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Abstract
A series of gallic acid hydrazones were designed and synthesized as new potential anti-oxidant agents.
Most of these compounds are potent antioxidants. The strongest compounds are 11 and 15 (EC50: 6.42

μg·mL−1, 6.86 μg·mL−1, DPPH) and (EC50: 12.85μg·mL−1, 12.49μg·mL−1ABTS), more potent than the
positive control Trolox. Furthermore, the promising compounds 11 and 15 exhibited very low cytotoxic
activity against HEK293 cell (IC50 >56.4 µM). The SAR study revealed that the pattern of hydroxyl,
methoxy and methyl substituents on the gallic hydrazones framework can increase the antioxidant
properties of the prototype compounds. Moreover, the results also showed that the activity increased with
the number of the groups and increased following hydroxyl > methoxy > methyl. Overall, the present study
suggests that the designed compounds may serve as lead molecules for developing novel anti-oxidative
agents in food industry.

Introduction
Free radicals and ROS play an important role in the pathogenesis of many diseases, the identification and
synthesis of novel antioxidant to combat the harmful effects of free radicals and ROS attracting much
attention for their versatile properties in pharmacology [1-4]. In particular, natural antioxidants, such as
vitamin C, gallic acid, and polyphenols, are widely used to scavenge free radicals and to combat the
harmful effects of ROS [5-10]. It is well known that donating group such as phenolic hydroxyl hydrazino
and amino groups showed positive influence for the antioxidant activities, many efforts have been
focussed on designing antioxidants containing phenolic hydroxyl groups [2, 11, 12]. Gallic acid which has
three phenolic hydroxyl groups is a well-known natural antioxidant exhibits extensively biological
activities, such as anti-oxidative, anti-tyrosinase, anti-inflammatory, anti-fungal, anti-cancer, and so on,
which has versatile applications in medicine, food and pharmaceutical industries because of its unique
physiochemical characteristics, non-toxicity, biodegradability, abundant availability, and low cost [13-17].

 Recently, hydrazones were reported as potent antioxidants due to azomethine group increasing free
radical scavenging ability have been extensively investigated [5, 7, 18]. Meanwhile, the N-H proton of
phenylhydrazones is necessary for the radical scavenging activity of this compound in Fig 1 [19]. 

Based on the findings and in continuation of our works on the field [20], the present work report here the
synthesis and antioxidant properties of gallic acid hydrazones and their structure-activity relationships
based on the presence, position and number of different substituents (hydroxyl, methoxy and methyl) on
the phenyl ring.

Results And Discussion
Synthesis
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The gallic acid esters were prepared from gallic acid in refluxing methanol and the presence of H2SO4 as
catalyst. The reaction of esters with hydrazine hydrate in ethanol afforded hydrazides. Finally,
condensation of hydrazide with different aromatic aldehydes in methanol produced the desired gallic
acid hydrazones Analogues 1-14 in 68−85% yield.

Antioxidant activity

The antioxidant activities of the newly prepared compounds were measured against DPPH and ABTS
radicals assay respectively, according to the literatures [21, 22]. Trolox and gallic acid were also
determined for comparison. 

The results indicated that most the synthesized compounds possessed potent DPPH radical scavenging
activity compared to the positive control Trolox. As shown in Table 1, most the synthesized compounds
possessed potent DPPH radical scavenging activity compared to the positive control Trolox and gallic
acid. The antioxidant activity of gallic acid hydrazones were enhanced in comparison with gallic acid, it
could be concluded that NH group was important contributors to their DPPH radical scavenging activity.
The derivatives 11 and 15, both containing six hydroxyl groups with EC50 value of: 6.42 μg·mL−1 and 6.86

μg·mL−1 were the most efficient highlighting the importance of hydroxyl group. Compounds 8, 9 and 12
although less active than compounds 11 and 15, also exhibit prominent DPPH radical scavenging
activity, the results are in agreement with previous study that catechol group is the main contributor to the
antioxidant capacity of phenolic compounds [23]. 

Additionally, introduction of methyl groups on the phenyl ring in the 2- and 3-positions increases the
effects but the higher activity is obtained with 2- hydroxyl or 3- hydroxyl. The effect of hydroxy′ s position
is also studied, compounds 2, 4 and 7 differing in the position of the hydroxyl group, compounds 7 (4-
position) displayed better activities than compounds 2 (2-position) and 4 (3-position), the relative DPPH
radical scavenging activity decreases in the following sequence: 4-position > 3-position > 2-position.

  The same tendency was observed in the ABTS radical scavenging activity studies. As shown in Table 1.
Most of synthesized compounds showed significant ABTS radical cation scavenging activity, the order of
ABTS radical cation scavenging activity of the antioxidants was mostly in accordance with DPPH radical
scavenging activity. The compounds (11 and 15) with EC50 value of 12.85 μg·mL−1 and 12.49

μg·mL−1 were the most potent compounds too.

In view of the results, the number of active groups was highly related to the antioxidant activity of the
compound, and generally more active groups resulted in higher activity. Additionally, electron donating
substituent like methoxy can increase their antioxidant activity too and increased following hydroxyl >
methoxy > methyl. Such phenomenon was consistent with previous study [24]. In summary, the hydrogen-
donating ability of phenoxyl radical influence the antioxidant activity of the prototype compounds.

Cytotoxicity of promising compounds 11 and 15
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In order to check the safety profile of promising antioxidant, it was selected to test its cytotoxicity against
human normal cell line (HEK293). The result showed that compounds 11 and 15 displayed much lower
cytotoxic activity for HEK293 (IC50 >56.4μg·mL−1). The result revealed that the compounds 11 and 15 can
display significant antioxidant activity at low concentrations without inducing cytotoxicity.

Conclusions
In conclusion, we have designed and synthesized a number of gallic acid hydrazones as new potential
antioxidant. The in vitro antioxidant properties of the compounds in terms of reducing ability and radical
scavenging activity were assessed by using ABTS and DPPH tests, respectively. Compound 11 and 15
which both have six hydroxyl groups were the most potent radical scavenger in the tsets. This finding
might be attributed to the fact that the antioxidant activity was strongly dependent on the number of
hydroxyl groups in the grafted phenolic moieties. The SAR study revealed that the pattern of hydroxyl,
methoxy and methyl substituents on the gallic acid hydrazones framework can increase the antioxidant
properties of the prototype compounds. Furthermore, the results also showed that the activity increased
with the number of the groups and increased following hydroxyl > methoxy > methyl.

Therefore, it could be concluded that this class of compounds had a good safety profile for their potential
application in the food industry and proved that compound 11 and 15 might be potentially used as an
antioxidant agents with a high potency and low toxicity in pharmaceutical, and food industries. Further
studies on the relevant action mechanisms and structural modification of identified hits are on-going.

Materials And Methods
Chemistry

All reactions were performed with commercially available reagents and solvents without further
purification. All reactions were monitored by thin-layer chromatography (TLC). 1H and 13C NMR spectra
were recorded on Bruker AVANCE-III HD 400MHz or NEO 500MHz (Bruker Daltonics Inc., Germany)
spectrometers using TMS as a reference. Mass spectra were recorded on a Bruker APEXII49e
spectrometer (Bruker Daltonics Inc., Germany) with ESI source as ionization. 

General procedure for the synthesis of gallic hydrazones 1-17.

The reaction route is outlined in Scheme 1. The intermediate compounds gallic hydrazide was prepared
according to the reported methods [20]. Briefly, the gallic acid esters were prepared from gallic acid in
refluxing methanol and the presence of H2SO4 as catalyst. The reaction of esters with hydrazine hydrate
in ethanol afforded hydrazides. Finally, condensation of hydrazide with different aromatic aldehydes in
methanol produced the desired gallic hydrazones analogues 1-17 in 68−85% yield. 

(E)-N'-benzylidene-3, 4, 5-trihydroxybenzohydrazide (1). white solid; yield: 85%; 1H NMR (400 MHz, DMSO)
δ: 11.54 (s, 1H, NH), 9.17 (s, 2H, OH), 8.85 (m, 1H, OH), 8.42 (s, 1H, =CH), 7.70 (d, 2H, Ar-H), 7.45 (d, 2H, Ar-
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H), 6.93(s, 2H, Ar-H); 13C NMR (100 MHz, DMSO) δ: 164.20, 146.74, 146.02, 136.80, 134.18, 130.26,
129.28, 126.26, 123.81, 106.88; ESI-MS: m/z 273.10 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(4-hydroxybenzylidene) benzohydrazide (2). yellow solid; yield: 80%; 1H NMR (400
MHz, DMSO) δ: 11.53 (s, 1H, NH), 9.16 (s, 2H, OH), 8.82 (s, 2H, OH), 8.42 (s, 1H, =CH), 7.70 (m, 2H, Ar-H),
7.45 (m, 2H, Ar-H), 6.93(s, 2H, Ar-H); 13C NMR (100 MHz, DMSO) δ: 163.88, 147.64, 146.02, 138.00,
135.00, 130.70, 129.27, 128.07, 124.22, 121.89, 117.82, 107.66; ESI-MS: m/z 273.10 [M+H]+; ESI-MS: m/z
289.07 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(3-hydroxybenzylidene) benzohydrazide (3). yellow solid; yield: 76%; 1H NMR (400
MHz, DMSO) δ: 11.52 (s, 1H, NH), 10.24 (s, 2H, OH), 9.17 (s, 1H, OH), 8.73 (s, 1H, =CH), 7.82 (m, 2H, Ar-H),
7.24-7.56 (m, 2H, Ar-H), 6.96(s, 2H, Ar-H), 2.56 (s, 3H, CH3); 13C NMR (100 MHz, DMSO) δ: 163.46, 145.31,
140.59, 137.42, 137.11, 134.36, 133.03, 129.50, 126.60, 125.73, 123.84, 107.50, 19.41; ESI-MS: m/z
287.12 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(3-hydroxybenzylidene) benzohydrazide (4). white solid; yield: 80%; 1H NMR (400
MHz, DMSO) δ: 11.56 (s, 1H, NH), 10.21 (s, 1H, OH), 9.18 (s, 2H, OH), 8.86 (s, 1H, OH), 8.72 (s, 1H,
=CH),7.81 (s, 2H, Ar-H), 7.23-1.55 (m, 2H, Ar-H), 7.01(s, 2H, Ar-H); 13C NMR (100 MHz, DMSO) δ: 163.50,
146.44, 144.41, 137.44, 135.09, 131.23, 129.27, 126.86, 123.40, 116.92, 107.66; ESI-MS: m/z 273.10
[M+H]+; ESI-MS: m/z 289.07 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(3-methylbenzylidene) benzohydrazide (5). yellow solid; yield: 70%; 1H NMR (400
MHz, DMSO) δ: 11.52 (s, 1H, NH), 9.17 (s, 2H, OH), 8.83 (s, 1H, OH), 8.38 (s, 1H, =CH), 7.82 (m, 2H, Ar-H),
7.22-7.53 (m, 4H, Ar-H), 6.94(s, 2H, Ar-H), 2.50 (s, 3H, CH3); 13C NMR (100 MHz, DMSO) δ: 163.50, 146.07,
140.58, 137.12, 134.77, 133.03, 132.15, 129.95, 126.10, 125.73, 123.85, 107.28, 19.41; ESI-MS: m/z
287.12 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(3-methylbenzylidene) benzohydrazide (6). yellow solid; yield: 71%; 1H NMR (400
MHz, DMSO) δ: 11.57 (s, 1H, NH), 9.14 (s, 2H, OH), 8.82 (s, 1H, OH), 8.74 (s, 1H, =CH), 7.37 (d, 2H, Ar-H),
6.94-7.06 (m, 4H, Ar-H), 3.81(s, 3H, CH3); 13C NMR (100 MHz, DMSO) δ: 163.08, 154.36, 152.66, 145.99,

137.42, 123.70, 117.75, 113.90, 109.64, 107.28, 56.75; ESI-MS: m/z 287.12 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(4-hydroxybenzylidene) benzohydrazide (7). white solid; yield: 68%; 1H NMR (400
MHz, DMSO) δ: 11.67 (s, 1H, NH), 11.63 (s, 1H, OH), 9.93 (s, 1H, OH), 9.18 (s, 2H, 2OH), 8.45 (s, 1H,
=CH),7.24 (d, 2H, Ar-H), 6.92 (s, 2H, Ar-H), 6.34(m, 2H, Ar-H); 13C NMR (100 MHz, DMSO) δ: 163.07, 161.35,
148.97, 145.61, 137.54, 133.04, 123.34, 112.85, 108.03, 103.16; ESI-MS: m/z 273.10 [M+H]+; ESI-MS: m/z
289.07 [M+H]+.

(E)-N'-(2, 4-dihydroxybenzylidene)-3, 4, 5- trihydroxybenzohydrazide (8).  white solid; yield: 75%; 1H NMR
(400 MHz, DMSO) δ: 11.40 (s, 1H, NH), 9.14 (s, 2H, OH), 8.95 (s, 1H, OH), 8.85 (s, 1H, OH), 8.29 (s, 1H,
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=CH), 6.91-6.95 (m, 4H, Ar-H); 13C NMR (100 MHz, DMSO) δ: 163.38, 148.61, 147.64, 146.00, 138.11,
137.27, 135.37, 133.56, 125.73, 124.08, 107.28, 104.96; ESI-MS: m/z 305.06 [M+H]+.

(E)-N'-(2, 5-dihydroxybenzylidene)-3, 4, 5- trihydroxybenzohydrazide (9).  white solid; yield: 69%; 1H NMR
(400 MHz, DMSO) δ:11.83 (s, 1H, NH), 11.41 (s, 1H, OH), 9.21 (s, 1H, OH), 9.12 (s, 1H, OH), 8.89 (s, 1H,
OH), , 9.12 (s, 1H, =CH),  7.36 (d, 2H, Ar-H), 7.05 (d, 1H, Ar-H), 6.98 (m, 1H, Ar-H), 6.94(d, 2H, Ar-H),13C NMR
(100 MHz, DMSO) δ: 163.30, 148.72, 146.49, 146.11, 146.01, 137.74, 123.08, 120.72, 119.53, 119.21,
117.65, 107.66; ESI-MS: m/z 305.06 [M+H]+.

(E)-N'-(2, 5-dimethoxybenzylidene) -3, 4, 5- trihydroxybenzohydrazide (10).  white solid; yield: 76%; 1H NMR
(400 MHz, DMSO) δ: 11.57 (s, 1H, NH), 9.14 (s, 2H, OH), 8.82 (s, 1H, OH), 8.74 (s, 1H, =CH), 7.36 (d, 2H, Ar-
H), 7.05 (d, 1H, Ar-H), 6.98 (m, 1H, Ar-H), 6.94(d, 2H, Ar-H), 3.75 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3 ); 13C
NMR (100 MHz, DMSO) δ: 163.38, 153.73, 152.63, 141.77, 137.41, 123.77, 118.13, 114.92, 113.88,
110.71, 109.58, 107.28, 56.73, 55.91; ESI-MS: m/z 301.11[M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(2, 3, 4-trihydroxybenzylidene) benzohydrazide (11).  white solid; yield: 75%; 1H
NMR (400 MHz, DMSO) δ: 11.71 (s, 1H, NH), 11.65 (s, 1H, OH), 9.40 (s, 1H, OH), 9.19 (s, 1H, OH), 8.85 (s,
1H, OH), 8.42 (s, 1H, =CH), 6.93 (s, 2H, Ar-H), 6.73 (d, 1H, Ar-H) , 6.38 (d, 1H, Ar-H); 13C NMR (100 MHz,
DMSO) δ: 163.06, 149.75, 148.94, 147.90, 146.09, 137.56, 133.15, 123.30, 121.58, 111.41, 108.00, 107.56;
ESI-MS: m/z 321.05 [M+H]+.

(E)-N'-(3, 4-dihydroxybenzylidene)-3, 4, 5- trihydroxybenzohydrazide (12).  white solid; yield: 72%; 1H NMR
(400 MHz, DMSO) δ:11.71 (s, 1H, NH), 11.65 (s, 1H, OH), 9.40 (s, 1H, OH), 9.19 (s, 2H, 2OH), 8.85 (s, 1H,
OH), 8.42 (s, 1H, =CH), 6.93 (s, 2H, Ar-H), 6.73 (d, 1H, Ar-H), 6.38(d, 1H, Ar-H),13C NMR (100 MHz, DMSO) δ:
163.06, 149.75, 148.94, 147.90, 146.09, 137.55, 133.15, 123.30, 121.58, 111.41, 118.00, 107.56. ; ESI-MS:
m/z 305.06 [M+H]+.

(E)-N'-(3, 4-dimethoxybenzylidene) -3, 4, 5- trihydroxybenzohydrazide (13).  white solid; yield: 70%; 1H NMR
(400 MHz, DMSO) δ: 11.57 (s, 1H, NH), 9.16 (s, 2H, OH), 8.83 (s, 1H, OH), 8.34 (s, 1H, =CH), 7.02 (s, 4H, Ar-
H), 6.98 (m, 2H, Ar-H), 3.84 (s, 6H, 2-OCH3 ); 13C NMR (100 MHz, DMSO) δ: 163.38, 153.73, 152.63, 141.77,

137.41, 123.77, 118.13, 114.92, 113.88, 110.71, 109.58, 107.28, 56.73, 55.91; ESI-MS: m/z 301.11[M+H]+ ;
ESI-MS: m/z 333.13 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(3, 4, 5-trimethoxybenzylidene) benzohydrazide (14).  white solid; yield: 78%; 1H
NMR (400 MHz, DMSO) δ: 11.54 (s, 1H, NH), 9.89 (s, 1H, OH), 9.17 (s, 1H, OH), 8.84 (s, 1H, OH), 8.34 (s,
1H, =CH), 7.26 (s, 2H, Ar-H), 6.99 (s, 2H, Ar-H), 3.85 (s, 6H, 2-OCH3), 3.71 (s, 3H, -OCH3 ); 13C NMR (100
MHz, DMSO) δ: 163.68, 153.80, 146.44, 143.29, 139.45, 132.13, 130.83, 123.87, 107.20, 104.95, 60.69,
57.06; ESI-MS: m/z 363.11[M+H]+.
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(E)-3, 4, 5-trihydroxy-N'-(3, 4, 5-trihydroxybenzylidene) benzohydrazide (15). Yellow solid; yield: 72%; 1H
NMR (400 MHz, DMSO) 1H NMR (400 MHz, DMSO) δ: 11.32 (s, 1H, NH), 9.33-9.09 (m, 4H, OH), 8.75 (s,
1H, OH), 8.57 (s, 1H, OH), 8.08 (s, 1H, =CH), 6.86 (s, 2H, Ar-H), 6.60 (s, 2H, Ar-H); 13C NMR (100 MHz,
DMSO) δ: 163.35, 147.95, 147.04, 145.88, 137.10, 135.37, 125.38, 124.02, 107.50, 106.15; ESI-MS: m/z
321.05 [M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(3, 4, 5-trimethoxybenzylidene) benzohydrazide (16).  white solid; yield: 72%; 1H
NMR (400 MHz, DMSO) 1H NMR (400 MHz, DMSO) δ: 11.35 (s, 1H, NH), 9.20 (s, 2H, OH), 8.79 (s, 1H, OH),
8.25 (s, 1H, =CH), 7.23 (s, 1H, Ar-H), 6.90-7.00 (m, 4H, Ar-H), 3.80 (s, 3H, -OCH3 ); 13C NMR (100 MHz,
DMSO) δ: 163.42, 150.01, 147.31, 146.00, 137.25, 127.95, 124.06, 120.46, 112.71, 112.33, 107.54, 56.03;
ESI-MS: m/z 319.10[M+H]+.

(E)-3, 4, 5-trihydroxy-N'-(4-hydroxy-3, 5-dimethoxybenzylidene) benzohydrazide (17).  white solid; yield:
74%; 1H NMR (400 MHz, DMSO) δ: 11.41 (s, 1 H, NH), 9.14 (s, 2H, OH), 8.85 (s, 2 H, OH), 8.29 (s, 1 H, =CH),
6.93 (d, m, 4H, Ar-H), 3.82 (s, 6H, 2-OCH3 ); 13C NMR (100 MHz, DMSO) δ: 163.49, 148.60, 147.75, 146.00,

138.15, 137.26, 125.36, 124.07, 107.56, 104.91, 56.48; ESI-MS: m/z 349.09 [M+H]+.

Antioxidant activity assay

DPPH free radical-scavenging assay

The DPPH radical-scavenging activities of test compounds were determined according to the reported
method [14]. Briefly, the test compounds at various concentrations were added to 3mL of DPPH solution
(0.1 mM in DMSO) and the reaction mixture was shaken vigorously. After incubation at room temperature
for 10 min, the absorbance of this solution was determined at 517 nm after 10, 30, and 60 min, using a
spectrophotometer. All of the assays were performed three times. The concentration of a certain
compound necessary to decrease the initial DPPH concentration by 50% (EC50 μg/mL) was determined
by linear regression analysis of data obtained by plotting the scavenging rate % against the
concentrations of that compound.

ABTS radical-scavenging assay

The ABTS radical-scavenging activities of test compounds were determined according to the reported
method [22, 23]. ABTS radical cation was produced by reacting 7 mM aqueous ABTS solution with 2.45
mM potassium persulphate and the mixture was allowed to stand in the dark at room temperature for
12–16 h before use. An aliquot (0.1 mL) of DMSO solution of different antioxidant concentrations was
added to 3.9 mL of the ABTS solution. Absorbance at 734 nm was recorded at different time intervals on
a UV–vis spectrophotometer.

Cytotoxicity assay
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Considering that compounds 11 and 15 were the most potent antioxidant agents, they were selected to
investigate the cytotoxicity against human normal cell line (HEK293) according to the reported method
[24, 25]. Cells were seeded in 96-well plates and then treated with different concentrations of compounds
11 and 15, they were dissolved in DMSO as a 100µM stock solution and then diluted to the different
concentrations. Two independent experiments in triplicate were done for determination of cell viability
inhibition for the compound. The IC50 values were calculated from concentration–response curves and
expressed as means ± SD.

Conclusion

We have designed and synthesized a number of gallic acid hydrazones as new potential antioxidant. The
in vitro antioxidant properties of the compounds in terms of reducing ability and radical scavenging
activity were assessed by using ABTS and DPPH tests, respectively. Compound 11 and 15 which both
have six hydroxyl groups were the most potent radical scavenger in the tsets. 

This finding might be attributed to the fact that the antioxidant activity was strongly dependent on the
number of hydroxyl groups in the grafted phenolic moieties. Furthermore, cytotoxicity assay showed that
they had lower cytotoxic activity for HEK293.

Therefore, it could be concluded that this class of compounds had a good safety profile for their potential
application in the food industry and proved that compound 11 and 15 might be potentially used as novel
antioxidant agents with a high potency and low toxicity.

  The SAR study revealed that the pattern of hydroxyl, methoxy and methyl substituents on the gallic acid
hydrazones framework can increase the antioxidant properties of the prototype compounds. Furthermore,
the results also showed that the activity increased with the number of the groups and increased following
hydroxyl > methoxy > methyl. Overall, the present study suggests that the designed compounds may
serve as lead molecules for developing novel anti-oxidative agents in pharmaceutical, cosmetic, and food
industries.

Table 1 : Antioxidant activities (DPPH rdical savenging ativity and ABTS scavenging activity) of
compounds 1-17.
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Figure 1

Reaction pattern of hydroxyl phenylhydrazones with DPPH radica proposed by predecessors with
modification [19], in which the NH and OH are necessary for the radical scavenging activity.
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