Background: Strychnos nux-vomica L. (SN),a classic Chinese herb, have long been used for the treatment of cancer for many years, However, the pharmacological mechanisms of SN in treatment of Multiple myeloma L.remain vague.The aim of this study was to examine the network pharmacological potential effects of SN on Multiple myeloma using a systems pharmacology approach.
Methods: we collected putative targets of SN based on the Traditional Chinese Medicine System Pharmacology database,and oral bioavailability and drug-likeness was screened using absorption, distribution, metabolism, and excretion (ADME) criteria. the network of the interactions among the putative targets of SN and known therapeutic targets of Multiple myeloma was built by using the STITCH database. Then, topological parameters, “Degree” ,“Closeness” and“Betweenness” were calculated to identify the hub targets in the network. Furthermore, the hub targets were imported to the Database for Annotation, Visualization and Integrated Discovery to perform a pathway enrichment analysis.
Results: 60 of the identified potential targets of the SN were also Multiple Myeloma- related targets, including 14 putative targets of SN were observed to be major hubs in terms of topological importance.Additionally,the results of pathway enrichment analysis indicated that targets of SN in treating Multiple Myeloma were mainly clustered into multiple biological processes by activating on several signaling pathways(PI3K-Akt, p38-MAPK, Ras/Raf/MEK/ERK pathways), which implied that these were involved in the underlying mechanisms of SN on Multiple Myeloma.
Conclusions: Our works successfully explain the potential effects of SN for Multiple Myeloma treatment via the molecular mechanisms predicted by network pharmacology.Moreover,our present outcomes might shed light on the further clinical application of SN in treating Multiple Myeloma.