1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71, 209–249 (2021).
2. World Health Organization. Breast cancer. https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
3. Wang, L. Early diagnosis of breast cancer. Sensors 17, 1572 (2017).
4. Gilbert, F. J. & Pinker-Domening, K. Diagnosis and staging of breast cancer: when and how to use mammography, tomosynthesis, ultrasound, contrast-enhanced mammography, and magnetic resonance imaging. in Diseases of the Chest, Breast, Heart and Vessels 2019–2022 Diagnostic and Interventional Imaging (eds. Hodler, J., Kubik-Huch, R. A. & Von Schulthess, G. K.) 155–166 (2019). doi:10.1007/978-3-030-11149-6.
5. Hofvind, S. et al. Two-view digital breast tomosynthesis versus digital mammography in a population-based breast cancer screening programme (To-Be): a randomised, controlled trial. Lancet Oncol. 20, 795–805 (2019).
6. Ahuja, A. S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 7, e7702 (2019).
7. Abdullah, R. & Fakieh, B. Health care employees’ perceptions of the use of artificial intelligence applications: survey study. J. Med. Internet Res. 22, 1–8 (2020).
8. Doraiswamy, P. M., Blease, C. & Bodner, K. Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artif. Intell. Med. 102, 101753 (2020).
9. Blease, C. et al. Artificial intelligence and the future of primary care: exploratory qualitative study of UK general practitioners’ views. J. Med. Internet Res. 21, 1–10 (2019).
10. Meskó, B. & Görög, M. A short guide for medical professionals in the era of artificial intelligence. npj Digit. Med. 3, 126 (2020).
11. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 195 (2019).
12. Asan, O., Bayrak, A. E. & Choudhury, A. Artificial intelligence and human trust in healthcare: focus on clinicians. J. Med. Internet Res. 22, 1–7 (2020).
13. Yassin, N. I. R., Omran, S., El Houby, E. M. F. & Allam, H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput. Methods Programs Biomed. 156, 25–45 (2018).
14. Reitsma, J. B. et al. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 58, 982–990 (2005).
15. Cuocolo, R. et al. Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur. Radiol. 30, 6877–6887 (2020).
16. van Kempen, E. J. et al. Accuracy of machine learning algorithms for the classification of molecular features of gliomas on MRI: a systematic literature review and meta-analysis. Cancers (Basel). 13, 2606 (2021).
17. Ugga, L. et al. Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology (2021) doi:10.1007/s00234-021-02668-0.
18. Sotiriadis, A., Papatheodorou, S. I. & Martins, W. P. Synthesizing evidence from diagnostic accuracy tests: the SEDATE guideline. Ultrasound Obstet. Gynecol. 47, 386–395 (2016).
19. Tehranifar, P., Rodriguez, C. B., April-Sanders, A. K., Desperito, E. & Schmitt, K. M. Migration history, language acculturation, and mammographic breast density. Cancer Epidemiol. Biomarkers Prev. 27, 566–574 (2018).
20. Vieira, R., Biller, G., Uemura, G., Ruiz, C. & Curado, M. Breast cancer screening in developing countries. Clinics 72, 244–253 (2017).
21. van Enst, W. A., Ochodo, E., Scholten, R. J., Hooft, L. & Leeflang, M. M. Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC Med. Res. Methodol. 14, 70 (2014).
22. McInnes, M. D. F. et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies. JAMA 319, 388 (2018).
23. Reitsma, J. B. et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155, 529–536 (2011).
24. R Core Team. R: a language and environment for statistical computing. (2021).
25. Doebler, P. MADA: meta-analysis of diagnostic accuracy. (2020).
26. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
27. Noma, H., Matsushima, Y. & Ishii, R. Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Commun. Stat. Case Stud. Data Anal. Appl. 1–15 (2021) doi:10.1080/23737484.2021.1894408.
28. Shim, S. R., Kim, S.-J. & Lee, J. Diagnostic test accuracy: application and practice using R software. Epidemiol. Health 41, 1–8 (2019).
29. Lee, J., Kim, K. W., Choi, S. H., Huh, J. & Park, S. H. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-Part II. Statistical methods of meta-analysis. Korean J. Radiol. 16, 1188 (2015).
30. Deeks, J. J., Macaskill, P. & Irwig, L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J. Clin. Epidemiol. 58, 882–893 (2005).
31. Abdolmaleki, P., Guiti, M. & Tahmasebi, M. Neural network analysis of breast cancer from mammographic evaluation. Iran. J. Radiol. 3, 155–162 (2006).
32. Acharya U, R., Ng, E. Y. K., Chang, Y. H., Yang, J. & Kaw, G. J. L. Computer-based identification of breast cancer using digitized mammograms. J. Med. Syst. 32, 499–507 (2008).
33. Al-Antari, M. A., Han, S.-M. & Kim, T.-S. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput. Methods Programs Biomed. 196, 105584 (2020).
34. Alfifi, M., Shady, M., Bataineh, S. & Mezher, M. Enhanced artificial intelligence system for diagnosing and predicting breast cancer using deep learning. Int. J. Adv. Comput. Sci. Appl. 11, 498–513 (2020).
35. Al-Hiary, H., Alhadidi, B. & Braik, M. An implemented approach for potentially breast cancer detection using extracted features and artificial neural networks. Comput. Informatics 31, 225–244 (2012).
36. Al-masni, M. A. et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 157, 85–94 (2018).
37. Bandeira Diniz, J. O. et al. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks. Comput. Methods Programs Biomed. 156, 191–207 (2018).
38. Barkana, B. D. & Saricicek, I. Classification of breast masses in mammograms using 2D homomorphic transform features and supervised classifiers. J. Med. Imaging Heal. Informatics 7, 1566–1571 (2017).
39. Biswas, R., Roy, S. & Biswas, A. Mammogram classification using curvelet coefficients and gray level co-occurrence matrix for detection of breast cancer. Int. J. Innov. Technol. Explor. Eng. 8, 4819–4824 (2019).
40. Cai, H. et al. Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput. Math. Methods Med. 2019, 2717454 (2019).
41. Chen, S. et al. A new application of multimodality radiomics improves diagnostic accuracy of nonpalpable breast lesions in patients with microcalcifications-only in mammography. Med. Sci. Monit. 25, 9786–9793 (2019).
42. Chen, X. et al. Applying a new quantitative image analysis scheme based on global mammographic features to assist diagnosis of breast cancer. Comput. Methods Programs Biomed. 179, 104995 (2019).
43. Danala, G. et al. Classification of breast masses using a computer-aided diagnosis scheme of contrast enhanced digital mammograms. Ann. Biomed. Eng. 46, 1419–1431 (2018).
44. Daniel López-Cabrera, J. et al. Classification of Breast Cancer from Digital Mammography Using Deep Learning. Intel. Artif. 23, 56–66 (2020).
45. Fathy, W. E. & Ghoneim, A. S. A deep learning approach for breast cancer mass detection. Int. J. Adv. Comput. Sci. Appl. 10, 175–182 (2019).
46. Girija, O. K. & Sudheep Elayiodm, M. Hybrid method of local binary pattern and classification tree for early breast cancer detection by mammogram classification. Int. J. Recent Technol. Eng. 8, 139–145 (2019).
47. Jebamony, J. & Jacob, D. Classification of benign and malignant breast masses on mammograms for large datasets using core vector machines. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 16, 703–710 (2020).
48. Junior, G. B., Martins, L. D. O., Silva, A. C. & Paiva, A. C. Comparison of support vector machines and bayesian neural networks performance for breast tissues using geostatistical functions in mammographic images. Int. J. Comput. Intell. Appl. 09, 271–288 (2010).
49. Kanchanamani, M. & Perumal, V. Performance evaluation and comparative analysis of various machine learning techniques for diagnosis of breast cancer. Biomed. Res. 27, 623–631 (2016).
50. Kim, E.-K. E.-K. et al. Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study. Sci. Rep. 8, 2762 (2018).
51. Mao, N. et al. Added value of radiomics on mammography for breast cancer diagnosis: a feasibility study. J. Am. Coll. Radiol. 16, 485–491 (2019).
52. Miao, J. H., Miao, K. H. & Miao, G. J. Breast cancer biopsy predictions based on mammographic diagnosis using support vector machine learning. Cyber Journals Multidiscip. Journals Sci. Technol. J. Sel. Areas Bioinforma. 5, (2015).
53. Miao, K. H. & Miao, G. J. Mammographic diagnosis for breast cancer biopsy predictions using neural network classification model and receiver operating characteristic (ROC) curve evaluation. J. Sel. Area Bioinforma. (2013).
54. Milosevic, M., Jankovic, D. & Peulic, A. Comparative analysis of breast cancer detection in mammograms and thermograms. Biomed. Tech. 60, 49–56 (2015).
55. Nithya, R. & Santhi, B. Breast cancer diagnosis in digital mammogram using statistical features and neural network. Res. J. Appl. Sci. Eng. Technol. 4, 5480–5483 (2012).
56. Nusantara, A. C., Purwanti, E. & Soelistiono, S. Classification of digital mammogram based on nearest-neighbor method for breast cancer detection. Int. J. Technol. 1, 71–77 (2016).
57. Palantei, E., Amaliah, A. & Amirullah, I. Breast cancer detection in mammogram images exploiting GLCM, GA features and SVM algorithms. J. Telecommun. Electron. Comput. Eng. 9, 113–117 (2017).
58. Paramkusham, S., Rao, K. M. M., Prabhakar Rao, B. V. V. S. N. & Sharma, S. Application of TAR signature for breast mass analysis. Biomed. Res. 29, 2030–2034 (2018).
59. Roseline, R. & Manikandan, S. Determination of breast cancer using knn cluster technique. Indian J. Public Heal. Res. Dev. 9, 418–423 (2018).
60. Shah, H. Automatic classification of breast masses for diagnosis of breast cancer in digital mammograms using neural network. Int. J. Sci. Technol. Eng. 1, (2015).
61. Shivhare, E. & Saxena, V. (Nigam). Breast cancer diagnosis from mammographic images using optimized feature selection and neural network architecture. Int. J. Imaging Syst. Technol. ima.22467 (2020) doi:10.1002/ima.22467.
62. Singh, L. & Jaffery, Z. A. Computer-aided diagnosis of breast cancer in digital mammograms. Int. J. Biomed. Eng. Technol. 27, 233–246 (2018).
63. Venkata, M. D. & Lingamgunta, S. Triple-modality breast cancer diagnosis and analysis in middle aged women by logistic regression. Int. J. Innov. Technol. Explor. Eng. 8, 555–562 (2019).
64. Wang, S. et al. Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm. Fundam. Informaticae 151, 191–211 (2017).
65. Wutsqa, D. U. & Setiadi, R. P. Point operation to enhance the performance of fuzzy neural network model for breast cancer classification. J. Eng. Appl. Sci. 12, 4405–4410 (2017).
66. Yousefi, M., Krzyżak, A. & Suen, C. Y. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning. Comput. Biol. Med. 96, 283–293 (2018).