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[Abstract] Nowadays the development of machine vision is oriented toward real-time 

applications such as autonomous driving. This demands a hardware solution with low latency, 

high energy efficiency, and good reliability. Here, we demonstrate a robust and self-powered 

in-sensor computing paradigm with a ferroelectric photosensor network (FE-PS-NET). The FE-

PS-NET, constituted by ferroelectric photosensors (FE-PSs) with tunable photoresponsivities, 

is capable of simultaneously capturing and processing images. In each FE-PS, self-powered 

photovoltaic responses, modulated by remanent polarization of an epitaxial ferroelectric 

Pb(Zr0.2Ti0.8)O3 layer, show not only multiple nonvolatile levels but also a sign reversibility, 

enabling the representation of a signed weight in a single device and hence reducing the 

hardware overhead for network construction. With multiple FE-PSs wired together, the FE-PS-

NET acts on its own as an artificial neural network. It is demonstrated that an in situ multiply-

accumulate operation between an input image and a stored photoresponsivity matrix is available 

in our FE-PS-NET hardware. The FE-PS-NET hardware is faultlessly competent for real-time 

image processing functionalities, including binary pattern classification with an accuracy of 

100% and edge detection with an F-Measure of 95.2%. This study highlights the great potential 

of ferroelectric photovoltaics as the hardware basis of real-time machine vision.      
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Introduction 

Machine vision is a technology that enables a machine to ‘see’ and ‘understand’ images and 

videos, which has been widely applied in industry and daily life. In the conventional design of 

machine vision systems (Fig. 1a), visual information is captured by a photosensor array, 

converted into electrical digital signals, and passed to a computing unit for image processing1,2. 

The shuttling of redundant data between separated image sensing and processing units can 

cause high latency and energy consumption, greatly limiting the performance of machine vision 

in time-critical applications, such as autonomous driving and object tracking. Emerging bio-

inspired neuromorphic visual systems (Fig. 1b) provide an opportunity to overcome this 

limitation3. These systems adopt either near- or in-sensor computing architecture (Fig. 1c and 

d, respectively) to reduce the data shuttling4, thus improving the time and energy efficiencies.  

        So far, a variety of neuromorphic visual systems have been developed for implementing 

typical image processing functionalities including the contrast enhancement, noise suppression, 

adaptive imaging, recognition, and auto-encoding5-15. Among these systems, reconfigurable 

photosensor network (PS-NET) with an in-sensor computing architecture (Fig. 1d) is of 

particular interest because it acts on its own as an artificial neural network (ANN) that can 

simultaneously sense and process images5,7. The key building block for reconfigurable PS-

NETs is the photosensor with tunable photoresponsivity. Existing designs for such 

photosensors mainly employed the gating effect in 2D materials5,7 and the ion migration in 

memristive materials11,12,15 to realize the tunable photoresponsivity. However, the required 

application of gate voltage inevitably consumes additional powers16, while the ion migration is 

kinetically slow and the ion relaxation may cause poor retention11,17. New types of 

reconfigurable photosensors with improved speed, energy efficiency, and reliability are 

therefore highly desirable. 

        Ferroelectric photosensor (FE-PS) emerges as an advanced reconfigurable photosensor 

with all above desired performance. Using the remanent polarization to tune the photovoltaic 

response18-23, the FE-PS is essentially a gate voltage-free and self-powered reconfigurable 

photosensor24-28. Notably, the polarization switching can induce not only the magnitude change 

but also the sign reversal of photoresponse19,21, enabling a single FE-PS to represent both 

positive and negative weights and hence reducing the hardware overhead for network 

construction. Moreover, the nonvolativity, high controllability, and ultrafast switching kinetics 

(<1 ns) of polarization as demonstrated in various ferroelectric memory and neuromorphic 

devices29-34, along with the intimate coupling between polarization and photoresponse35, endow 



3 

 

the FE-PS with good reliability and high write speed. Also noteworthy are the high 

photosensitivity and ultrashort photoresponse time (<1 ns) of FE-PS24,25, allowing a high-speed 

readout. Given the above merits of FE-PS, the FE-PS network (FE-PS-NET), a computing-in-

sensor circuit built with interconnected multiple FE-PSs (Fig. 1d), appears very promising as a 

fast, low-power, and reliable hardware solution to real-time machine vision. However, while 

the ferroelectric neuromorphic devices with the memory-computing integrated paradigm have 

been extensively investigated recently, the FE-PS-NET, representing the first extension to the 

sensing-memory-computing integrated paradigm, remains experimentally unexplored yet.  

        Here, we demonstrate a prototype FE-PS-NET with integrated image sensing and 

processing functions. Each FE-PS in the network consists of a Pt/Pb(Zr0.2Ti0.8)O3 

(PZT)/SrRuO3 (SRO) heterostructure epitaxially grown on a SrTiO3 (STO) substrate. The high-

quality epitaxial PZT film is chosen as the ferroelectric layer for FE-PS because of its large 

remanent polarization as well as strong and highly controllable photoresponse (albeit in the UV 

spectrum)21,36. SRO is used as the bottom electrode and it also facilitates the epitaxial growth 

of PZT. The fabricated PZT-based FE-PS exhibits symmetrically switchable, nonvolatile, and 

multilevel photovoltaic responses as controlled by the remanent polarization. These unique 

properties enable the FE-PS to be a highly reliable and self-powered reconfigurable photosensor 

capable of exhibiting both positive and negative photoresponsivities (i.e., weights). Multiple 

individual FE-PSs are then wired into a FE-PS-NET, whose capability of performing an in situ 

multiply-accumulate (MAC) operation between an input image and a photoresponsivity matrix 

is experimentally evidenced. The FE-PS-NET is further used to implement real-time image 

processing functionalities, including binary pattern classification with an accuracy of 100% and 

edge detection with an F-Measure of 95.2%. Moreover, the ultralow latency and zero-energy 

consumption for inference are prospected for the FE-PS-NET, underscoring its potential as a 

hardware platform for real-time machine vision.       

Results 

Tunable nonvolatile photoresponsivity in FE-PS. The designed FE-PS has a simple two-

terminal structure of Pt/PZT/SRO, as schematically illustrated in Fig. 2a. The PZT/SRO bilayer 

film was epitaxially grown on the STO (001) substrate by pulsed laser deposition (PLD). The 

Pt top electrodes were deposited ex situ by sputtering through a shadow mask (diameter: ~200 

μm). The low-magnification transmission electron microscopy (TEM) image and X-ray 

diffraction (XRD) pattern of the fabricated PZT/SRO/STO heterostructure are shown in 

Supplementary Fig. S1, revealing that both PZT (~120 nm) and SRO (~40 nm) layers are well 
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formed and exhibit typical perovskite phases. The atomic force microscopy (AFM) image of 

the PZT/SRO film shows a flat surface with a small root-mean-square roughness of ~470 pm 

(Fig. 2b). The high-magnification cross-sectional TEM image further reveals the well-aligned 

lattice of PZT (Fig. 2c). These characterizations demonstrate the high quality of the epitaxial 

PZT film, which is a prerequisite for obtaining good ferroelectric and photovoltaic properties. 

        The ferroelectric properties of the Pt/PZT/SRO device were investigated by measuring the 

bipolar and monopolar polarization-voltage (P-V) hysteresis loops using triangular pulses 

(pulse width: 0.15 ms). The voltage was applied to the Pt electrode with the SRO electrode 

grounded. Figure 2d shows the pulse voltage (Vp)-dependent bipolar P-V loops. The loop starts 

to open as Vp exceeds 1.8 V and becomes almost saturated when Vp reaches 2.6 V. The saturated 

P-V loops reveal a large remanent polarization up to ~80 μC/cm2, a typical polarization value 

of high-quality epitaxial PZT films21,36,37. Another key feature of the saturated loops is the 

negligible voltage offset, namely, the positive and negative coercive voltages are almost 

symmetric, suggesting that there is only small or even no imprint field. Because the imprint 

field typically originates from the defects38,39, its absence in turn verifies the high quality of our 

epitaxial PZT film. Besides, the absence of imprint field contributes to the symmetry of 

switchable photovoltaic responses38,40 (to be shown later). 

        Figure 2d also displays that multiple intermediate polarization states are accessible when 

Vp is in the range of 1.8 to 2.6 V. To confirm it, monopolar triangular pulses with different Vp 

were applied and the measured P-V loops are shown in Fig. 2e and f. Every time before applying 

the measurement pulse, a -3 V or +3 V preset pulse was applied to set the complete polarization 

up (Pup) or down (Pdown) state, respectively. As seen from Fig. 2e, when starting from the same 

complete Pup state (~-80 μC/cm2), applying positive pulses with Vp ≤ +1.8 V makes almost no 

change in the polarization state. Applying positive pulses with Vp = +2, +2.2, and +2.4 V results 

in three well-separated intermediate states: incomplete Pup, near-zero-polarization, incomplete 

Pdown states, whose corresponding remanent polarization values are ~-40, ~0, and ~+40 μC/cm2, 

respectively. Further increasing Vp to +2.6 V and above switches the device to the complete 

Pdown state (~+80 μC/cm2). Likewise, by applying negative pulses with increasing Vp, the 

complete Pdown state is switched to the incomplete Pdown state, near-zero-polarization state, 

incomplete Pup state and eventually complete Pup state (Fig. 2f). In addition, the loops in Fig. 

2e and f exhibit relatively flat tops and bottoms, respectively, indicating that the polarizations 

can be retained when the external voltages return to zero. This implies that the polarization 

states, including the intermediate states, are nonvolatile. 



5 

 

        The formation mechanism of intermediate polarization states was investigated by using 

piezoresponse force microscopy (PFM). Supplementary Fig. S2 shows that the downward 

(upward) domains can be gradually switched upward (downward) as the applied negative 

(positive) tip voltage increases. In particular, upward/downward mixed domain configurations 

are observed when medium tip voltages are applied, giving rise to intermediate polarization 

states. All the domain states are found to be stable (up to 18 days of retention), confirming the 

nonvolatility of the polarization states. Such good domain stability may benefit from the domain 

growth-dominated switching behavior, as discussed in Supplementary Fig. S2. 

        Given the excellent ferroelectric properties of the present epitaxial PZT film (including 

large remanent polarization, negligible voltage offset, and accessibility to multiple nonvolatile 

polarization states), the polarization-modulated photovoltaic behavior in the PZT-based FE-PS 

is worthy of investigation. To characterize it, monopolar triangular pulses were applied first to 

set the polarization states, as illustrated in Fig. 2e and f. In each polarization state, current-

voltage (I-V) characteristics under illumination were recorded by using the 365 nm UV light 

for illumination, because this light wavelength corresponds well to the bandgap of PZT (~3.6 

eV)36. Unless otherwise specified, the applied light intensity was ~150 mW/cm2 (corresponding 

optical power was ~47.1 μW for an electrode area of ~0.0314 mm2). Figure 2g shows the 

illuminated I-V curves of the FE-PS in the different polarization states as set by the different 

positive pulses. In the initial -3 V-written state, the FE-PS exhibits noticeable photovoltaic 

responses including a short-circuit current (Isc) of ~10.6 nA and an open-circuit voltage (Voc) of 

~-0.5 V. Such Isc is 3 orders of magnitude larger than the dark current (~-0.02 nA at -0.5 V). 

The illuminated I-V curve as well as Isc and Voc remains almost unchanged after applying 

positive pulses with Vp ≤ +1.8 V. After applying the +2 V pulse, the illuminated I-V curve shifts 

toward the origin, and Isc and Voc decrease to ~5.4 nA and ~-0.25 V, respectively. As Vp 

increases to +2.2 V, the illuminated I-V curve moves very close to the origin, showing near-

zero values of Isc (~0.7 nA) and Voc (~-0.04 V). Increasing Vp to +2.4 V pushes the illuminated 

I-V curve away from the origin along the positive voltage and negative current axes. As a result, 

both Isc and Voc change their signs (i.e., directions), and their values are ~-4.4 nA and ~0.28 V, 

respectively. The illuminated I-V curve is further pushed away from the origin after applying 

the +2.6 V pulse, and Isc and Voc become ~-9.9 nA and ~0.5 V, respectively. Further increasing 

Vp to +2.8 V and above makes no more change in the illuminated I-V curve. There are thus five 

photoresponsive states observed during the switching process (note: a much larger number of 

states are indeed accessible, to be shown in Fig. 3). Apparently, these photoresponsive states 
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show almost one-to-one correlation with the polarization states (Fig. 2e), demonstrating that 

the photoresponse is well controlled by the polarization.  

        In addition, the reverse switching of the photoresonsive state is observed by applying 

negative pulses (see Fig. 2h), which is consistent with the down-to-up polarization switching 

(Fig. 2f). Plots of Isc and Voc against the pulse voltage Vp form well-shaped hysteresis loops akin 

to the P-V hysteresis loops (Fig. 2i), further confirming the reversible polarization control of 

photovoltaic response. Tunable photoresponse obtained in the photovoltaic mode qualifies the 

FE-PS as a self-powered reconfigurable photosensor. In addition, unlike previous photovoltaic-

type reconfigurable photosensors5, the FE-PS does not need to use the gate voltage to switch 

the photoresponse. It uses the remanent polarization as the control knob instead, which can 

further lower the power consumption.      

        Figure 2g and h also shows that in a pair of Pup and Pdown states with opposite remanent 

polarizations, the two Isc (or Voc) values have opposite signs but similar magnitudes. For 

example, the Isc value in the complete Pup state is ~10 nA, while that in the complete Pdown state 

is just the opposite, i.e., ~-10 nA. Such symmetry of switchable photoresponses is a result of 

the dominated polarization control, which benefits from the high-quality epitaxial PZT film 

possessing large switchable polarization and negligible imprint field (see evidence from the 

symmetric P-V loops in Fig. 2d)38,40. From the application point of view, symmetrically 

switchable photoresponses enable a single FE-PS to represent both positive and negative 

weights, which is particularly useful for reducing the number of FE-PSs needed for network 

construction.  

        Because the photovoltaic behavior is controlled by the polarization without defect-

mediated mechanisms (e.g., ion migration) involved, good reliability is expected for FE-PS. 

We first investigated the stability of the polarization-controlled photoresponses. As shown in 

Supplementary Fig. S3, the photocurrents in all the representative polarization states are stable 

with a rather long retention time of ≥24 hours, and they are reproducible during frequent 

ON/OFF illumination cycling. This demonstrates the nonvolatility of the photoresponsive states, 

which benefits from the nonvolativity of the polarization states (Fig. 2d-f and Supplementary 

Fig. S2). Then, the endurance test was performed by switching the FE-PS with cyclic 3 V/10 

μs pulses. Supplementary Fig. S4 shows that both the photocurrents and associated remanent 

polarizations change only slightly after switching for 106 cycles, highlighting the good 

endurance of the FE-PS. Device-to-device variation was characterized by measuring the P-V 

loops and photocurrents of 11 different FE-PSs (Supplementary Fig.  S5). These devices all 
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exhibit switchable photocurrents, and the photocurrents in the same polarization state show a 

small variation of ~3.2%. In addition, to enable the FE-PS to perform the multiplication (i.e., 

photosensing) reliably, a linear dependence of photocurrent on light intensity is required. As 

shown in Supplementary Fig. S6, the photocurrents in different polarization states scale almost 

linearly with the light intensity (linearity: ≥0.94), thus satisfying the requirement of 

multiplication. 

        The polarization control of photovoltaic behavior with high reliability promises our FE-

PS as a superior synaptic device (using the photoresponsivity as the weight). To demonstrate it, 

typical synaptic behaviors, i.e., long-term potentiation and depression (LTP and LTD, 

respectively), were measured for the FE-PS. In the measurement, a positive pulse train 

(amplitude: from 1.65 V to 1.89 V in increments of 0.01 V; width: 10 μs) and a negative pulse 

train (amplitude: from -1.75 V to -1.99 V in decrements of 0.01 V; width: 10 μs) were applied 

alternately to the FE-PS (see inset in Fig. 3a). The pulse voltages were slightly below the 

coercive voltages and increased in magnitude so that the polarization could be switched 

gradually to produce many intermediate states (note: the coercive voltages of the device used 

for the LTP/LTD measurement are ~±1.9 V). After each positive or negative pulse, Isc was 

measured and used to calculate the photoresponsivity defined as 

sc /=R I P ,                                                                                                                    (1) 

where R is the photoresponsivity and P is the input optical power (product of light intensity and 

electrode area). As shown in Fig. 3a, R decreases gradually from ~0.22 mA/W to ~-0.22 mA/W 

with increasing the number of positive pulses, indicating the LTD behavior. By contrast, R 

increases from ~-0.22 mA/W back to ~0.22 mA/W under the stimulation of negative pulses, a 

manifestation of the LTP behavior. Similar LTD and LTP characteristics can be reproduced for 

many cycles (Fig. 3b), showing a small cycle-to-cycle variation of ~3%. Notably, each LTD or 

LTP process contains 25 different R levels, confirming the accessibility to multiple 

photoresponsive states. One may further achieve a larger number of R levels by manipulating 

the applied pulses.   

        The integrated synaptic and photosensing functions of the FE-PS, as demonstrated above, 

allows the construction of FE-PS-NET with in-sensor computing capability. Prior to 

constructing it, the physical mechanism underlying the polarization control of photovoltaic 

behavior in the FE-PS needs to be understood. We previously demonstrated that the 

polarization-modulated Schottky barrier was responsible for the switchable photovoltaic 

behavior in the Pt/PZT/SRO FF-PS, through comprehensive investigations on the ferroelectric, 
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dielectric, conduction, and photovoltaic behaviors of the device36. In brief, epitaxial PZT film 

which is an n-type semiconductor41 can form Schottky barriers with Pt and SRO. Assuming 

that there is no polarization in PZT, the top Pt/PZT and bottom PZT/SRO barriers would have 

similar heights due the similar work functions of Pt and SRO (~5.3 and ~5.2 eV, respectively). 

However, the polarization of PZT can significantly modify the barrier heights at the top and 

bottom interfaces as well as the associated built-in fields (Ebi-t and Ebi-b, respectively). In the 

complete Pup state, the negative polarization charge at the PZT/SRO interface enhances the 

bottom barrier height and Ebi-b, while the positive polarization charge at the Pt/PZT interface 

reduces (or even eliminates) the top barrier height and Ebi-t (see the left panel of Fig. 3c)42,43. 

The downward Ebi-b therefore dominates and generates an overall positive photocurrent. By 

contrast, the dominance of Ebi-t occurs in the complete Pdown state, producing an overall negative 

photocurrent (see the right panel of Fig. 3c). In the intermediate polarization states, the relative 

proportion of upward and downward domains may determine the magnitude and direction of 

overall photocurrent, and hence multilevel photocurrents are accessible. The Schottky barrier 

modulation can therefore well explain the polarization-controlled switchable photoresponse in 

the Pt/PZT/SRO FE-PS.   

In-sensor MAC operations in FE-PS-NET. Having demonstrated the switchable 

photoresponsivity of FE-PS and understood its physical mechanism, it is of interest to 

investigate the hardware implementation of MAC (a fundamental operation for the 

simultaneous image sensing and processing) using FE-PS-NET. As schematically shown in Fig. 

4a and b, the FE-PS-NET consists of N pixels with each pixel divided into M subpixels. N 

depends on the image size, i.e., N = H × W, where H and W are the height and width of the 

image, respectively, and the N pixels are arranged in an H × W array to suit the image. The M 

subpixels are also arranged in a 2D array for saving the area overhead. Each subpixel 

corresponds to a FE-PS, which has a subpixel index (m = 1, 2,…, M) as well as a pixel index 

(n = 1, 2,…, N). The FE-PSs with the same subpixel index m are connected in parallel. With 

such an architecture, the FE-PS-NET can perform an efficient in-sensor MAC operation: under 

short-circuit and illumination conditions, the multiplication of optical power and 

photoresponsivity occurs at each individual FE-PS through the photosensing process; 

meanwhile, the photocurrents generated by the N FE-PSs with the same subpixel index m are 

summed together according to the Kirchhoff’s law. The output current Im is expressed as  

 
1=

=∑
N

m mn n

n

I R P ,                                                                                                                (2) 
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where Rmn is the photoresponsivity of the FE-PS at the n-th pixel and m-th subpixel [denoted as 

the (m, n) FE-PS hereafter], and Pn is the input optical power at the n-th pixel [the vector Pin = 

(P1, P2,…,PN)T represents the input image].   

       To experimentally demonstrate the MAC, i.e., Eq (2), a simple 1 × 2 (M = 1 and N = 2) 

FE-PS-NET was used first (see Fig. 4c). Both of the two FE-PSs were set in the complete Pup 

states beforehand. The resulting photoresponsivities R11 and R12 were thus almost the same, i.e., 

~0.22 mA/W. As shown in Fig. 4d, during the first 30 seconds, no illumination is applied and 

zero output current, i.e., I1, is observed. During the period of 30 to 60 seconds, the (1, 1) FE-PS 

is illuminated with an optical power of P1 = ~4.5 μW, resulting in a photocurrent of ~1 nA. 

During the next 30 seconds, both two FE-PSs are illuminated with P1 = P2 = ~4.5 μW. The 

output current jumps to ~2 nA, which is just the summation of the photocurrents generated by 

the two FE-PSs. Then, the illumination on the (1, 1) FE-PS is turned off while that on the (1, 2) 

FE-PS remains. The output current drops to ~1 nA, which is the photocurrent generated by the 

individual (1, 2) FE-PS. After this, the illuminations on both two FE-PSs are turned off, and 

consequently the output current returns to zero. During the periods of 150 to 240 and 270 to 

360 seconds, another two rounds of illuminations are applied. These two rounds of 

illuminations have the same sequence of applying P1 and P2 as the first round (30 to 120 

seconds). However, the magnitudes of P1 and P2 are adjusted: P1 = ~13.5 μW and P2 = ~4.5 

μW in the second round while P1 = ~13.5 μW and P2 = ~13.5 μW in the third round. Inspecting 

the periods where only one individual FE-PS is illuminated, one can find that the photocurrent 

of the individual FE-PS scales with the optical power, confirming the validity of multiplication. 

Besides, it is observed that the output currents during the periods where both two FE-PSs are 

illuminated always equal the summed photocurrents of the two FE-PSs.  

        After these measurements, the (1, 1) FE-PS was set in the complete Pdown state while no 

change of polarization state was made for the (1, 2) FE-PS. The resulting photoresponsivities 

R11 and R12 were thus ~-0.22 mA/W and ~0.22 mA/W, respectively. Then, three rounds of 

illuminations same as those used in Fig. 4d were applied again to the 1 × 2 FE-PS-NET, and 

the output currents are shown in Fig. 4e. The photocurrent generated by the (1, 1) FE-PS is 

observed to be negative, well attributed to the negative R11. Moreover, both multiplication and 

summation operations are observed to be valid. The combined Fig. 4d and e therefore 

demonstrate that the 1 × 2 FE-PS-NET can perform the MAC operations following Eq. (2). 

        Whether Eq. (2) still applies in a FE-PS-NET with larger size remains a question because 

the sneak path issue may arise. The sneak path issue refers to the unintentional current flow 
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through neighboring unselected devices in a crossbar structure. It is a common issue 

encountered by conventional memristor crossbar-based ANNs44, which can cause significant 

errors in output currents. The sneak path issue in our FE-PS-NET was investigated with a 2 × 

2 (M = 2 and N = 2) FE-PS-NET, as schematically shown in Fig. 4f. All the four FE-PSs were 

set in the complete Pup state, resulting in almost the same photoresponsivity of ~0.22 mA/W. 

The output current I1 was monitored while applying a sequence of illuminations to the four FE-

PSs. The illuminations for the four FE-PSs were applied or terminated independently, and the 

optical power during illumination was ~25 μW. As seen from in Fig. 4g, applying or removing 

illuminations to the (2, 1) and (2, 2) FE-PSs have almost no influences on the multiplication 

and summation operations performed by the sub-circuit composed of the (1, 1) and (1, 2) FE-

PSs. Therefore, our FE-PS-NET has good immunity to the sneak path issue. The reason for this 

may be because the FE-PS-NET works under the short-circuit condition and the illumination 

rather than the bias is used to select the device. The photocurrent generated by a selected device 

would therefore not flow through a neighboring unselected device. Even in the case where the 

short-circuit condition is not strictly met and a small bias arising from the photovoltaic effect 

of a selected device does drop across a neighboring unselected device, the leakage current 

produced by the neighboring unselected device would be negligible due to its high resistance 

(see Fig. 2g and h). This is fundamentally different from the scenario in a memristor crossbar, 

where the neighboring unselected device in the ON state can contribute a large leakage current. 

Therefore, the good immunity of FE-PS-NET to the sneak path issue is confirmed, allowing it 

to perform the MAC operations properly even with a large-scale network.  

Implementations of pattern classification and edge detection. With the capability to perform 

in-sensor MAC operations, the FE-PS-NET can readily be used to implement real-time image 

processing functionalities. Pattern classification was demonstrated first. Two sets of patterns, 

representing the letters ‘X’ and ‘T’ and their variants after adding noises (Fig. 5a), were used 

as both training and test sets45,46. Each pattern contained 3 × 3 = 9 pixels, and the pixel values 

of black and white pixels were defined as 1 and 0, respectively. The classes of ‘X’ and ‘T’ 

corresponded to the binary outputs of 1 and 0, respectively. Such pattern classification task was 

solvable by a single-layer perceptron containing 9 input neurons and 1 output neurons. The 

single-layer perceptron was hardware implemented with a 1 × 9 (M = 1 and N = 9) FE-PS-NET 

(see Fig. 5b). When presenting an input pattern to the FE-PS-NET, the pixel value of 1 or 0 at 

a specific pixel represented applying or removing illumination (optical power: ~4.5 μW) to the 

corresponding FE-PS, respectively. Through the MAC process, the FE-PS-NET produced an 

output current I1. I1 was further fed to a sigmoid activation function to generate a neuronal 
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output (see Methods). The sigmoid activation function was implemented in software here, but 

it could be implemented with conventional CMOS circuits47. Training was also performed in 

software, a method called the ex situ training. Then, the calculated weight matrix was 

transferred to the FE-PS-NET. When programming each FE-PS, a write-and-verify method was 

used to ensure a small discrepancy between the actual and target photoresponsivities. The FE-

PS-NET after programming could conduct the inference once an input pattern was presented to 

it. 

        Figure 5c compares the calculated and actual weight matrices. The differences between 

the actual weights and the corresponding calculated ones are quite small, indicating the 

successful programming of the FE-PS-NET. Figure 5d shows the output current I1 during the 

presentations of different input patters. It is observed that the output current is always positive 

when a pattern belonging to the ‘X’ class is presented, while it is always negative when a pattern 

belonging to the ‘T’ class is presented. Moreover, the measured output currents agree well with 

the theoretically calculated ones. Figure 5e further presents the neuronal outputs derived from 

the output currents. The neuronal outputs of the ‘X’-class patterns are all close to 1 while those 

of the ‘T’-class patterns are all close to 0, demonstrating that all the patterns are correctly 

classified. The accuracy for this simple binary classification task is therefore 100%. After the 

pattern classification, the weights exhibit only slight changes (Fig. 5c), demonstrating good 

reliability of the FE-PS-NET as a pattern classifier.  

        Another important image processing functionality, i.e., the edge detection, was also 

demonstrated. As shown in Fig. 6a, A 11 × 11 image showing an arrow sign was used as the 

input image. The pixel values in this image were binarized, similar as those used for the pattern 

classification. For the convolution operation in the edge detection, 3 × 3 kernels were used to 

slide over the input image with a stride of 1. Consequently, the initial input image was 

decomposed into 81 3 × 3 sub-images. These sub-images, with pixel values translated to 

illumination signals, were presented sequentially to the kernels based on FE-PS-NET. The 

kernels used here were two Sobel kernels, as displayed in Fig. 6b. These two kernels were 

implemented with a 2 × 9 (M = 2 and N = 9) FE-PS-NET. The kernel weights were mapped to 

the photoresponsivities of the corresponding FE-PSs (see Fig. 6b). During the convolution, the 

dot product between a sub-image and a kernel was obtained through the MAC process in the 

FE-PS-NET (see Fig. 6a). After the convolution, two sets of output current data I1 and I2, 

corresponding to Kernel 1 and 2, respectively, were collected. They were further merged, 

normalized, and binarized to form the output image (see Methods).  
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        Figure 6c shows the output currents I1 and I2 after the convolution with the two kernels. 

All the actual current values agree well with the theoretically calculated ones. Figure 6d (right 

panel) presents the final output image, clearly revealing the edge between the arrow and the 

background (note: the edge contains both the outermost pixels of foreground and innermost 

pixels of background). Based on Fig. 6d, a performance metric, i.e., F-Measure, is calculated 

to be 95.2%, quite close to 1. This demonstrates the good performance of edge detection 

implemented with the FE-PS-NET. In addition, almost no changes are observed in the kernel 

weights after the edge detection (Fig. 6b), verifying the reliability of the FE-PS-NET as an edge 

detector. 

        The high accuracy and reliability of FE-PS-NET for image processing can be well 

attributed to the reliable polarization control of photoresponsivity, as demonstrated previously. 

In addition, the low latency is another merit of FE-PS-NET because it can simultaneously sense 

and process images in the analog domain. The operation speed is thus limited mainly by the 

photocurrent generation time and the RC time constant of the circuit. Due to time resolution 

limit of our measurement system, we can only confirm that the photocurrent generation time is 

below 100 ms (Supplementary Fig. S7). Indeed, the photocurrent generation in a FE-PS can 

occur within 1 ns24,25; hence, the RC time constant of the circuit may become the major speed-

limiting factor. A rough estimation shows that the total latency of sensing and processing a 10-

million-pixel image is ~2.6 μs for the FE-PS-NET, which is 4 orders of magnitude shorter than 

that of a conventional Von Neumann system (Supplementary Note 1). In terms of the energy 

consumption, because the FE-PS operates in the gate voltage-free photovoltaic (i.e., self-

powered) mode, zero energy is in principle consumed when performing the inference. The 

energy is consumed only when programing the FE-PS. As shown in Supplementary Fig. S8, 

applying ±2 V/10 μs programing pulses to our ~0.0314 mm2 PZT-based FE-PS results in an 

energy consumption of ~3.1 nJ. As the FE-PS could be scaled down to ~1 μm2 48, the energy 

consumption may thus be reduced to ~0.1 pJ per bit per operation, which is a sufficiently low 

value compared with those of recent emerging neuromorphic devices14,32. The good scalability 

also allows the construction of a large-scale FE-PS-NET in a small area. The area efficiency 

could further benefit from the following two factors. First, the FE-PS-NET store the weights 

locally, and thus no external memory is needed to remember the weights. In addition, a single 

FE-PS can represent both positive and negative weights, making it unnecessary to use a pair of 

FE-PSs to represent a signed weight. The above features including high speed, scalability, and 

reliability, as well as low energy consumption, make the FE-PS-NET a good candidate for the 

hardware implementation of real-time machine vision.   
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Discussion  

In summary, we achieved a proof-of-concept demonstration of FE-PS-NET that can 

simultaneously sense and process images. The FE-PS-NET was constructed by wiring multiple 

FE-PSs with each FE-PS consisting of a two-terminal Pt/PZT (epitaxial film)/SRO 

heterostructure. The FE-PS exhibited multilevel nonvolatile photoresponses as well controlled 

by the remanent polarization. Also benefitting from the polarization control, small cycle-to-

cycle and device-to-device variations (~3% and ~3.2%, respectively) as well as high endurance 

(1×106 cycles) were demonstrated for the FE-PS. Moreover, the switching of the polarization 

direction induced the reversal of the photocurrent direction, thus enabling a single FE-PS to 

represent both positive and negative weights. Using the FE-PS as a building block, the FE-PS-

NET exhibited the capability to perform in-sensor MAC operations. The FE-PS-NET was 

further demonstrated with real-time image processing functionalities, including binary pattern 

classification with an accuracy of 100% and edge detection with an F-Measure of 95.2%. 

Moreover, because of the polarization-controlled photovoltaic operation mode, ultrafast 

photocurrent generation process, and in-sensor computing architecture, the FE-PS-NET could 

achieve high reliability, ultralow latency, and zero energy consumption for inference. This 

study demonstrates the first type of ferroelectric neuromorphic device with the sensing-

memory-computing integrated paradigm, opening up a new way for the development of reliable, 

high-speed, and low-power hardware for real-time machine vision.  

Methods 

Device fabrication. ~40 nm SRO and ~120 nm PZT epitaxial thin films were successively 

grown on (001)-oriented STO single crystalline substrates by PLD using a KrF excimer laser 

(λ = 248 nm). An energy fluence of 0.9 J/cm2 and a repetition rate of 5 Hz were used for the 

depositions of both SRO and PZT films. The SRO films were first deposited at a substrate 

temperature of 680 °C under an oxygen pressure of 15 Pa. The PZT films were subsequently 

deposited under the same oxygen pressure, but the substrate temperature was lowered to 600 °C. 

After growth, the PZT/SRO films were cooled to room temperature at a rate of 10 °C/min under 

1 atm oxygen pressure. The Pt top electrodes with ~10 nm in thickness were ex situ deposited 

on the films through a shadow mask (diameter: ~200 μm) by PLD at room temperature and 

under vacuum. The individual Pt/PZT/SRO FE-PSs were thus formed. To construct a FE-PS-

NET, the individual FE-PSs were connected by wiring. For the wiring, the two ends of a Pt wire 

(diameter: 50 μm) were pasted onto the two Pt top electrodes intended to be connected by using 

the silver paste.  
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Characterizations. The crystalline structure and phase purity of the films were investigated by 

XRD (X’ Pert PRO, PANalytical). The epitaxial quality and microstructure were further 

examined using TEM (Tecnai G2-F20). The surface morphology and domain structure were 

characterized by AFM and PFM, respectively, which were performed on an integrated scanning 

probe microscope (Asylum Research MFP-3D) with Pt-coated silicon tips (Nanoworld EFM 

Arrow). The PFM amplitude and phase images were acquired by using an AC driving voltage 

of 0.8 V in the DART (dual a.c. resonance tracking) mode. 

Electrical measurements. The bipolar and monopolar P-V hysteresis loops were measured 

with triangular pulses (pulse width: 150 μs) on a ferroelectric workstation (Radiant Precision 

Multiferroic). The I-V characteristics were measured with a SourceMeter (Keithley 6430). Both 

the ferroelectric workstation and SourceMeter were used to apply electrical pulses with various 

amplitudes and widths. In the photovoltaic measurement, a 365 nm UV light-emitting diode 

(LED) with tunable light intensities was used as the light source while the SourceMeter 

recorded the photocurrent data. When applying illumination to an individual FE-PS, the whole 

electrode area was considered for the calculation of optical power. However, for the FE-PS in 

FE-PS-NET, only the area without the coverage of the silver paste was considered as being 

subjected to the illumination and used for the calculation of optical power. 

Simulations. For the pattern classification task, the sigmoid activation function which was 

implemented in software is expressed as: 

1
( )

1 x
f x

e−=
+

,                                                                                                                            (3) 

1x Iα= ,                                                                                                                                        (4)  

where x is the neuronal input scaled from the measured current I1, and α is a scaling factor (α = 

3 nA-1 in this work).  

        For the edge detection task, two Sobel kernels were used for the convolution, which are 

expressed as: 

1 2 1

Kernel 1 0 0 0

1 2 1

 
 

=  
 − − − 

,                                                                                                    (5) 
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1 0 1

Kernel 2 2 0 2

1 0 1

− 
 

= − 
 − 

.                                                                                                    (6) 

        After the convolution, two maps of output current data (I1 and I2, corresponding to Kernel 

1 and 2, respectively) were obtained. The two maps were merged into one map following the 

equation below: 

E 1 2= +I I I .                                                                                                                              (7) 

Then, the IE values were normalized to the range [0, 1]. The normalized IE values were further 

binarized as follows: 

0,
Normalized

1,

<
=  ≥

E

x d
I

x d
,                                                                                                      (8) 

where d is a threshold value, and d = 0.6 was used in this work.  

        After the normalization and binarization, the final output image showing the detected edge 

was obtained. The F-Measure was used to evaluate the quality of the output image, as given by  

2

2

(1 )
F-Measure

β
β
+

=
+

PR

P R
,                                                                                                         (9) 

where β is a constant (β = 1 was used here), P is the precision, and R is the recall.  

Data availability 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.                                                                           
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Figure Captions 

Fig. 1 Hardware implementations of machine vision. Schematics for (a) conventional Von 

Neumann system and (b) emerging neuromorphic visual system. (c) Near- and (d) in-sensor 

computing architectures for the neuromorphic visual system. The proposed FE-PS-NET uses 

the architecture shown in d, where FE-PSs act as reconfigurable photosensors. 

Fig. 2 Polarization switching behavior and polarization-tuned multilevel nonvolatile 

photovoltaic responses in FE-PS. (a) Schematics illustrating the device structure of the Pt/ 

http://doi.org/10.1109/IJCNN.2016.7727302
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PZT (epitaxial film)/SRO FE-PS (left panel) and the crystal structure of PZT (right panel). (b) 

AFM topography image and (c) high-resolution cross-sectional TEM image of the epitaxial 

PZT film. (d) Bipolar, (e) positive monopolar, and (f) negative monopolar P-V hysteresis loops 

measured with different pulse voltages. Illuminated I-V characteristics measured after applying 

different (g) positive pulses and (h) negative pulses to the FE-PS initiated by -3 V and +3 V 

pulses, respectively. In e-h, the different polarizations states are schematically illustrated by the 

configurations of the four black solid arrows. (i) Isc and Voc as a function of the write pulse 

voltage (Vp). 

Fig. 3 Synaptic behavior and operation mechanism of FE-PS. (a) One-cycle LTD and LTP 

characteristics in which the photoresponsivity represents the weight. Inset shows the schematics 

of the applied pulse trains. (b) Multi-cycle LTD and LTP characteristics. (c) Schematic energy 

band diagrams of the FE-PS in the complete Pup (left panel) and Pdown (right panel) states. The 

polarization switching can tune the Schottky barrier heights and built-in fields at the two 

interfaces, thus modifying the magnitude and direction of the overall output photocurrent.  

Fig. 4 In-sensor MAC operations in FE-PS-NET. (a) Schematic illustration of the 

architecture of the FE-PS-NET. (b) Schematic circuit diagram for a pixel in the FE-PS-NET. 

(c) Schematic circuit diagram for a 1 × 2 FE-PS-NET. (d,e) Time-resolved currents (I1) 

measured during the applications of different illuminations to the (1, 1) and (1, 2) FE-PSs. In d 

the (1, 1) and (1, 2) FE-PSs are both set in the complete Pup state, while in e the two devices are 

set in the complete Pdown and Pup states, respectively. In each period during which at least one 

FE-PS is illuminated, the MAC operation is directly expressed as the equation containing the 

experimental values of photoresponsivity, optical power, and output current. Their 

corresponding units are mA/W, μW, and nA, respectively (not shown). (f) Schematic circuit 

diagram for a 2 × 2 FE-PS-NET. (g) Time-resolved currents (I1) measured during the 

applications of different illuminations to the (1, 1), (1, 2), (2, 1) and (2, 2) FE-PSs. All the FE-

PSs are set in the complete Pup state, and the illumination sequences are indicated in the 

corresponding periods while the optical power for illumination (~25 μW) is not shown. 

Fig. 5 Implementation of pattern classification. (a) Two sets of patterns representing letters 

‘X’ and ‘T’. (b) Schematic diagrams showing the operation and the circuit structure of a 1 × 9 

FE-PS-NET. The 9 FE-PSs are illuminated following the signals translated from the input 

pattern. (c) From left to right: calculated dimensionless weights, theoretical photoresonsivities 

scaled from dimensionless weights, actual photoresonsivities right after programming, actual 

photoresonsivities after pattern classification. The unit of photoresponsivity is mA/W (not 
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shown). (d) Output currents (I1) during the presentations of different input patterns. The 

theoretical I1 values are indicated by the “star” symbols. The unit of I1 is nA (not shown) (e) 

Neuronal outputs obtained by feeding the output currents to the sigmoid function.  

Fig. 6 Implementation of edge detection. (a) Schematic illustration of the operations for the 

edge detection. The convolution is implemented by sequentially presenting the sub-images 

whose pixel values are translated to the illumination signals to the kernels based on FE-PS-

NET. The merging, normalization, and binarization of output currents are performed in 

software. (b) From left to right: theoretical dimensionless weights, theoretical 

photoresonsivities scaled from dimensionless weights, actual weights right after programming, 

and actual photoresonsivities after edge detection, for Kernel 1 and 2. The unit of 

photoresponsivity is mA/W (not shown). (c) Output currents I1 (left panel) and I2 (right panel) 

after the convolution with the two kernels. The values outside the brackets are the actual I1 and 

I2 values while those in the brackets are the differences between the theoretical I1 and I2 values 

and their corresponding actual values. The units of I1 and I2 are nA (not shown) (d) Image 

obtained by merging I1 and I2 (left panel) and final output image after normalization and 

binarization showing the detected edge (right panel). 
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