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Abstract
Age-related degenerative brain diseases frequently manifest as memory deficits. Dietary interventions or
nutraceuticals may provide efficacious treatments through prevention and cure. Soybean meal, a
byproduct of soy oil refining, has health benefits, but its effect on memory function is unknown.
Therefore, we evaluated the effect of the oral administration of soybean meal extract (SME) for 2 weeks
on memory function using the Morris water maze (MWM) test in healthy rats and investigated the
possible underlying mechanisms. First, analysis of the composition revealed that SME is rich in
isoflavones; SME did not exhibit hepatotoxicity or renal toxicity at the different doses tested. The MWM
results revealed that the escape latency and movement distance of rats were significantly shorter in the
SME group than in the control group, indicating that SME can help in memory preservation. In addition,
SME increased the levels of presynaptic proteins such as synaptophysin, synaptobrevin, synaptotagmin,
syntaxin, synapsin I, and 25-kDa synaptosome-associated protein as well as protein kinases and their
phosphorylated expression, including extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein
kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] in the hippocampal nerve
terminals (synaptosomes). Transmission electron microscopy also indicated that SME increased the
number of synaptic vesicles in hippocampal synaptosomes. Furthermore, SME rats exhibited increased
gut microbiota diversity and altered microbiota composition compared with control rats. Therefore, our
data suggest that SME can increase presynaptic function and modulate gut microbiota, thus aiding in
memory preservation in rats.

Introduction
With the aging of society worldwide, the incidence of degenerative brain diseases, including Parkinson
disease, Alzheimer disease (AD), Huntington disease, amyotrophic lateral sclerosis, and multiple
sclerosis, is increasing [1]. Memory impairment is one of the main symptoms of age-related degenerative
brain diseases [2, 3]. Because no effective therapies exist for memory impairment, preventive approaches,
such as dietary interventions or nutraceuticals, have been receiving increasing attention [4–7].
Consumption of foods rich in polyphenols is associated with improved cognitive performance and a
reduced risk of cognitive impairment in humans [8–10].

Soybean contains numerous nutritional and biofunctional compounds, especially isoflavones [11]. It has
estrogenic, hypocholesterolemic, anticancer, antiosteoporotic, antioxidative, anti-inflammatory, and
neuroprotective effects [11–18]. Soybean and its extract have been reported to improve cognitive deficits
by reducing β amyloid (1-42) formation, increasing neurogenesis, and suppressing neuroinflammation in
several animal models [19–21].

In the present study, we focused on the soybean meal, which is a byproduct of soybean oil extraction and
is widely used in feed and food industries [22]. It contains functional bioactive compounds similar to
soybeans, such as phenolics and isoflavones [23]. Similar to soybean, soybean meal has diverse
biological effects, including antioxidative, anti-inflammatory, anticancer, and antiphotodamage effects
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[24–27]. However, no study has focused on the role of soybean meal in memory function. Here, we (i)
determined whether the oral administration of soybean meal extract (SME) for 2 weeks affected memory
in healthy rats using the Morris water maze (MWM) test, (ii) elucidated the mechanisms of action of SME
and (iii) determined whether SME produced any side effects in rats. In addition, the feces of rats were
collected to analyze gut microbiota, which is associated with memory function [28].

Materials And Methods
Materials

Soybean meal was purchased from the local market. Anti‐synaptophysin (#36406S), anti‐synapsin I
(#5297S), anti-β-actin (#3700S), anti-extracellular signal-regulated kinases 1 and 2 (ERK1/2, #9102S),
anti-phospho-protein kinase C (PKC, #9371S), and anti-phospho-ERK1/2 (#4370S) were purchased from
Cell Signaling (MA, USA). Anti‐synaptotagmin (#ab13259), anti‐synaptobrevin (#ab18013), anti-syntaxin
(#ab188583), anti‐synaptosomal‐associated protein 25 kDa (SNAP 25, #ab41455), anti-PKC (#ab23511),
anti-Ca2+/calmodulin-dependent protein kinase II (CaMKII, #ab92332), and anti-phospho-CaMKII
(#ab171095) were purchased from Abcam (Cambridge, UK). Anti-phospho-synapsin I site-4,5 (Ser 62, 67)
(#GTX82591), anti-phospho-synapsin I site-3 (Ser 603) (#GTX82589), and anti-horseradish peroxidase‐
conjugated secondary antibodies (#GTX213110‐01, #GTX213111‐01) were purchased from Gentex (MI,
USA). Other chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Preparation of SME

The extract was prepared as described in previous studies [26, 27]. Briefly, 50 g of soybean meal was
dissolved in 150 mL of ethanol/water (1:1 v/v) by continuously stirring for 2 h at 4°C. Then, the
supernatants were obtained by centrifugation (6000 rpm for 20 min at 25 °C) and lyophilized to obtain a
powder. The extract powder was then stored at -20 °C for further use in the biological assays.

LC–MS/MS analysis

Isoflavone and phenolic acid of SME were separated on an Agilent Eclipse plus C18 column (100 mm ×
4.6 mm, 3.5 μm) at a flow rate of 0.35 mLmin−1 by using an Agilent 1200 series binary pump. Gradient
elution was performed with mobile phase A (5% methanol with 0.1% formic acid) and mobile phase B
(methanol with 0.1% formic acid). The initial condition was 50:50 mobile phase A/mobile phase B (v/v)
for 2.5 min, after which is was changed to 80% mobile phase B in 0.1 min that was maintained for 2 min.
Finally, the solvent composition was quickly reverted to the initial conditions and equilibrated for 11 min.
Mass spectrometry was operated in multiple ion-monitoring mode (MRM) and negative polarity at −4200
V by using API 3000 (MDS SCIEX, Applied Biosystems, Ontario, Canada).

Experimental animals
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The International Guidelines for Care and Use of Laboratory Animals were followed for all experiments,
and the experimental protocol was approved by the Animal Care Committee of Fu Jen Catholic University
(approval number: A11018). Thirty male Sprague-Dawley rats (Taiwan BioLASCO) weighing 160–200 g
were used. They were housed in plastic cages and were fed on pellets with free access to tap water.
Room temperature was controlled at 22 ± 2°C with a 12-h light:12-h dark cycle. After 3 days of training
with MWM, rats were divided into SME and tap water (control) groups; they were orally administered SME
solution or an equal volume of 0.9% normal saline, respectively, daily for 2 consecutive weeks. After 2
weeks, the behavioral test was conducted 30 min by using the MWM video analysis system. Next, the
rat's body weight was measured, and stool samples were collected and immediately stored at -80°C for
gut microbiota analysis. Finally, the rats were deeply anesthetized and killed, and the hippocampus was
collected to prepare synaptosomes for glutamate release assay, transmission electron microscopy (TEM),
and Western blotting. In addition, the liver and kidney were collected from the rats after sacrifice for
hematoxylin-eosin (H&E) staining.

MWM test

The MWM test was conducted to evaluate the performance of spatial learning and memory, as described
by previous study [29]. A circular pool with a diameter of 55 cm and height of 25 cm was filled with
opacified water (20 cm depth) at 25 ± 1°C. The pool was divided into four quadrants, and the platform
was placed at the center of one fixed quadrant for all trials. Training (days 1‒4) was conducted four
times a day, and the escape latency time for each rat to go to the platform was measured for 120 s. Rats
reaching the platform were allowed to be remain there for 15 s. Rats that failed to locate the platform
were guided to the platform and allowed to stay for 30 s. The latency period of the failed rats was
recorded within 120 s. The swimming path from the entry to the hidden platform, escape latency, and
movement distance in the coverage zone were recorded using a video-tracking system (Version 1.17,
SINGA Technology Corporation, Taipei, Taiwan).

H&E staining

Liver or kidney tissues were fixed in 4% PFA, dehydrated with graded alcohol, and embedded in paraffin
wax. A series of paraffin sections (5 μm) were cut using a Leica rotation microtome and stained with H&E,
and images were captured under a microscope with 400x magnification. Histological changes in the liver
and kidney sections were determined in terms of cytoplasmic color fading, vacuolization, nuclear
condensation, nuclear fragmentation, nuclear fading, and erythrocyte stasis [30].

TEM

Rat hippocampal synaptosomes from each group were placed in an electron microscope fixative solution
for 1 day. Samples were then postfixed in 1% osmium tetraoxide for 2 h, followed by gradient ethanol
dehydration, soaking, and embedding in pure epoxy resin. Samples were cut into 70-nm-thick sections
and stained with uranium and lead. Finally, sections were observed under a TEM (JEM-1400, JEOL,
Japan).
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Western blotting analysis

Western blotting was performed as described by previous reported [29]. Briefly, hippocampal
synaptosomes were homogenized and the concentrations of proteins were determined using Bradford's
method, with bovine serum albumin (BSA) as a standard. Equal protein amounts (20 mg) were subjected
to sodium dodecylsulfate polyacrylamide (SDS-PAGE) gel electrophoresis and then transferred to
polyvinylidene difluoride membranes. The membranes were blocked with 3% BSA in Tris-buffered saline
(TBS) with 0.05% Tween-20 (TBST) for 1h at room temperature and incubated overnight at 4°C with
primary antibodies. The antibodies used were anti-synaptophysin (1:200000), anti-synaptotagmin
(1:1000), anti-synaptobrevin (1:800), anti-syntaxin (1:10000), anti-synapsin I (1:50000), anti-SNAP 25
(1:50000), anti-PKC (1:700), anti-phospho-PKC (1: 2000), anti-CaMKII (1:10000), anti-phospho-CaMKII
(1:2000), anti-ERK1/2 (1:5000), anti-phospho-ERK1/2 (1:2000), anti-phospho-synapsin I site-4, 5 (1:2000),
anti-phospho-synapsin I site-3 (1:2000), and anti-b-actin (1:1000). Next, the membrane was washed with
TBST three times and incubated with a secondary horseradish peroxidase-conjugated antibody (1:5000)
at room temperature for 1 h. Protein bands were visualized using a chemiluminescence reagent
(Amersham, Buckinghamshire, UK). The intensity of the protein bands was analyzed using ImageJ
software (Synoptics, Cambridge, UK).

Gut microbiota

Gut microbiota analysis was conducted by the Biotools Microbiome Research Center (Taipei, Taiwan).
Briefly, DNA was extracted from fecal samples using the QIAamp PowerFecal DNA kit (Qiagen, CA, USA).
The 16s rDNA amplicon sequencing of the V4 hypervariable region was performed with an Illumina HiSeq
(paired-end 250 bp). Primers was designed to target the V4 region of the 16S rDNA (position 319 of the
bacterial 16s rRNA gene to position 806). Each reaction was denatured at 95°C for 3 min followed by 25
cycles of (95°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec), followed by a final extension at 72°C for 5
min [31]. Reactions each contained a unique sequence index to enable pooling. Pools were purified with
the AMPure XP beads and sequenced on an Illumina HiSeq platform. The 16S rDNA data were analyzed
with the open-source bioinformatics pipeline Quantitative Insights into Microbial Ecology (QIIME). The
sequences were grouped into operational taxonomic units (OTUs) by UCLUST at a minimum of 97%
sequence similarity. Representative sequences from each OTU were aligned using the PyNAST software
(v.1.2). Taxonomy was assigned using the Silva database (v.132).

Statistical analysis

Statistical analysis was done using the SPSS.16.0 software. The data were expressed as mean ±
standard error of the mean (SEM). One-way analysis of variance (ANOVA) was run followed by Tukey
post hoc comparisons test. The criterion for the statistical significance was p < 0.05.

Results

Isoflavones and phenolic acid content in SME
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Figure 1 indicates that isoflavone content is higher than the phenolic acid content. The major compounds
in SME are glucoside and malonyl types of isoflavone (Table 1). The content of different functional
groups can be ranked as glucoside >malonyl>> acetyl >aglycone, and the basic structure of isoflavone as
daidzein>genistein>>glycitein. Unlike isoflavones, the phenolic acid content is very low; among the
phenoic acids, p-coumaric acid content is significantly the highest (Table 1).

Table 1
Isoflavone and phenolic acid content in SME

(concentration)
Analyte ng/mL

Protocatechuic acid 15.82 ± 6.21

p-Coumaric acid 389.32 ± 137.09

Gallic acid 14.13 ± 2.89

Caffeic acid 2.99 ± 0.90

Ferulic acid 146.33 ± 22.32

Catechin 3.93 ± 0.37

Chlorogenic acid 14.21± 4.73

Rutin 5.88 ± 0.86

Daidizein 1727.50 ± 1007.22

Genistein 1373.25 ± 869.15

Glycitein 663.29 ± 391.40

Daidizin 18676.91 ± 2631.96

Genistin 18546.38 ± 1967.54

Glycitin 2699.11 ± 233.28

Acetyldaidzin 3395.27 ± 402.31

Acetylgenistin 4145.27 ± 571.26

Acetylglycitin 432.30 ± 61.52

Malonyldaidzin 15302.70 ± 3146.35

Malonylgenistin 19047.02 ± 3474.71

Malonylglycitin 2883.97 ± 840.35

Data are presented as mean ± SEM (n = 3).
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Body weight and hepatic and renal toxicity
The experimental design is presented in Fig. 2A. SME was orally administered to rats once daily for 14
days. The effects of SME on the body weights and hepatic and renal toxicity were investigated at the end
of the experimental period, and the results are shown in Fig. 2B and C. Compared with the control group,
the body weight of rats in the SME group was not significantly different [F (2, 27) = 0.03, p = 0.9]. In
addition, no obvious morphological changes were observed in the liver and kidney between the two
groups (Fig. 2C), indicating that chronic administration of SME does not cause liver and kidney damage.

Memory retention in rats administered SME
To determine the effect of SME on spatial learning and memory, we analyzed the rats performance in the
MWM test (Fig. 3A). In the MWM test, rats in the SME group had a shorter time for finding the platform
than the control group [F (2, 21) = 54.9, p < 0.001, Fig. 3B]. Similarly, the movement distance of rats in the
SME group was significantly shorter than that of the control group [F (2, 21) = 77.9, p < 0.001; Fig. 3C]. No
significant difference was observed between rats administered SME 50 mg/kg and SME 100 mg/kg
groups (p = 0.9). These results suggest that the memory retention of the SME group were superior to that
of the control group.

Increased synaptic protein expression in the hippocampal
synaptosomes of rats administered SME
Synaptic function, often measured in terms of presynaptic protein levels, indicates cognitive brain reserve
[32]. To confirm that synaptic function was involved in the effects of SME, the levels of presynaptic
proteins including synaptophysin, synaptotagmin, synaptobrevin, syntaxin, synapsin-1, and SNAP‐25 in
the hippocampal synaptosomes were detected. As shown in the Fig. 4, the administration of SME led to
significant increases in the levels of synaptophysin by 44% [F (2, 12) = 22.9, p <0.001], synaptotagmin by
42% [F (2, 12) = 8.4, p < 0.01], synaptobrevin by 81% [F (2, 12) = 21.2, p < 0.001], syntaxin by 54% [F (2, 12)
= 11.9, p < 0.01], SNAP‐25 by 67% [F (2, 12) = 62.4, p < 0.001], and synapsin I by 53% [F (2, 12) = 20.5, p <
0.001] in the hippocampal synaptosomes compared with those in the control group (p < 0.001, n = 5; Fig.
4). No significant difference was observed between the effects of SME 50 mg/kg and SME 100 mg/kg
groups (p > 0.05).

Increased protein kinase expression and phosphorylation in
the hippocampal synaptosomes of rats administered SME
Because synaptic vesicle-related proteins are regulated by extracellular signal-regulated kinases 1 and 2
(ERK1/2), protein kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) [33], we
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detected the levels of ERK1/2, PKC, and CaMKII, and their phosphorylated expression (Fig. 5A). The
expression of PKC [F (2, 12) = 5.9, p < 0.01], CaMKII[F (2, 12) = 10.4, p < 0.01], and ERK1/2 [F (2, 12) =
28.3, p < 0.001] and their phosphorylated levels in the hippocampal synaptosomes were higher in the
SME group than in the control group [p-PKC, F (2, 12) = 6.3, p < 0.01; p-CaMKII, F (2, 12) = 38.9, p < 0.01; p-
ERK1/2, F (2, 12) = 28.3, p < 0.001; Fig. 5B]. In addition, a significant increase in the phosphorylation of
synapsin I at ERK1/2-specific sites 4 and 5 and CaMKII-specific sites 3 was observed in the SME group
compared with the control group [p-synapsin I site 4,5, F (2, 12) = 19.1, p < 0.001; p-synapsin I site 3, F (2,
12) = 7.1, p < 0.01; Fig. 5C]. No significant difference was observed between rats administered SME 50
mg/kg and SME 100 mg/kg (p > 0.05).

Increased synaptic vesicles in the hippocampal
synaptosomes of rats administered SME
We observed the changes in synaptic vesicles in the hippocampal synaptosomes of rats under a
transmission electron microscope (Fig. 6A). The number of synaptic vesicles in the hippocampal
synaptosomes of the SME group was higher in the SME group than in the control group [F (2, 6) = 45.3, p
< 0.001; Fig. 6B]. No significant difference was observed between rats administered SME 50 mg/kg and
SME 100 mg/kg (p = 0.9).

Changes in gut microbiota in rats administered SME
In addition, increasing evidence has demonstrated that the gut microbiota is associated with memory
function [28]. To explore gut microbiota composition and alterations, we used the next-generation
sequencing technology to measure the bacterial community in fecal samples of rats. Fig. 7 presents the
microbiota profiles of rats treated with SME. Alpha-diversity was estimated based on observed OTUs, and
the results indicated that the observed species in the gut microbiota of the SME 100 mg/kg group was
significantly increased compared with that in the control group [F (2, 6) = 6.6, p < 0.05; Fig. 7A]. These
results were confirmed using rarefaction curves analysis (Fig. 7B), indicating that the SME treatments
increased the species richness and diversity compared with the control group. At the phylum level, the
relative abundance of three main phyla‒Bacteroidates, Firmicutes, and Proteobacteria‒was
approximately 97% (Fig. 7C). The relative abundance of Firmicutes in the SME 100 mg/kg group was
significantly lower than that in the control group [F (2, 11) = 4.9, p < 0.05; Fig. 7D], whereas that of
Bacteroidates was not significantly different between the two groups [F (2, 12) = 0.3, p > 0.05; Fig. 7D].
The Firmicutes to Bacteroidates(F/B) ratio in the SME 100 mg/kg group was reduced compared with that
in the control group [F (2, 9) = 4.3, p < 0.05; Fig. 7D, inset]. By contrast, the relative abundance of
Proteobacteria and Actinobacteria was higher in the SME group than in the control group [Proteobacteria,
F (2, 12) = 4.3, p < 0.05; Actinobacteria, F (2, 7) = 5.3, p < 0.05; Fig. 7D]. At the genus level, Bacteroides,
Lactobacillus, and other unclassified bacterial strains were the main bacteria in the control and SME
groups (Fig. 7E). The relative abundance of Lactobacillus, Prevotellaceae_UGG_001, Romboutsia,
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Turicibacter, and Parabacteroides decreased in the SME group, whereas that of Akkermansia,
Prevotellaceae_NK3B31_group, Parasutterella, and other unclassified bacterial strains was
nonsignificantly higher increased in the SME group. However, most of these differences were not
statistically significant (p > 0.05; Fig. 7F), except the between-group differences in the relative abundance
of other unclassified bacteria [F (2, 9) = 4.8, p < 0.05; Fig. 7F].

Discussion
Considerable research attention has been directed to factors, particularly natural products, that can
enhance the memory of older adults or prevent the development of cognitive deficits. Soybean meal is a
cheap, readily available source of bioactive health-promoting compounds [24–27]. We investigated the
effect of SME on memory function in rats through the MWM test and evaluated its possible underlying
mechanisms.

The MWM test is the most widely accepted model for evaluating hippocampal-dependent spatial learning
and memory in rodents [34–35]. In the MWM test, a lower score in the escape latency is used as an index
of enhanced spatial learning and memory [36]. In the present experiments, orally administered 50 or 100
mg/kg/day of SME for 14 days led to significantly decreased escape latencies compared with that in the
control group. The shorter escape latencies suggest that the oral administration of SME plays a
significant role in memory retention.

Memory formation and storage are tightly linked to synaptic plasticity [37, 38], which is regulated by
numerous neurochemical alterations, including changes in neurotransmitter release [39, 40]. In synaptic
terminals, neurotransmitter release can be regulated by multiple synaptic proteins, including SNAP-25,
synaptobrevin, synapsin I, and syntaxin, which are involved in vesicle docking, priming, and triggering fast
neurotransmitter exocytosis [41, 42]. The phosphorylation of these proteins by various protein kinases,
such as ERK1/2, PKC, and CaMKII [43–45], increases the availability of vesicles in the active zone and,
thus, increases neurotransmitter release [33, 46, 47], contributing to synaptic plasticity and memory
formation and retention in the hippocampus [48–50]. In the present study, in the hippocampal nerve
terminals of the SME group, (i) the protein levels of presynaptic proteins (synaptophysin, synaptotagmin,
synaptobrevin, synapsin‐1, and SNAP‐25) and protein kinases (ERK1/2, PKC, CaMKII) were higher; (ii) the
phosphorylation of these protein kinases was higher; (iii) the phosphorylation of synapsin I at ERK1/2-
specific sites 4 and 5 and CMKII-specific sites 3 was higher; and (iv) number of synaptic vesicles was
higher than the corresponding values of the control group. These findings imply that the increases in the
levels of synaptic proteins and vesicles in the hippocampal nerve terminals may have contributed to
increased neurotransmitter release and memory retention in rats in the MWM tasks. This speculation is
supported by evidence showing that high levels of presynaptic proteins, including synaptophysin, SNAP-
25, syntaxin, and synaptobrevin, are associated with higher cognitive performance and lower risk of
dementia in older adults [51–53]. Nevertheless, how SME-induced increases in synaptic proteins and
vesicles in the hippocampal nerve terminals lead to memory preservation requires further research.
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Several studies have indicated that the memory ability is associated with alterations in gut microbiota,
usually in microbiota richness and diversity [54, 55]. In the present study, SME rats exhibited an increase
in the alpha-diversity of gut microbiota. Alpha-diversity reflects the richness, evenness, and diversity of
species of gut microorganisms. Thus, SME may help maintain better health flora by increasing the
richness and diversity of gut microbiota in rats. With respect to the gut microbiota composition, phyla
Bacteroidetes and Firmicutes are the predominant divisions in the gut flora [56]. In our study, the number
of phyla Bacteroidetes was not significantly changed, but that of Firmicutes was decreased in the SME
rats, thereby decreasing the F/B ratio. This was ac companied by an increase in the phylum
Actinobacteria. Previous preclinical and clinical studies have demonstrated a decrease in the microbiota
diversity and Actinobacteria content and a increase in the F/B ratio in AD and aging; thus, these
alterations are related to cognitive decline [55, 57–63]. In our study, SME increased microbiota diversity
and decreased the F/B ratio, leading to functional profile changes in the microbial community, which may
have contributed to the improved memory retention. Further research is required to determine how
intestinal flora alterations by SME affect memory function.

High concentrations of isoflavones and low concentrations of phenolic acids were detected in SME rats
in the present study, which is consistent with previous findings [24, 26, 27]. A higher intake of
polyphenols, including isoflavones and phenolic acids, has been linked to higher cognitive function in
both animals and humans [64–68]. In the current study, polyphenols might have been played a role in
memory retention in SME rats. Polyphenols exert a direct action on the brain by crossing the blood-brain
barrier (BBB), and they also affect brain function by modifying the gut microbiota composition and
functions [69, 70]. Short-chain fatty acids and some metabolites produced by the gut microbiota can
penetrate the BBB and affect neuronal function [71]. However, the interactions and relationships between
polyphenols and gut microbiota and between gut microbiota and memory function are complex and
warrant further research. In addition, SME is water-solubility, and our results revealed that it did not
produce significant changes in the morphology of the liver and kidney in rats; this implies that SME
administration may be safe. Thus, it has potential for use as a functional food ingredient.

Conclusion
Our study is the first to demonstrate that SME helps in memory preservation in rats. This beneficial effect
might be due to the enhancement of presynaptic integrity and the modulation of microbiota composition,
as summarized in the schematic (Fig. 8). Our findings imply that soybean meal has potential as a food
ingredient or supplement for preventing memory impairment. Future studies should investigate the
effects of soybean meal or SME on human cognitive function.
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Figure 1

Chromatogram of 20 fold dilution SME. Graphe is expressed in relative intensity
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Figure 2

Effects of orally administration of SME on body weight, liver, and kidney in rats. (A) Timeline of
experimental studies. The body weight (B) and hepatic and renal toxicity (C) were assayed at the end of
the experimental period. Liver or kidney morphology was examined by H&E staining (400 ×). Scale bars =
10 μm. Data are presented as mean ± SEM (n = 10 per group).
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Figure 3

Effects of orally administration of SME on learning and memory of rats in a MWM. (A) MWM trajectories.
(B) Time latency and (C) distance traveled to reach the platform. Data are presented as mean ± SEM (n =
8 per group). ***p < 0.001 compared with the control group.
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Figure 4

Effects of orally administration of SME on the expression levels of synaptic proteins in the hippocampal
synaptosomes of rats. Western blot showing the expression levels of synaptophysin, synaptotagmin,
synaptobrevin, syntaxin, synapsin‐1, and SNAP‐25 in the hippocampal synaptosomes for each group.
Relative protein levels were quantified. Data are presented as mean ± SEM (n = 5 per group). *p < 0.01,
**p < 0.01, ***p < 0.001 compared with the control group
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Figure 5

Effects of orally administration of SME on the levels of PKC, CaMKII, and ERK1/2 and their
phosphorylated expression in the hippocampal synaptosomes of rats. (A) Western blot showing the
protein expression of PKC, CaMKII, and ERK1/2 in the hippocampal synaptosomes for each group. (B)
Western blot showing the phosphorylation levels of PKC, CaMKII, ERK1/2, and synapsin I site 3 and sites
4, 5 in the hippocampal synaptosomes for each group. Relative protein levels were quantified. Data are
presented as mean ± SEM (n = 5 per group). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the control
group
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Figure 6

(A) Transmission electron micrographs of hippocampal synaptosomes. Each synaptosome contains
mitochondrias, numerous synaptic vesicles, and a synaptic junction with postsynaptic density
(arrowhead). Scale bar, 200 nm. (B) The number of synaptic vesicles in hippocampal synaptosomnes
was counted. Data are presented as mean ± SEM (n = 3 per group). ***p < 0.001 compared with the
control group.
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Figure 7

Effects of orally administration of SME on the gut microbiota in rats. (A) Alpha diversity. (B) Rarefaction
curves. Relative abundance at the phylum (C) and genus (E) level.. Relative abundance of major bacterial
OTUs in phylum (D) and genus (F) level. The ratio of Firmicutes to Bacteroidates (inset D). Data are
presented as mean ± SEM (n = 3-5 per group). *p < 0.05 compared with the control group
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Figure 8

Suggested graphical representation of the possible mechanisms of memory retention by SME in rats. The
effect of oral administration of SME on memory might result from the increased expression of synaptic
proteins, phosphorylation of protein kinases, and number of synaptic vesicles in the hippocampal nerve
terminals, thus enhancing neurotransmitter release and synaptic plasticity in the hippocampus of these
rats. Further, the preservation of memory in the SME rats might be related to its modulatory effects on gut
microbiota composition


