Al-Hawash, A.B., Dragh, M.A., Li, S., Alhujaily, A., Abbood, H.A., Zhang, X., Ma, F., 2018. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt. J. Aquat. Res. https://doi.org/10.1016/j.ejar.2018.06.001
Bacosa, H.P., Inoue, C., 2015. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater. 283, 689–697. https://doi.org/10.1016/j.jhazmat.2014.09.068
Bandowe, B.A.M., Bigalke, M., Boamah, L., Nyarko, E., Saalia, F.K., Wilcke, W., 2014. Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment. Environ. Int. 65, 135–146. https://doi.org/10.1016/j.envint.2013.12.018
Blumer, M., Blumer, W., Reich, T., 1977. Polycyclic aromatic hydrocarbons in soils of a mountain valley: Correlation with highway traffic and cancer Incidence. Environ. Sci. Technol. 11, 1082–1084. https://doi.org/10.1021/es60135a002
Chen, B., He, R., Yuan, K., Chen, E., Lin, Lan, Chen, X., Sha, S., Zhong, J., Lin, Li, Yang, L., Yang, Y., Wang, X., Zou, S., Luan, T., 2017. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. Environ. Pollut. 220, 1005–1013. https://doi.org/10.1016/j.envpol.2016.11.047
Couling, N.R., Towell, M.G., Semple, K.T., 2010. Biodegradation of PAHs in soil: Influence of chemical structure, concentration and multiple amendment. Environ. Pollut. 158, 3411–3420. https://doi.org/10.1016/j.envpol.2010.07.034
Dealtry, S., Ghizelini, A.M., Mendonça-Hagler, L.C.S., Chaloub, R.M., Reinert, F., Campos, T.M.P. d., Gomes, N.C.M., Smalla, K., 2018. Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Brazilian J. Microbiol. 49, 7266–7271. https://doi.org/10.1016/j.bjm.2018.02.012
Dean-Ross, D., Moody, J., Cerniglia, C.E., 2002. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol. Ecol. 41, 1–7. https://doi.org/10.1016/S0168-6496(02)00198-8
Di Gioia, D., Barberio, C., Spagnesi, S., Marchetti, L., Fava, F., 2002. Characterization of four olive-mill-wastewater indigenous bacterial strains capable of aerobically degrading hydroxylated and methoxylated monocyclic aromatic compounds. Arch. Microbiol. 178, 208–217. https://doi.org/10.1007/s00203-002-0445-z
Downward, G.S., Hu, W., Rothman, N., Reiss, B., Wu, G., Wei, F., Chapman, R.S., Portengen, L., Qing, L., Vermeulen, R., 2014. Polycyclic aromatic hydrocarbon exposure in household air pollution from solid fuel combustion among the female population of Xuanwei and Fuyuan counties, China. Environ. Sci. Technol. 48, 14632–14641. https://doi.org/10.1021/es504102z
Edgar, R.C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. https://doi.org/10.1038/nmeth.2604
Fida, T.T., Moreno-Forero, S.K., Breugelmans, P., Heipieper, H.J., Röling, W.F.M., Springael, D., 2017. Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environ. Sci. Technol. 51, 1570–1579. https://doi.org/10.1021/acs.est.6b03822
Ghosal, D., Ghosh, S., Dutta, T.K., Ahn, Y., 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 7. https://doi.org/10.3389/fmicb.2016.01369
Gillespie, I.M.M., Philp, J.C., 2013. Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol. 31, 329–332. https://doi.org/10.1016/j.tibtech.2013.01.015
Gilmore, S.P., O’Malley, M.A., 2016. Microbial communities for bioprocessing: lessons learned from nature. Curr. Opin. Chem. Eng. 14, 103–109. https://doi.org/10.1016/j.coche.2016.09.003
Gu, H., Luo, X., Wang, H., Wu, L., Wu, J., Xu, J., 2015. The characteristics of phenanthrene biosorption by chemically modified biomass of Phanerochaete chrysosporium. Environ. Sci. Pollut. Res. 22, 11850–11861. https://doi.org/10.1007/s11356-015-4451-5
Gupta, S., Pathak, B., Fulekar, M.H., 2015. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Rev. Environ. Sci. Biotechnol. 14, 241–269. https://doi.org/10.1007/s11157-014-9353-3
Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169, 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137
Huang, L., Gan, L., Zhao, Q., Logan, B.E., Lu, H., Chen, G., 2011. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresour. Technol. 102, 8762–8768. https://doi.org/10.1016/j.biortech.2011.07.063
Imron, M.F., Titah, H.S., 2018. Optimization of diesel biodegradation by vibrio alginolyticus using Box-Behnken design. Environ. Eng. Res. 23. https://doi.org/10.4491/eer.2018.015
Iwabuchi, N., Sunairi, M., Urai, M., Itoh, C., Anzai, H., Nakajima, M., Harayama, S., 2002. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol. 68, 2337–2343. https://doi.org/10.1128/AEM.68.5.2337-2343.2002
Khan, Z., Roman, D., Kintz, T., Delas Alas, M., Yap, R., Doty, S., 2014. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ. Sci. Technol. 48, 12221–12228. https://doi.org/10.1021/es503880t
Kim, J.D., Shim, S.H., Lee, C.G., 2005. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea. J. Microbiol. Biotechnol. 15, 337–345.
Kim, Y.H., Freeman, J.P., Moody, J.D., Engesser, K.H., Cerniglia, C.E., 2005. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 67. https://doi.org/10.1007/s00253-004-1796-y
Kumari, S., Regar, R.K., Manickam, N., 2018. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour. Technol. 254, 174–179. https://doi.org/10.1016/j.biortech.2018.01.075
Kuppusamy, S., Thavamani, P., Megharaj, M., Lee, Y.B., Naidu, R., 2016a. Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils. Environ. Technol. Innov. 6, 204–219. https://doi.org/10.1016/j.eti.2016.04.006
Kuppusamy, S., Thavamani, P., Megharaj, M., Naidu, R., 2016b. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings - Assessments in liquid- and slurry-phase systems. Int. Biodeterior. Biodegrad. 108, 149–157. https://doi.org/10.1016/j.ibiod.2015.12.013
Lawson, C.E., Harcombe, W.R., Hatzenpichler, R., Lindemann, S.R., Löffler, F.E., O’Malley, M.A., García Martín, H., Pfleger, B.F., Raskin, L., Venturelli, O.S., Weissbrodt, D.G., Noguera, D.R., McMahon, K.D., 2019. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741. https://doi.org/10.1038/s41579-019-0255-9
Lee, D.W., Lee, H., Lee, A.H., Kwon, B.O., Khim, J.S., Yim, U.H., Kim, B.S., Kim, J.J., 2018. Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environ. Pollut. 234, 503–512. https://doi.org/10.1016/j.envpol.2017.11.097
Li, X., Lin, X., Li, P., Liu, W., Wang, L., Ma, F., Chukwuka, K.S., 2009. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J. Hazard. Mater. 172, 601–605. https://doi.org/10.1016/j.jhazmat.2009.07.044
Liu, N., Li, D., Li, K., Wang, L., Xu, R., Zhang, J., Yang, B., 2021. Enhanced biodegradation of chlorobenzene via combined Fe3+ and Zn2+ based on rhamnolipid solubilisation. J. Environ. Sci. 103, 108–118. https://doi.org/10.1016/j.jes.2020.10.002
Liu, S.H., Zeng, G.M., Niu, Q.Y., Liu, Y., Zhou, L., Jiang, L.H., Tan, X. fei, Xu, P., Zhang, C., Cheng, M., 2017. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 224, 25–33. https://doi.org/10.1016/j.biortech.2016.11.095
Liu, X. xin, Hu, X., Cao, Y., Pang, W. jing, Huang, J. yu, Guo, P., Huang, L., 2019. Biodegradation of phenanthrene and heavy metal removal by acid-tolerant Burkholderia fungorum FM-2. Front. Microbiol. 10, 408. https://doi.org/10.3389/fmicb.2019.00408
Lors, C., Damidot, D., Ponge, J.F., Périé, F., 2012. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ. Pollut. 165, 11–17. https://doi.org/10.1016/j.envpol.2012.02.004
Lu, C., Hong, Y., Liu, J., Gao, Y., Ma, Z., Yang, B., Ling, W., Waigi, M.G., 2019. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ. Pollut. 251, 773–782. https://doi.org/10.1016/j.envpol.2019.05.044
Lu, J.K., He, X.H., Huang, L.B., Kang, L.H., Xu, D.P., 2012. Two Burkholderia strains from nodules of Dalbergia odorifera T. Chen in Hainan Island, southern China. New For. 43, 397–409. https://doi.org/10.1007/s11056-011-9290-8
Ma, J., Xu, L., Jia, L., 2012. Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp. JM2 isolated from active sewage sludge of chemical plant. J. Environ. Sci. (China) 24, 2141–2148. https://doi.org/10.1016/S1001-0742(11)61064-4
Ma, M., Zheng L., Yin X F., Gao W., Han B., Li Q., Zhu A M., Chen H., 2021. Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge. Sci Rep. 11, 1456 (2021). https://doi.org/10.1038/s41598-021-80991-5
Meng, P., Pei, H., Hu, W., Shao, Y., Li, Z., 2014. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 157, 316–326. https://doi.org/10.1016/j.biortech.2014.01.095
Morya, R., Salvachúa, D., Thakur, I.S., 2020. Burkholderia: An untapped but promising bacterial genus for the conversion of aromatic compounds. Trends Biotechnol. 38, 963–975. https://doi.org/10.1016/j.tibtech.2020.02.008
Nie, M., Yin, X., Ren, C., Wang, Y., Xu, F., Shen, Q., 2010. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol. Adv. 28, 635–643. https://doi.org/10.1016/j.biotechadv.2010.05.013
Nzila, A., 2018. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ. Pollut. 239, 788–802. https://doi.org/10.1016/j.envpol.2018.04.074
Oberoi, A.S., Philip, L., Bhallamudi, S.M., 2015. Biodegradation of various aromatic compounds by enriched bacterial cultures: Part A–Monocyclic and polycyclic aromatic hydrocarbons. Appl. Biochem. Biotechnol. 176, 1870–1888. https://doi.org/10.1007/s12010-015-1684-1
Patel, A.B., Mahala, K., Jain, K., Madamwar, D., 2018. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol. 253, 288–296. https://doi.org/10.1016/j.biortech.2018.01.049
Patel, A.B., Singh, S., Patel, A., Jain, K., Amin, S., Madamwar, D., 2019. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. Bioresour. Technol. 284, 115–120. https://doi.org/10.1016/j.biortech.2019.03.097
Patel, V., Jain, S., Madamwar, D., 2012. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresour. Technol. 107, 122–130. https://doi.org/10.1016/j.biortech.2011.12.056
Pradeep, S., Sarath Josh, M.K., Binod, P., Sudha Devi, R., Balachandran, S., Anderson, R.C., Benjamin, S., 2015. Achromobacter denitrificans strain SP1 efficiently remediates di(2-ethylhexyl)phthalate. Ecotoxicol. Environ. Saf. 112, 114–121. https://doi.org/10.1016/j.ecoenv.2014.10.035
Qin, Z., Zhao, Z., Xia, L., Adam, A., Li, Y., Chen, D., Mela, S.M., Li, H., 2019. The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: The role of submerged macrophytes and their biofilms-leaves. Environ. Int. 131, 104940. https://doi.org/10.1016/j.envint.2019.104940
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219
Rabodonirina, S., Rasolomampianina, R., Krier, F., Drider, D., Merhaby, D., Net, S., Ouddane, B., 2019. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. J. Environ. Manage. 232, 1–7. https://doi.org/10.1016/j.jenvman.2018.11.005
Sei, K., Inoue, D., Wada, K., Mori, K., Ike, M., Kohno, T., Fujita, M., 2004. Monitoring behaviour of catabolic genes and change of microbial community structures in seawater microcosms during aromatic compound degradation. Water Res. 38, 4405–4414. https://doi.org/10.1016/j.watres.2004.08.028
Sharma, A., Singh, S.B., Sharma, R., Chaudhary, P., Pandey, A.K., Ansari, R., Vasudevan, V., Arora, A., Singh, S., Saha, S., Nain, L., 2016. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. J. Environ. Manage. 181, 728–736. https://doi.org/10.1016/j.jenvman.2016.08.024
Sihag Pathak, H., and Jaroli, D., S., 2014. Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int. J. Pure Appl. Biosci. 2, 185–202.
Somtrakoon, K., Suanjit, S., Pokethitiyook, P., Kruatrachue, M., Lee, H., Upatham, S., 2008. Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013. Curr. Microbiol. 57, 102–106. https://doi.org/10.1007/s00284-008-9157-1
Tao, X.Q., Lu, G.N., Dang, Z., Yang, C., Yi, X.Y., 2007. A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem. 42. https://doi.org/10.1016/j.procbio.2006.09.018
Vidonish, J.E., Zygourakis, K., Masiello, C.A., Sabadell, G., Alvarez, P.J.J., 2016. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering 2, 426–437. https://doi.org/10.1016/J.ENG.2016.04.005
Wanapaisan, P., Laothamteep, N., Vejarano, F., Chakraborty, J., Shintani, M., Muangchinda, C., Morita, T., Suzuki-Minakuchi, C., Inoue, K., Nojiri, H., Pinyakong, O., 2018. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J. Hazard. Mater. 342, 561–570. https://doi.org/10.1016/j.jhazmat.2017.08.062
Wang, Q., Hou, J., Yuan, J., Wu, Y., Liu, W., Luo, Y., Christie, P., 2020. Evaluation of fatty acid derivatives in the remediation of aged PAH-contaminated soil and microbial community and degradation gene response. Chemosphere 248, 125983. https://doi.org/10.1016/j.chemosphere.2020.125983
Wen, J., Gao, D., Zhang, B., Liang, H., 2011. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. Int. Biodeterior. Biodegrad. 65, 600–604. https://doi.org/10.1016/j.ibiod.2011.03.003
Wong, J.W.C., Lai, K.M., Wan, C.K., Ma, K.K., Fang, M., 2002. Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water. Air. Soil Pollut. https://doi.org/10.1023/A:1015883924901
Wu, M., Chen, L., Tian, Y., Ding, Y., Dick, W.A., 2013. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ. Pollut. 178, 152–158. https://doi.org/10.1016/j.envpol.2013.03.004
Xiao, M., Yin, X., Gai, H., Ma, H., Qi, Y., Li, K., Hua, X., Sun, M., Song, H., 2019. Effect of hydroxypropyl-Β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp. Bioresour. Technol. 273, 56–62. https://doi.org/10.1016/j.biortech.2018.10.087
Yu, L., Duan, L., Naidu, R., Semple, K.T., 2018. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Sci. Total Environ. 613–614, 1140–1153. https://doi.org/10.1016/j.scitotenv.2017.09.025
Yuan, J., 2015. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front. Microbiol. 6. https://doi.org/10.3389/fmicb.2015.00853
Yuan, S.Y., Shiung, L.C., Chang, B. V., 2002. Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull. Environ. Contam. Toxicol. 69, 66–73. https://doi.org/10.1007/s00128-002-0011-z
Zang, T., Wu, H., Yan, B., Zhang, Y., Wei, C., 2020. Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. Chemosphere 266, 128941. https://doi.org/10.1016/j.chemosphere.2020.128941