 
follows the same trend as In3d5/2

Ⅰ. The oxygen vacancy content was highest under oxygen 
sintering with a value of 72.66%. The escape of oxygen from the crystal structure occupying 
the oxygen site anion generates a double ionization vacancy and two free electron carriers, and 
electrons are released from the oxygen vacancy, leading to an increase in mobility and free 
carrier concentration. Therefore, sintering in an oxygen atmosphere can increase the oxygen 
vacancy content and further improve the electrical conductivity. 



 

 

Fig. 12. XPS patterns of IZO ceramics sintered in O2 and air atmosphere: (a) In 3d, (b) Zn 2p, (c) O 1s. 
Table 2. Elemental chemical state content of IZO ceramics. 

Atmosphere In3d5/2Ⅰ (%) In3d5/2Ⅱ (%) Zn2pⅠ (%) Zn2pⅡ (%) O1sⅠ (%) O1sⅡ (%) O1sⅢ (%) 
O2 89.58 10.42 78.45 21.55 19.06 72.66 8.28 

Air 68.87 31.13 86.43 13.57 24.96 67.35 7.69 

Green compact 31.11 68.89 65.92 34.08 43.45 52.52 4.03 

To investigate the solid solution rule of doped element Zn atom in IZO targets with 
sintering temperature, the samples were held at 800℃, 1000℃, 1200℃, 1400℃ for 20 h, and 
then the phase composition was analyzed by XRD. According to Fig. 13, the IZO compacts 
sintered at 800℃ still consist of ZnO and In2O3 phase, and as the sintering temperature increases, 
part of the ZnO dissolves into the lattice of In2O3, while the remaining reacts with In2O3 to form 
a second phase (Zn3In2O6). It was reported by Toshihiro Moriga[25], the IZO compacts have a 
phase evolution process as shown in the following equation when the sintering temperature 
varies from 1100℃ to 1400℃: kZnO+In2O3→ZnkIn2Ok+3. Moreover, Zn3In2O6 (k=3) can exist 
stably above 1270℃, which is consistent with the experimental results. A careful observation 
at the diffraction angle (2θ≈30°) reveals there is a small angle shift of the main peak to the left, 



especially the IZO ceramic sintered at 1400℃ (from 800 to 1400℃, 2θ corresponds to 30.554°, 
30.541°, 30.524°, 30.415°). According to the Bragg equation, a leftward shift of the peak 
implies a larger crystalline surface spacing and thus a larger lattice parameter. However, the 
ionic radius of Zn2+ (0.74 Å, CN=6) is smaller than that of In3+ (0.8 Å, CN=6), the doping of 
Zn2+ was supposed to reduce the lattice parameters of In2O3. A reasonable explanation for this 
phenomenon is the predominance of the interstitial solid solution type of Zn2+, rather than 
substitutional[26]. The interstitial solid solution type of Zn2+ can provide four electrons (Eq.12), 
which is prospective to increase carrier concentration and conductivity. 

2 3

02ZnO 2Zn 2O 4e  
In O X

i
  gg   (12) 

 

Fig. 13. XRD patterns of IZO ceramics sintered at different temperatures. 
Fig.14 depicts the distribution of elements in IZO ceramics and the atomic ratio of phase 

composition. The apparent color of the physical phase in IZO ceramics is distinguished, with 
the dark area being the secondary phase Zn3In2O6 and the light area II being the primary phase 
In2O3. The elemental ratio of the secondary phase is Zn: In: O=2.92:2.05:6, and the value is 
close to 3:2:6 (Zn3In2O6). In Fig. 13(a-Ⅱ), 0.92 at.% Zn dissolves into the cell of In2O3, causing 
lattice distortion. Meanwhile, the graph of EPMA can well reflect the uniform distribution of 
elements. 



 

Fig. 14. Elemental distribution and content of IZO ceramics.  

4. Conclusions 

The IZO slurry with 75 wt.% solid content was prepared by the wet ball milling technology. 
It was found that the nanoparticle distribution D50 was 365 nm at a ball milling time of 32 h. 
The IZO slurry had low viscosity (about 45 mPa·s from 20 s-1 to 80 s-1) and low shear stress 
(2.3 Pa at 40 s-1), which was suitable for the preparation of green IZO compacts. The MSC and 
Brook dynamic models were constructed by combining with the densification behavior of the 
green IZO compacts and the apparent activation energy can be calculated as 580 kJ/mol, and 
grain growth activation energy is 690 kJ/mol. The grain size of IZO ceramics sintered by the 
TSS method can be controlled under the range of 3-6 μm, where the optimal resistivity is 1.5 
mΩ·cm under the TSS 6. The results of XPS illustrated that the IZO ceramics sintered in an 
oxygen atmosphere could increase the concentration of oxygen vacancies, thereby enhancing 
electrical properties. XRD analysis and EPMA tests showed that IZO ceramics are composed 



of In2O3 and Zn3In2O6, and both phases are uniformly distributed. 
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