1. Jarmer J, Zlatkovic J, Tsouchnikas G, Vratskikh O, Strauß J, Aberle JH, et al. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination. J Virol. American Society for Microbiology; 2014;88:13845–57.
2. Tonteri E, Kipar A, Voutilainen L, Vene S, Vaheri A, Vapalahti O, et al. The Three Subtypes of Tick-Borne Encephalitis Virus Induce Encephalitis in a Natural Host, the Bank Vole (Myodes glareolus). PLoS One. Public Library of Science; 2013;8:e81214.
3. Dörrbecker B, Dobler G, Spiegel M, Hufert FT. Tick-borne encephalitis virus and the immune response of the mammalian host. Travel Med Infect Dis. Elsevier; 2010;8:213–22.
4. Bogovic P, Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. http://www.wjgnet.com/. Baishideng Publishing Group Inc.; 2015;3:430–41.
5. Heinz FX, Stiasny K, Holzmann H, Grgic-Vitek M, Kriz B, Essl A, et al. Vaccination and Tick-borne Encephalitis, Central Europe - Volume 19, Number 1—January 2013 - Emerging Infectious Diseases journal - CDC. Emerg Infect Dis. 2013;19:69–76.
6. Süss J. Tick-borne encephalitis 2010: Epidemiology, risk areas, and virus strains in Europe and Asia—An overview. Ticks Tick Borne Dis. Urban & Fischer; 2011;2:2–15.
7. Factsheet about tick-borne encephalitis (TBE) [Internet]. [cited 2021 Jul 23]. Available from: https://www.ecdc.europa.eu/en/tick-borne-encephalitis/facts/factsheet
8. Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T. Tick-borne encephalitis virus – a review of an emerging zoonosis. J Gen Virol. Microbiology Society; 2009;90:1781–94.
9. Růžek D, Dobler G, Mantke OD. Tick-borne encephalitis: Pathogenesis and clinical implications. Travel Med Infect Dis. Elsevier; 2010;8:223–32.
10. Taba P, Schmutzhard E, Forsberg P, Lutsar I, Ljøstad U, Mygland Å, et al. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur J Neurol. John Wiley & Sons, Ltd; 2017;24:1214-e61.
11. Kaiser R. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–98A prospective study of 656 patients. Brain. Oxford Academic; 1999;122:2067–78.
12. Mickienė A, Laiškonis A, Günther G, Vene S, Lundkvist Å, Lindquist L. Tickborne Encephalitis in an Area of High Endemicity in Lithuania: Disease Severity and Long-Term Prognosis. Clin Infect Dis. Oxford Academic; 2002;35:650–8.
13. Haglund M, Forsgren M, Lindh G, Lindquist L. A 10-Year Follow-Up Study of Tick-Borne Encephalitis in the Stockholm Area and a Review of the Literature: Need for a Vaccination Strategy. http://dx.doi.org/103109/00365549609027160. Taylor & Francis; 2009;28:217–24.
14. Haglund M, Günther G. Tick-borne encephalitis—pathogenesis, clinical course and long-term follow-up. Vaccine. Elsevier; 2003;21:S11–8.
15. Misić Majerus L, Daković Rode O, Ruzić Sabljić E. [Post-encephalitic syndrome in patients with tick-borne encephalitis]. Acta Med Croatica. 2009;63:269–78.
16. Czupryna P, Moniuszko A, Pancewicz SA, Grygorczuk S, Kondrusik M, Zajkowska J. Tick-borne encephalitis in Poland in years 1993–2008 – epidemiology and clinical presentation. A retrospective study of 687 patients. Eur J Neurol. John Wiley & Sons, Ltd; 2011;18:673–9.
17. Czupryna P, Grygorczuk S, Krawczuk K, Pancewicz S, Zajkowska J, Dunaj J, et al. Sequelae of tick-borne encephalitis in retrospective analysis of 1072 patients. Epidemiol Infect. Cambridge University Press; 2018;146:1663–70.
18. Veje M, Studahl M, Thunström E, Stentoft E, Nolskog P, Celik Y, et al. Sleep architecture, obstructive sleep apnea and functional outcomes in adults with a history of Tick-borne encephalitis. PLoS One. Public Library of Science; 2021;16:e0246767.
19. Veje M, Nolskog P, Petzold M, Bergström T, Lindén T, Peker Y, et al. Tick-Borne Encephalitis sequelae at long-term follow-up: a self-reported case–control study. Acta Neurol Scand. John Wiley & Sons, Ltd; 2016;134:434–41.
20. Hidalgo H, Kallweit U, Mathis J, Bassetti CL. Post Tick-Borne Encephalitis Virus Vaccination Narcolepsy with Cataplexy. Sleep. Oxford Academic; 2016;39:1811–4.
21. Maffioli C, Grandgirard D, Engler O, Leib SL. A Tick-Borne Encephalitis Model in Infant Rats Infected With Langat Virus. J Neuropathol Exp Neurol. Oxford Academic; 2014;73:1107–15.
22. Maffioli C, Grandgirard D, Leib SL, Engler O. SiRNA Inhibits Replication of Langat Virus, a Member of the Tick-Borne Encephalitis Virus Complex in Organotypic Rat Brain Slices. PLoS One. Public Library of Science; 2012;7:e44703.
23. Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One. Public Library of Science; 2017;12:e0168430.
24. Bastianini S, Berteotti C, Gabrielli A, Del Vecchio F, Amici R, Alexandre C, et al. SCOPRISM: A new algorithm for automatic sleep scoring in mice. J Neurosci Methods. Elsevier; 2014;235:277–84.
25. Mensen A, Riedner B, Tononi G. Sleep Wave Analysis Toolbox for Matlab. 2015;
26. Lenz N, Engler O, Grandgirard D, Leib SL, Ackermann-Gäumann R. Evaluation of antivirals against tick-borne encephalitis virus in organotypic brain slices of rat cerebellum. PLoS One. Public Library of Science; 2018;13:e0205294.
27. Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol. John Wiley & Sons, Ltd; 2017;81:857–70.
28. Engman ML, Lindström K, Sallamba M, Hertz C, Sundberg B, Hansson MEA, et al. One-year follow-up of tick-borne central nervous system infections in childhood. Pediatr Infect Dis J. 2012;31:570–4.
29. Shen J, Barbera J, Shapiro CM. Distinguishing sleepiness and fatigue: Focus on definition and measurement. Sleep Med. Rev. W.B. Saunders; 2005. p. 63–76.
30. Kaiser R. Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int J Med Microbiol. Urban & Fischer; 2002;291:58–61.
31. Zawadzki R, Garkowski A, Kubas B, Zajkowska J, Hładuński M, Jurgilewicz D, et al. Evaluation of Imaging Methods in Tick-Borne Encephalitis. Polish J Radiol. Termedia; 2018;82:742–7.
32. Gent TC, Bassetti C LA, Adamantidis AR. Sleep-wake control and the thalamus. Curr Opin Neurobiol. Elsevier Current Trends; 2018;52:188–97.
33. Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. John Wiley & Sons, Ltd; 2011;519:933–56.
34. Hermann DM, Siccoli M, Brugger P, Wachter K, Mathis J, Achermann P, et al. Evolution of Neurological, Neuropsychological and Sleep-Wake Disturbances After Paramedian Thalamic Stroke. Stroke. Lippincott Williams & Wilkins; 2008;39:62–8.
35. Bassetti C, Marhis J, Gugger M, Lovblad KO, Hess CW. Hypersomnia following paramedian thalamic stroke: A report of 12 patients. Ann Neurol. John Wiley & Sons, Ltd; 1996;39:471–80.
36. Veje M, Studahl M, Thunström E, Stentoft E, Nolskog P, Celik Y, et al. Sleep architecture, obstructive sleep apnea and functional outcomes in adults with a history of Tick-borne encephalitis. PLoS One. Public Library of Science; 2021;16.
37. Hutchison IC, Rathore S. The role of REM sleep theta activity in emotional memory. Front Psychol. Frontiers Media S.A.; 2015;6.
38. Holton CM, Hanley N, Shanks E, Oxley P, Mccarthy A, Eastwood BJ, et al. Longitudinal changes in EEG power, sleep cycles and behaviour in a tau model of neurodegeneration.
39. Matsuda Y, Ozawa N, Shinozaki T, Aoki K, Nihonmatsu-Kikuchi N, Shinba T, et al. Chronic antidepressant treatment rescues abnormally reduced REM sleep theta power in socially defeated rats. Sci Reports |. 123AD;11:16713.
40. Michlmayr D, Bardina S V., Rodriguez CA, Pletnev AG, Lim JK. Dual Function of Ccr5 during Langat Virus Encephalitis: Reduction in Neutrophil-Mediated Central Nervous System Inflammation and Increase in T Cell–Mediated Viral Clearance. J Immunol. American Association of Immunologists; 2016;196:4622–31.
41. Grygorczuk S, Osada J, Toczyłowski K, Sulik A, Czupryna P, Moniuszko-Malinowska A, et al. The lymphocyte populations and their migration into the central nervous system in tick-borne encephalitis. Ticks Tick Borne Dis. Urban & Fischer; 2020;11:101467.
42. Grygorczuk S, Zajkowska J, Swierzbińska R, Pancewicz S, Kondrusik M, Hermanowska-Szpakowicz T. [Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis]. Neurol Neurochir Pol. 40:106–11.
43. Grygorczuk S, Osada J, Parczewski M, Moniuszko A, Świerzbińska R, Kondrusik M, et al. The expression of the chemokine receptor CCR5 in tick-borne encephalitis. J Neuroinflammation 2016 131. BioMed Central; 2016;13:1–17.
44. Zhang X, Zheng Z, Liu X, Shu B, Mao P, Bai B, et al. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. J Neuroinflammation. BioMed Central Ltd.; 2016;13.
45. Kułakowska A, Byfield FJ, Żendzian-Piotrowska M, Zajkowska JM, Drozdowski W, Mroczko B, et al. Increased levels of sphingosine-1-phosphate in cerebrospinal fluid of patients diagnosed with tick-borne encephalitis. J Neuroinflammation 2014 111. BioMed Central; 2014;11:1–9.
46. Kang X, Li Y, Wei J, Zhang Y, Bian C, Wang K, et al. Elevation of Matrix Metalloproteinase-9 Level in Cerebrospinal Fluid of Tick-Borne Encephalitis Patients Is Associated with IgG Extravassation and Disease Severity. PLoS One. Public Library of Science; 2013;8:e77427.
47. Ygberg S, Fowler Å, Bogdanovic G, Wickström R. The Cerebrospinal Fluid Interleukin-6/Interleukin-10 Ratio Differentiates Pediatric Tick-borne Infections. Pediatr Infect Dis J. Lippincott Williams and Wilkins; 2020;39:239–43.
48. Günther G, Haglund M, Lindquist L, Forsgren M, Andersson J, Andersson B, et al. Tick-borne encephalitis is associated with low levels of interleukin-10 in cerebrospinal fluid. http://dx.doi.org/103402/iee.v1i06029. Taylor & Francis; 2011;1:6029.
49. Kondrusik M, Zajkowska J, Pancewicz S, Swierzbińska R, Grygorczuk S, Hermanowska-Szpakowicz T. [Interferon gamma concentration in the cerebrospinal fluid of patients with tick-borne encephalitis]. Neurol Neurochir Pol. 2005;39:109–13.
50. Fowler A, Ygberg S, Bogdanovic G, Wickström R. Biomarkers in cerebrospinal fluid of children with tick-borne encephalitis: Association with long-term outcome. Pediatr Infect Dis J. Lippincott Williams and Wilkins; 2016;35:961–6.
51. Michałowska-Wender G, Losy J, Kondrusik M, Zajkowska J, Pancewicz S, Grygorczuk S, et al. [Evaluation of soluble platelet cell adhesion molecule sPECAM-1 and chemokine MCP-1 (CCL2) concentration in CSF of patients with tick-borne encephalitis]. Pol Merkur Lekarski. 2006;20:46–8.
52. Formanova PP, Palus M, Salat J, Hönig V, Stefanik M, Svoboda P, et al. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J Neuroinflammation 2019 161. BioMed Central; 2019;16:1–14.
53. Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the Blood-Brain Barrier during Tick-Borne Encephalitis in Mice Is Not Dependent on CD8+ T-Cells. PLoS One. Public Library of Science; 2011;6:e20472.
54. Zajkowska J, Moniuszko-Malinowska A, Pancewicz S, Muszyńska-Mazur A, Kondrusik M, Grygorczuk S, et al. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE). Adv Med Sci. Elsevier; 2011;56:311–7.
55. Huang W-Y, Huang C-C, Chang C-C, Kor C-T, Chen T-Y, Wu H-M. Associations of Self-Reported Sleep Quality with Circulating Interferon Gamma-Inducible Protein 10, Interleukin 6, and High-Sensitivity C-Reactive Protein in Healthy Menopausal Women. PLoS One. Public Library of Science; 2017;12.
56. Irwin MR, Olmstead R, Carroll JE. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol Psychiatry. NIH Public Access; 2016;80:40.
57. Alirezaei Z, Pourhanifeh MH, Borran S, Nejati M, Mirzaei H, Hamblin MR. Neurofilament light chain as a biomarker, and correlation with magnetic resonance imaging in diagnosis of CNS-related disorders. Mol Neurobiol. NIH Public Access; 2020;57:469.
58. Tyrberg T, Nilsson S, Blennow K, Zetterberg H, Grahn A. Serum and cerebrospinal fluid neurofilament light chain in patients with central nervous system infections caused by varicella-zoster virus. J Neurovirol. Springer; 2020;26:719.
59. Le ND, Muri L, Grandgirard D, Kuhle J, Leppert D, Leib SL. Evaluation of neurofilament light chain in the cerebrospinal fluid and blood as a biomarker for neuronal damage in experimental pneumococcal meningitis. J Neuroinflammation. BioMed Central; 2020;17.
60. Matsushige T, Ichiyama T, Kajimoto M, Okuda M, Fukunaga S, Furukawa S. Serial cerebrospinal fluid neurofilament concentrations in bacterial meningitis. J Neurol Sci. Elsevier; 2009;280:59–61.
61. Studahl M, Rosengren L, Günther G, Hagberg L. Difference in pathogenesis between herpes simplex virus type 1 encephalitis and tick-borne encephalitis demonstrated by means of cerebrospinal fluid markers of glial and neuronal destruction. J Neurol. J Neurol; 2000;247:636–42.
62. Kaiser R. Tick-borne encephalitis: Clinical findings and prognosis in adults. Wiener Medizinische Wochenschrift 2012 16211. Springer; 2012;162:239–43.
63. Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of Central European Tick-Borne Encephalitis Infection in Fatal Human Cases. J Neuropathol Exp Neurol. Oxford Academic; 2005;64:506–12.
64. D’Angelo E. Physiology of the cerebellum. Handb Clin Neurol. Elsevier; 2018;154:85–108.
65. Hansson KE, Rosdahl A, Insulander M, Vene S, Lindquist L, Gredmark-Russ S, et al. Tick-borne Encephalitis Vaccine Failures: A 10-year Retrospective Study Supporting the Rationale for Adding an Extra Priming Dose in Individuals Starting at Age 50 Years. Clin Infect Dis. Oxford Academic; 2020;70:245–51.
66. Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer’s disease: Behavioral analysis and neural basis in rodent models of Alzheimer’s-related neuropathology. Neurosci Biobehav Rev. Pergamon; 2021;127:647–58.
67. Krawczuk K, Czupryna P, Pancewicz S, Ołdak E, Moniuszko-Malinowska A. Comparison of tick-borne encephalitis between children and adults—analysis of 669 patients. J NeuroVirology 2020 264. Springer; 2020;26:565–71.
68. Barp N, Trentini A, Di Nuzzo M, Mondardini V, Francavilla E, Contini C. Clinical and laboratory findings in tick-borne encephalitis virus infection. Parasite Epidemiol Control. Elsevier; 2020;10:e00160.
69. Cornelius ADA, Hosseini S, Schreier S, Fritzsch D, Weichert L, Michaelsen-Preusse K, et al. Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs. J Neuroinflammation. BioMed Central; 2020;17.
70. Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull. Elsevier; 2019;145:59–74.
71. Ibarra-Coronado EG, Pantaleón-Martínez AM, Velazquéz-Moctezuma J, Prospéro-García O, Méndez-Díaz M, Pérez-Tapia M, et al. The Bidirectional Relationship between Sleep and Immunity against Infections. 2015;
72. Faraut B, Tonetti L, Malmartel A, Grabar S, Ghosn J, Viard J-P, et al. Sleep, Prospective Memory, and Immune Status among People Living with HIV. Int J Environ Res Public Health. Multidisciplinary Digital Publishing Institute (MDPI); 2021;18:1–15.
73. Heidbreder A, Sonnweber T, Stefani A, Ibrahim A, Cesari M, Bergmann M, et al. Video-polysomnographic findings after acute COVID-19: REM sleep without atonia as sign of CNS pathology? Sleep Med. Elsevier; 2021;80:92.
74. Hertenstein E, Gabryelska A, Spiegelhalder K, Nissen C, Johann AF, Umarova R, et al. Reference Data for Polysomnography-Measured and Subjective Sleep in Healthy Adults. J Clin Sleep Med. American Academy of Sleep Medicine; 2018;14:523.
75. Shevtsova AS, Motuzova O V., Kuragina VM, Akhmatova NK, Gmyl L V., Kondrat’eva YI, et al. Lethal Experimental Tick-Borne Encephalitis Infection: Influence of Two Strains with Similar Virulence on the Immune Response. Front Microbiol. Frontiers Media SA; 2016;7:2172.
76. Eyer L, Kondo H, Zouharova D, Hirano M, Valdés JJ, Muto M, et al. Escape of Tick-Borne Flavivirus from 2′-C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J Virol. American Society for Microbiology (ASM); 2017;91:1028–45.