1 Raghavan, N., Barkovich, A. J., Edwards, M. & Norman, D. MR imaging in the tethered spinal cord syndrome. AJR Am J Roentgenol 152, 843-852, doi:10.2214/ajr.152.4.843 (1989).
2 McVeigh, L. G. et al. Spinal column shortening for secondary tethered cord syndrome: radiographic, clinical, patient-reported, and urodynamic short-term outcomes. J Neurosurg Pediatr, 1-10, doi:10.3171/2020.11.PEDS20847 (2021).
3 Menezes, A. H., Seaman, S. C., Iii, M. A. H., Hitchon, P. W. & Takacs, E. B. Tethered spinal cord syndrome in adults in the MRI era: recognition, pathology, and long-term objective outcomes. J Neurosurg Spine, 1-13, doi:10.3171/2020.9.SPINE201453 (2021).
4 Selcuki, M. & Coskun, K. Management of tight filum terminale syndrome with special emphasis on normal level conus medullaris (NLCM). Surg Neurol 50, 318-322; discussion 322 (1998).
5 Bao, N. et al. Tight filum terminale syndrome in children: analysis based on positioning of the conus and absence or presence of lumbosacral lipoma. Childs Nerv Syst 23, 1129-1134, doi:10.1007/s00381-007-0376-8 (2007).
6 Metcalfe, P. D. et al. Treatment of the occult tethered spinal cord for neuropathic bladder: results of sectioning the filum terminale. J Urol 176, 1826-1829; discussion 1830, doi:10.1016/j.juro.2006.04.090 (2006).
7 Selden, N. R. Occult tethered cord syndrome: the case for surgery. J Neurosurg 104, 302-304, doi:10.3171/ped.2006.104.5.302 (2006).
8 Fabiano, A. J., Khan, M. F., Rozzelle, C. J. & Li, V. Preoperative predictors for improvement after surgical untethering in occult tight filum terminale syndrome. Pediatr Neurosurg 45, 256-261, doi:10.1159/000228983 (2009).
9 Sato, T., Eguchi, Y., Enomoto, K. & Murata, Y. Treating difficult-to-diagnose tight filum terminale: our experience with four patients. BMJ Case Rep 14, doi:10.1136/bcr-2020-239184 (2021).
10 Nakanishi, K. et al. Use of prone position magnetic resonance imaging for detecting the terminal filum in patients with occult tethered cord syndrome. J Neurosurg Spine 18, 76-84, doi:10.3171/2012.10.SPINE12321 (2013).
11 Nakanishi, K. et al. Electrophysiological Assessment and Classification of Motor Pathway Function in Patients With Spinal Dural Arteriovenous Fistula. J Clin Neurophysiol 36, 45-51, doi:10.1097/WNP.0000000000000526 (2019).
12 Nakanishi, K. et al. Significant correlation between corticospinal tract conduction block and prolongation of central motor conduction time in compressive cervical myelopathy. J Neurol Sci 256, 71-74, doi:10.1016/j.jns.2007.02.009 (2007).
13 Nakanishi, K. et al. Assessment of central motor conduction time in the diagnosis of compressive thoracic myelopathy. Spine (Phila Pa 1976) 35, E1593-1598, doi:10.1097/BRS.0b013e3181d9e7a4 (2010).
14 Kimura, J. Principles and pitfalls of nerve conduction studies. Ann Neurol 16, 415-429, doi:10.1002/ana.410160402 (1984).
15 Komagata, M., Endo, K., Nishiyama, M., Ikegami, H. & Imakiire, A. Management of tight filum terminale. Minim Invasive Neurosurg 47, 49-53, doi:10.1055/s-2003-812463 (2004).
16 Claus, D. Central Motor Conduction - Method and Normal Results. Muscle & Nerve 13, 1125-1132, doi:DOI 10.1002/mus.880131207 (1990).
17 Mills, K. R. & Nithi, K. A. Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20, 570-576, doi:10.1002/(sici)1097-4598(199705)20:5<570::aid-mus5>3.0.co;2-6 (1997).
18 Imajo, Y. et al. Effects of differences in age and body height on normal values of central motor conduction time determined by F-waves. J Spinal Cord Med 40, 181-187, doi:10.1080/10790268.2015.1117193 (2017).
19 Booth, K. R. et al. Motor evoked potentials and central motor conduction: studies of transcranial magnetic stimulation with recording from the leg. Electroencephalogr Clin Neurophysiol 81, 57-62, doi:10.1016/0168-5597(91)90104-6 (1991).
20 Cantone, M. et al. Age, Height, and Sex on Motor Evoked Potentials: Translational Data From a Large Italian Cohort in a Clinical Environment. Front Hum Neurosci 13, 185, doi:10.3389/fnhum.2019.00185 (2019).
21 Matsumoto, H. et al. Aging influences central motor conduction less than peripheral motor conduction: a transcranial magnetic stimulation study. Muscle Nerve 46, 932-936, doi:10.1002/mus.23430 (2012).
22 Tobimatsu, S., Sun, S. J., Fukui, R. & Kato, M. Effects of sex, height and age on motor evoked potentials with magnetic stimulation. J Neurol 245, 256-261, doi:DOI 10.1007/s004150050215 (1998).
23 Kaneko, K. et al. Mechanism of prolonged central motor conduction time in compressive cervical myelopathy. Clin Neurophysiol 112, 1035-1040, doi:10.1016/s1388-2457(01)00533-8 (2001).
24 Nakanishi, K., Tanaka, N., Fujiwara, Y., Kamei, N. & Ochi, M. Corticospinal tract conduction block results in the prolongation of central motor conduction time in compressive cervical myelopathy. Clin Neurophysiol 117, 623-627, doi:10.1016/j.clinph.2005.11.010 (2006).
25 Grad, L. I., Rouleau, G. A., Ravits, J. & Cashman, N. R. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb Perspect Med 7, doi:10.1101/cshperspect.a024117 (2017).
26 Mills, K. R. & Nithi, K. A. Peripheral and central motor conduction in amyotrophic lateral sclerosis. J Neurol Sci 159, 82-87, doi:10.1016/s0022-510x(98)00148-8 (1998).
27 Hoffman, H. J., Taecholarn, C., Hendrick, E. B. & Humphreys, R. P. Management of lipomyelomeningoceles. Experience at the Hospital for Sick Children, Toronto. J Neurosurg 62, 1-8, doi:10.3171/jns.1985.62.1.0001 (1985).
28 Seki, T. et al. Surgical Outcome of Children and Adolescents with Tethered Cord Syndrome. Asian Spine J 10, 940-944, doi:10.4184/asj.2016.10.5.940 (2016).