[1] Gardelle B, Duquesne S, Vandereecken P, Bellayer S, Bourbigot S. Resistance to fire of intumescent silicone based coating: The role of organoclay. PROG ORG COAT. 2013;76(11):1633-41.http://d oi.org/10.1016/j.porgcoat.2013.07.011.
[2] Liu Z, Dai M, Wang C, Zhang Q, Zhang Y, Jin B, et al. Effects of the addition mode and amount of organic montmorillonite in soft-core/hard-shell emulsion on fire protection, water resistance and stability of fire retardant coating. PROG ORG COAT. 2016;101:350-8.http://doi.org/10.1016/j.porgcoat.20 16.09.001.
[3] Dong Y, Wang G, Su Q. Influence of nano-boron nitride on anti-aging property of waterborne fire-resistive coatings. J COAT TECHNOL RES. 2014;11(5):805-15. http://d oi.org/10.1007/s11998-013-9538-7.
[4] Yu J, Wu S, Yu Y, Chen H, Fan H, Liu J, et al. Process system failure evaluation method based on a Noisy-OR gate intuitionistic fuzzy Bayesian network in an uncertain environment. PROCESS SAF ENVIRON. 2021;150:281-97.http://doi.org/10.1016/j.pse p.2021.04.024.
[5] Benson C, Argyropoulos CD, Dimopoulos C, Mikellidou CV, Boustras G. Safety and risk analysis in digitalized process operations warning of possible deviating conditions in the process environment. PROCESS SAF ENVIRON. 2021;149:750-7.http://doi.org/10.1016/j.psep.2021.02.039.
[6] Xue Y, Zhang S, Yang W. Influence of expanded vermiculite on fire protection of intumescent fireproof coatings for steel structures. J COAT TECHNOL RES. 2015;12(2):357-64.http://doi.org/10.1007/s11998-014-9626-3.
[7] Yew MC, Ramli Sulong NH, Yew MK, Amalina MA, Johan MR. Eggshells: A novel bio-filler for intumescent flame-retardant coatings. PROG ORG COAT. 2015;81:116-24.http://doi.org/10.1016/j.por gcoat.2015.01.003.
[8] Rhys JA. Intumescent coatings and their uses. FIRE MATER. 1980 1980-01-01;4(3):154-6.http://do i.org/10.1002/fam.810040308.
[9] Puri RG, Khanna AS. Intumescent coatings: A review on recent progress. J COAT TECHNOL RES. 2017;14(1):1-20.http://doi.org/10.1007/s11998-016-9815-3.
[10] Alongi J, Han Z, Bourbigot S. Intumescence: Tradition versus novelty. A comprehensive review. PROG POLYM SCI. 2015;51:28-73.http://doi.org/10.1016/j.progpolymsci.2015.04.010.
[11] Roberts TA, Shirvill LC, Waterton K, Buckland I. Fire resistance of passive fire protection coatings after long-term weathering. PROCESS SAF ENVIRON. 2010;88(1):1-19.http://doi.org/10.1016/j.psep.2009.09.003.
[12] Ramsden N, Abusaieda KAM. A study of water cooling using different water application techniques to protect storage tank walls against thermal radiation. PROCESS SAF ENVIRON. 2017;109:577-98.
[13] Duquesne S, Magnet S, Jama C, Delobel R. Intumescent paints: fire protective coatings for metallic substrates. Surface and Coatings Technology. 2004;180-181:302-7.http://doi.org/10.1016/j.psep.2017.04.009.
[14] Yew MC, Ramli Sulong NH, Yew MK, Amalina MA, Johan MR. Influences of flame-retardant fillers on fire protection and mechanical properties of intumescent coatings. PROG ORG COAT. 2015;78: 59-66.http://doi.org/10.1016/j.porgcoat.2014.10.006.
[15] Xu W, Wang X, Wu Y, Li W, Chen C. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J HAZARD MATER. 2019;363:138-51.http://doi.org/10.1016/j.jhazmat.2018.09.086.
[16] Fan F, Xia Z, Li Q, Li Z. Effects of inorganic fillers on the shear viscosity and fire retardant performance of waterborne intumescent coatings. PROG ORG COAT. 2013;76(5):844-51.http://doi.org/10.1016/j.porgcoat.2013.02.002.
[17] Zhan W, Gu Z, Jiang J, Chen L. Influences of surface area of graphene on fire protection of waterborne intumescent fire resistive coating. PROCESS SAF ENVIRON. 2020;139:106-13. http://doi.org/10.1016/j.psep.2020.04.004.
[18] Oliveira TA, Oliveira Mota I, Mousinho FEP, Barbosa R, Carvalho LH, Alves TS. Biodegradation of mulch films from poly(butylene adipate co‐terephthalate), carnauba wax, and sugarcane residue. J APPL POLYM SCI. 2019 2019-01-01;136(47):48240.http://doi.org/10.1002/app.48240.
[19] Satyanarayana KG, Guimarães JL, Wypych F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing. 2007;38(7):1694-709.http://doi.org/10.1016/j.compositesa.2007. 0 2.006.
[20] Amir N, Abd. Majid AA, Ahmad F. Effects of Hybrid Fibre Reinforcement on Fire Resistance Performance and Char Morphology of Intumescent Coating. MATEC Web of Conferences. 2016;38:3001. http://doi.org/10.1051/matecconf/20163803001.
[21] Hemmati F, Garmabi H. A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. J THERMOPLAST COMPOS. 2013;26(8):1041-56.http://doi.org/10.1177/0892705711433350.
[22] Chen Z, Jiang J, Yu Y, Chen G, Chen T, Zhang Q. Layer‐by‐layer assembled bagasse to enhance the fire safety of epoxy resin: A renewable environmental friendly flame retardant. J APPL POLYM SCI. 2021 2021-03-15;138(11):50032.http://doi.org/10.1002/app.50032.
[23] Griffin GJ. The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse. BIORESOURCE TECHNOL. 2011;102(17):8199-204.http://doi.org/10.1016/j.biortech.2011.05.051.
[24] Wenjia Han AKCA. UTILIZATION OF BAGASSE FIBER FOR PREPARATION OF BIODEGRADABLE FLAME RETARDING COMPOSITES (BFRCS). Bioresources. 2010;3(5):1605-17.http://doi.org/10.1007/s00226-009-0268-z.
[25] JOHN M, THOMAS S. Biofibres and biocomposites. CARBOHYD POLYM. 2008;2008-02-08;71(3):343-64.http://doi.org/10.1016/j.carbpol.2007.05.040.
[26] Zhan W, Chen L, Cui F, Gu Z, Jiang J. Effects of carbon materials on fire protection and smoke suppression of waterborne intumescent coating. PROG ORG COAT. 2020;140:105491.http://doi.org/10.1016/j.porgcoat.2019.105491.
[27] Nørgaard KP, Dam-Johansen K, Català P, Kiil S. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates. PROG ORG COAT. 2013;76(12):1851-7.http://doi.org/10.1016/j.porgcoat.2013.05.028.
[28] Ullah S, Ahmad F, Shariff AM, Bustam MA, Gonfa G, Gillani QF. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. PROG ORG COAT. 2017;109:70-82.http://doi.org/10.1016/j.porgcoat.2017.04.017.
[29] Jimenez M, Duquesne S, Bourbigot S. Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating. POLYM DEGRAD STABIL. 2009;94(3):404-9.http://do i.org/10.1016/j.polymdegradstab.2008.11.021.
[30] Wang X, Kalali EN, Wan J, Wang D. Carbon-family materials for flame retardant polymeric materials. PROG POLYM SCI. 2017;69:22-46.http://doi.org/10.1016/j.progpolymsci.2017.02.001.
[31] Margem FM, Martins LBDS, Rosa NCG, Monteiro SN. Thermal Behavior of Banana Fiber: Characterization of Minerals, Metals, and Materials 2012.
[32] Moubarik A, Grimi N, Boussetta N. Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Composites Part B: Engineering. 2013;52:233-8.http://doi.org/10.1016/j.compositesb.2013.0 4.040.
[33] Puri RG, Khanna AS. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. PROG ORG COAT. 2016;92:8-15.http://doi.org/10.1016/j.porgcoat.2015.11.016.
[34] Zhan W, Chen L, Gu Z, Jiang J. Influence of graphene on fire protection of intumescent fire retardant coating for steel structure. Energy Reports. 2020;6:693-7.http://doi.org/10.1016/j.egyr.201 9.11.139.
[35] Horikawa Y, Sugiyama J. Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. CELLULOSE. 2008;15(3):419-24.htt p://doi.org/10.1007/s10570-007-9187-z.
[36] Wang N, Zhang M, Kang P, Zhang J, Fang Q, Li W. Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites. MATERIALS. 2018 2018-06-13;11(6):1005. http://do i.org/10.3390/ma11061005.
[37] Aziz H, Ahmad F. Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. PROG ORG COAT. 2016;101:431-9.http://doi.org/10.1016/j.porgcoat.2016.09.017.
[38] Wang Z, Han E, Ke W. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings. CORROS SCI. 2007;49(5):2237-53.http://doi.org/10.1016/j.cor sci.2006.10.024.
[39] Dhineshbabu NR, Arunmetha S, Manivasakan P, Karunakaran G, Rajendran V. Enhanced functional properties of cotton fabrics using TiO2/SiO2nanocomposites. J IND TEXT. 2014;45(5):674-92.http://doi.org/10.1177/1528083714538684.
[40] Li H, Hu Z, Zhang S, Gu X, Wang H, Jiang P, et al. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. PROG ORG COAT. 2015;78:318-24.http://doi.org/10.1016/j.porgcoat.2014.08.003.
[41] Cheng L, Liu C, Han D, Ma S, Guo W, Cai H, et al. Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings. J ALLOY COMPD. 2019;774:255-64.http://doi.org/ 10.1016/j.jallcom.2018.09.315.
[42] Quezada-Rentería JA, Cházaro-Ruiz LF, Rangel-Mendez JR. Synthesis of reduced graphene oxide (rGO) films onto carbon steel by cathodic electrophoretic deposition: Anticorrosive coating. CARBON. 2017;122:266-75.http://doi.org/10.1016/j.carbon.2017.06.074.
[43] Wang J, Wang G. Influences of montmorillonite on fire protection, water and corrosion resistance of waterborne intumescent fire retardant coating for steel structure. Surface and Coatings Technology. 2014;239:177-84.http://doi.org/10.1016/j.surfcoat.2013.11.037.
[44] Jacob M, Joseph S, Pothan LA, Thomas S. A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. COMPOS INTERFACE. 2005 2005-01-01;12(1-2):95-124.http://doi.org/10.1163/1568554053542115.
[45] Faruk O, Bledzki AK, Fink H, Sain M. Progress Report on Natural Fiber Reinforced Composites. MACROMOL MATER ENG. 2014;299(1):9-26.http://doi.org/10.1002/mam e .201300008.