Spectral-Warping Based Noise-Robust Enhanced Children ASR System

DOI: https://doi.org/10.21203/rs.3.rs-976955/v1

Abstract

In real-life applications, noise originating from different sound sources modifies the characteristics of an input signal which affects the development of an enhanced ASR system. This contamination degrades the quality and comprehension of speech variables while impacting the performance of human-machine communication systems. This paper aims to minimise noise challenges by using a robust feature extraction methodology through introduction of an optimised filtering technique. Initially, the evaluations for enhancing input signals are constructed by using state transformation matrix and minimising a mean square error based upon the linear time variance techniques of Kalman and Adaptive Wiener Filtering. Consequently, Mel-frequency cepstral coefficients (MFCC), Linear Predictive Cepstral Coefficient (LPCC), RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) and Gammatone Frequency cepstral coefficient (GFCC) based feature extraction methods have been synthesised with their comparable efficiency in order to derive the adequate characteristics of a signal. It also handle the large-scale training complexities lies among the training and testing dataset. Consequently, the acoustic mismatch and linguistic complexity of large-scale variations lies within small set of speakers have been handle by utilising the Vocal Tract Length Normalization (VTLN) based warping of the test utterances. Furthermore, the spectral warping approach has been used by time reversing the samples inside a frame and passing them into the filter network corresponding to each frame. Finally, the overall Relative Improvement (RI) of 16.13% on 5-way perturbed spectral warped based noise augmented dataset through Wiener Filtering in comparison to other systems respectively.

Full Text

This preprint is available for download as a PDF.