Mobile robots have been increasingly popular in a variety of industries in recent years due to their ability to move in variable situations and perform routine jobs effectively. Path planning, without a dispute, performs a crucial part in multi-robot navigation, making it one of the very foremost investigated issues in robotics. In recent times, meta-heuristic strategies have been intensively investigated to tackle path planning issues in the similar way that optimizing issues were handled, or to design the optimal path for such multi-robotics to travel from the initial point to such goal. The fundamental purpose of portable multi-robot guidance is to navigate a mobile robot across a crowded area from initial point to target position while maintaining a safe route and creating optimum length for the path. Various strategies for robot navigational path planning were investigated by scientists in this field. This work seeks to discuss bio-inspired methods that are exploited to optimize hybrid neuro-fuzzy analysis which is the combination of neural network and fuzzy logic is optimized using the Particle Swarm optimization technique (PSO) in real-time scenarios. Several optimization approaches of bio-inspired techniques are explained briefly. Its simulation findings, which are displayed for two simulated scenarios reveal that hybridization increases multi-robot navigation accuracy in terms of navigation duration and length of the path.