
Page 1/26

A Novel Ferroptosis-Related Gene Signature For
Clinically Predicting Recurrence After Hepatectomy
of Hepatocellular Carcinoma Patients.
Huaxiang Wang 

Fuzong clinical medical college of Fujian medical university
Fengfeng Xu 

Fuzong clinical medical college of Fujian Medical University
Ruisheng Ke 

The First A�liated Hospital of Xiamen University
Huanzhang Hu 

Fuzong clinical medical college of Fujian Medical University
Jian Fang 

The third People's hospital of Fujian university of traditional medicine
Yi Jiang  (  jiangyi1963@126.com )

Fuzong clinical medical college of Fujian Medical university https://orcid.org/0000-0003-0825-6409

Research Article

Keywords: Hepatocellular carcinoma, Ferroptosis, Gene signature, Recurrence-free survival, Nomogram,
Decision curve analysis, Prognosis, TCGA, GEO, Genetic alteration

Posted Date: October 26th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-982158/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-982158/v1
mailto:jiangyi1963@126.com
https://orcid.org/0000-0003-0825-6409
https://doi.org/10.21203/rs.3.rs-982158/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/26

Abstract
Background: The high HCC recurrence rate was the main reason for the poor prognosis after
hepatectomy. In this present study, we identi�ed a novel ferroptosis-related gene signature for clinically
predicting HCC recurrence after hepatectomy.

Methods: Ferroptosis-related genes were obtained from the FerrDb database. We identi�ed the
ferroptosis-related differentially expressed genes (FDEGs) between HCC tissues and normal tissues from
the GSE14520 dataset. These FDEGs were used to perform a univariate and multivariate regression
analysis to construct HCC recurrence models. An independent HCC cohort from TCGA database was used
to validate the reliability of the multi-gene HCC recurrence model. The predictive nomogram and DCA was
built to estimate the recurrence predicting capacity of the multi-gene signature. GO, KEGG and GSEA were
used to further investigate the potential mechanism of these FDEGs.

Results: A total of 39 FDEGs were identi�ed. A seven-gene signature (MAPK9, SLC1A4, PCK2, ACSL3,
STMN1, CDO1, and CXCL2) was constructed for HCC recurrence prediction. Patients in high-risk groups
exhibited a signi�cantly poor prognosis compared with low-risk patients in both the training set
(GSE14520 cohort) and the validation set (TCGA cohort). Multivariate cox regression analysis
demonstrated that the 7-gene signature were independent risk factors for RFS in HCC patients. The
nomograms incorporating 7-gene signature and clinical prognostic risk factors were able to effectively
predict RFS. KEGG analysis showed that FDEGs were mainly enriched in Ferroptosis, Hepatocellular
carcinoma pathway, MAPK signaling pathway, and so on. GSEA analysis revealed that the high-risk group
was enriched with multiple oncology characteristics and invasive-related pathways.

Conclusion: Our study constructed a seven ferroptosis-related gene signature and established a
prognostic nomogram for clinically predicting recurrence after hepatectomy and offered novel research
directions for personalized treatment in HCC patients.

Introduction
Primary liver cancer is one of the most common malignant tumors, in which hepatocellular carcinoma
(HCC) accounts for about 85-90% of cases[1]. HCC causes more than 800,000 deaths per year and
imposes a huge economic and health burden worldwide[2, 3]. According to data released by the American
Cancer Society in 2021, the 5-year survival rate of HCC patients for all stages was only 20%[4]. With the
improvement of diagnostic capabilities, the proportion of surgical resection of HCC has increased, but
those who have undergone radical resection still have a 70% recurrence rate within 5 years[5]. The high
recurrence rate of HCC was mainly responsible for the death of patients. Therefore, establishing an
effective model for predicting postoperative recurrence and identifying high-risk patients early, and taking
the initiative to take clinical actions is of great value to improve the prognosis. The traditional recurrence
prediction model integrated tumor stage, tumor size, microvascular invasion, tumor differentiation, and
other relevant clinical characteristics, and supplemented by a single serum alpha-fetoprotein
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expression[6–8]. But their speci�city and sensitivity were not enough to distinguish patients with
heterogeneity.

Ferroptosis is a newly discovered cell death form that results from severe lipid peroxidation of
intracellular iron overload and differs from apoptosis, necrosis, and autophagy in terms of morphology[9,
10]. In recent years, an increasing number of studies have revealed that ferroptosis plays a non-negligible
role in regulating the growth and proliferation of some types of tumors[11–13]. Speci�cally, ferroptosis
has a pivotal role in killing tumor cells and inhibiting tumor invasion and metastasis[14, 15]. A previous
study has shown that ferroptosis was an effective method to induce HCC cell death and has the role of
block the cytotoxic effect of sorafenib on HCC[16]. At present, some ferroptosis-related genes such as
NRF2, NQO1, HCAR1, MCT1, ZFP36, etc. have been validated playing the role of cancer-promoting or
suppressor factors in HCC[17–19]. However, rarely studies focus on the predictive effects of these
ferroptosis-related genes on the recurrence of HCC patients.

In this current study, we constructed an HCC recurrence model using ferroptosis-related differentially
expressed genes (FDEGs) obtained from the gene expression omnibus (GEO)[20] and FerrDb
database[21]. Then, we validated the reliability of the multi-gene HCC recurrence model in an independent
The Cancer Genome Atlas (TCGA) cohort[22]. The predictive nomogram and decision curve analysis
(DCA) was built to estimate the recurrence predictive capacity of the multi-gene signature. In addition, we
investigated the correlations between the genetic alteration of the seven-gene signature and recurrence-
free survival (RFS) in the cBioPortal database[23]. Finally, Gene ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) and gene set enrichment analyses (GSEA) was used to explore the intrinsic
regulating mechanisms of these ferroptosis-related genes[24, 25]. On the whole, our results showed that
the ferroptosis-related seven-gene signature and nomogram might help effectively predict the RFS of
patients with HCC.

Methods
Gene datasets and clinical characteristics collection.

We downloaded the mRNA expression data and corresponding clinical characteristics data in the
GSE14520 dataset and LIHC dataset. The ferroptosis-related gene list was obtained from the FerrDb
database and literature published in PubMed. The GSE14520 dataset from the GEO database, which
contains RNA sequencing and clinical data of 242 HCC patients, was used to construct the predictive
model for recurrence. The liver hepatocellular carcinoma (LIHC) cohort from the TCGA database,
containing gene expression and clinical data of 372 HCC patients, was used to validate the results of the
predictive model. All gene expression and clinical data were obtained from the publicly available
database, hence it was not required for additional ethical approval.

Identi�cation of ferroptosis-related differentially expressed genes (FDEGs).
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The R software (version 4.0.2) and built-in limma package were utilized to perform differentially
expressed genes analysis using RNA sequence data between the HCC tumor tissues and paired normal
tissues, which were downloaded from the GSE14520 dataset. The screening of differentially expressed
genes must meet two standards: log2 fold change (FC)> 1.0 or log2 fold change (FC)< -1.0, adjusted P-
value <0.05. Next, the overlapping gene between the ferroptosis-related genes obtained from the FerrDb
database and the differentially expressed genes identi�ed from the GSE14520 dataset were screened as
FDEGs.

Establishment and validation of the ferroptosis-related gene signature.

We performed the univariate Cox regression and Multivariate Cox regression on FDEGs sequentially to
obtain the ferroptosis-related genes and their regression coe�cients. These genes expression was an
independent risk factor for the RFS of HCC patients and was used to establish a prognostic risk
signature. Next, the 242 HCC patients from the GSE14520 dataset were separated into high-risk and low-
risk groups based on the median Risk score, which was calculated based on the following formula: Risk

score= ∑ n
i=1vi × βi (v represent the expression value of the gene and β represent the corresponding

regression coe�cients.) In addition, the Kaplan–Meier survival analysis and time-dependent receiver
operating characteristic (ROC) curves were used to evaluate the predictive performance of this gene
signature for RFS. We further investigated the correlations between prognostic gene signature and
relative clinical characteristics. Moreover, we explored the independent prognostic role of the gene
signature for RFS by the univariate and multivariate Cox regression analyses. In this process, some
clinical characteristics were integrated, such as age, gender, tumor stage, tumor size, serum Alpha-
fetoprotein (AFP) level, and so on. Finally, we validated the reliability of the risk score model using an
independent LIHC cohort in the TCGA database.

Establishment and validation of a predictive nomogram.

We established a nomogram that integrated all the independent risk factors identi�ed from the
multivariate Cox regression analysis to predict the RFS of 1-year, 3-year, and 5-year. We calculated the
concordance index (C-index) using the “survival” R package to assess the predictive performance of the
nomogram. We next plotted calibration curves of RFS probability at different years. In addition, the time-
dependent ROC curve was plotted via the “timeROC” R package to assess the performance of the
nomogram. Furthermore, we performed the DCA analysis via the "ggDCA" R package to select the best
model that has the highest clinical net bene�t.

Genetic alteration and protein expression analysis of gene signature.

To investigate the effect of gene alterations on the aberrant expression, we queried the genetic alterations
and mutation hotspot of gene signature using the liver Hepatocellular Carcinoma dataset (TCGA,
Firehose Legacy) in the cBioPortal database. Then, we compared the overall survival (OS) probability,
disease-free probability, progression-free survival probability, and disease-speci�c survival probability
between the alteration groups with no alteration groups. Furthermore, we investigated the differential
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expression of the seven-gene signature protein between the HCC tissues and adjacent normal liver tissues
in the Human Protein Atlas database.

Functional enrichment analysis via GO, KEGG, and GSEA.

We performed the GO and KEGG enrichment analysis on the FDEGs using the DAVID database to explore
the potential mechanism that these genes regulating the tumorigenesis and progression of HCC[26]. The
results were visualized using the “clusterPro�ler,” “enrichplot,” and “ggplot2” R packages.

RNA sequence (RNA seq) data in the TCGA database was selected to perform the GSEA enrichment
analysis using the GSEA software (version 4.1.0). We separated the 372 HCC patients into high-risk
groups and low-risk groups taking the median Risk score value as the critical point. In the process of
GSEA, the KEGG gene set (c2.cp.kegg.v7.0.symbols.gmt) was selected as the functional gene set, and the
number of permutations was set as 1000. Other parameters were set to default values. The adjusted p-
value<0.05 and false discovery rate (FDR) q-value<0.25 were considered statistically signi�cant.

Statistical analysis.
The R software (version 4.0.2) was utilized to perform the statistical analysis and plot the statistical
�gures. The association between the risk score with the clinicopathological characters was analyzed
using Pearson’s chi-square test. Univariate and multivariate cox regression analysis was used to identify
the risk factors or independent risk factors of RFS. Kaplan-Meier analysis with the log-rank test was
utilized to compare the RFS between the high-risk group and low-risk group. The area under the curve
(AUC) of ROC was utilized to estimate the predictive performance of gene signature. P<0.05 was
considered as a statistically signi�cant difference.

Results
FDEGs identi�cation in HCC.

We exhibited the scheme of our study in a �ow chart (Fig. 1). A total of 1014 differential expressed genes,
including 539 down-regulated and 375 up-regulated genes, were identi�ed in 242 HCC tissues compared
with 246 adjacent normal liver tissues from the GSE14520 dataset. Next, we obtained 254 ferroptosis-
related genes from the FerrDb database. Then, the overlapping 39 genes between the 1014 differential
expressed genes with 254 ferroptosis-related genes were identi�ed as FDEGs.

Establishment of the prognostic seven-gene signature.

The univariate Cox regression and multivariate Cox regression on 39 FDEGs were performed sequentially
to identify the independent prognostic genes for RFS. After the Multivariate Cox regression, seven genes
were identi�ed to establish a predictive gene signature. These seven genes were mitogen-activated
protein kinase 9 (MAPK9), solute carrier family 1 member 4 (SLC1A4), phosphoenolpyruvate
carboxykinase 2 (PCK2), acyl-CoA synthetase long-chain family member 3 (ACSL3), stathmin 1(STMN1),
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cysteine dioxygenase type 1 (CDO1), and chemokine ligand 2 (CXCL2). The risk score = (-0.167) *
expression MAPK9 + (-0.086) * expression SLC1A4 + (-0.167) * expression PCK2 + 0.203 * expression ACSL3 +
0.201 * expression STMN1 + (-0.003) * expression CDO1 + 0.109 * expression CXCL2.

Table 1
Multivariate Cox regression analysis of the 7-gene signature

Gene Coef HR Lower 95%CI Upper 95%CI P-Value

MAPK9 -0.167 0.497 0.330 0.750 0.001

SLC1A4 -0.086 0.600 0.387 0.929 0.022

PCK2 -0.167 0.516 0.315 0.847 0.009

ACSL3 0.203 1.784 1.105 2.879 0.018

STMN1 0.201 1.851 1.102 3.112 0.020

CDO1 -0.003 0.593 0.379 0.926 0.022

CXCL2 0.109 1.606 1.027 2.512 0.038

HR-hazard ratio; CI-con�dence interval.

Internal validation of the prognostic gene signature.

We calculated the seven-gene-based risk score for each HCC patient in the training set (GSE14520). Next,
the 242 patients were separated into high-risk and low-risk groups based on the median Risk score (Fig.
2A). The Kaplan–Meier survival analysis and time-dependent ROC curves were used to evaluate the
predictive performance of this gene signature for RFS. The ROC curve revealed that AUCs of 1-year, 3-year,
5-year for RFS were 0.68, 0.64, and 0.61 (Fig. 2B). Furthermore, The Kaplan–Meier survival analysis
revealed that patients in the high-risk group exhibited a poorer RFS than patients in the low-risk group
(Fig. 2C). In addition, the correlation analysis demonstrated that high-risk score correlated to tumor-node-
metastasis (TNM) stage (P=0.020), serum AFP level (P<0.001), alanine aminotransferase (ALT) (0.025),
predicted risk metastasis signature (PRMS) (P<0.001), recurrence (P=0.001), and death (P=0.002) (Table
2). Moreover, we explored the independent prognostic value of the gene signature for RFS by the
univariate and multivariate Cox regression analyses. We found that gender (P=0.009), PRMS (0.006),
tumor size (P=0.045), TNM stage(P<0.001), and high-risk score (P<0.001) were risk factors of recurrence-
free survival by performing univariate cox regression analysis. The multivariate Cox regression analysis
con�rmed that gender (HR (95%CI): 2.092(1.081-4.049); P=0.028), TNM stage (HR (95%CI): 2.608(1.262-
3.389); P=0.004), and high-risk score (HR (95%CI): 1.879(1.215-2.906); P=0.005) were independent risk
factors for RFS (Fi. 3). These results exhibited a favorite performance of the seven-gene signature for RFS
prediction.
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Table 2
Correlation between risk score and clinicopathological features of HCC patients for RFS in the GSE14520

HCC cohort.
Characteristics   N Risk score level X2 P-Value

Low High

Age >55 117 64 53 2.370 0.124

<=55 125 56 69

Gender Male 211 106 105 0.279 0.598

Female 31 14 17

Main tumor size >5cm 88 36 52 0.131 0.064

<=5cm 154 84 70

TNM stage I/II 174 97 77 5.400 0.020

III 51 19 32

Serum AFP level >300ng/ml 110 41 69 12.393 <0.001

<=300ng/ml 128 77 51

ALT >50U/L 100 41 59 5.027 0.025

<=50U/L 142 79 63

Multinodular Yes 52 22 30 1.404 0.236

No 190 98 92

Cirrhosis Yes 223 107 116 2.926 0.087

No 19 13 6

PRMS

classi�cation

High 121 25 96 80.997 <0.001

Low 121 95 26

Recurrence Yes 136 55 81 10.389 0.001

No 106 65 41

Death Yes 96 36 60 9.299 0.002

No 146 84 62

TNM - tumor, node, metastasis, AFP - alpha fetoprotein, ALT- alanine aminotransferase, PRMS-
Predicted risk Metastasis Signature. P-Value<0.05 were considered statistically signi�cant.

Validation of the prognostic gene signature in the TCGA database.
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We download the RNA seq and corresponding clinical characteristic data in the TCGA database to
validate the performance of the seven-gene signature for RFS prediction. We calculated the seven-gene-
based risk score for each HCC patient in the validation set (TCGA HCC cohort). The 372 patients were
separated into high-risk and low-risk groups based on the median Risk score (Fig. 4A). The ROC analysis
showed that the AUCs of 1-year, 3-year, 5-year for RFS were 0.69, 0.73, and 0.74, respectively (Fig. 4B).
Furthermore, consistent with the result of the GSE14520 dataset, the Kaplan–Meier survival analysis
revealed that patients in the high-risk group exhibited a poorer RFS than patients in the low-risk group
(Fig. 4C). In addition, the correlation analysis demonstrated that high-risk score correlated to tumor grade
(P=0.026), preoperative pharmaceutical (P=0.036), T 3/4(P=0.002), lymph node invasion (P=0.001),
metastasis (P=0.048), recurrence (P<0.001), and death (P=0.048) (Table 3). Moreover, we explored the
independent prognostic value of the gene signature for RFS by the univariate and multivariate Cox
regression analyses. We found that preoperative pharmaceutical (P=0.044), pathologic stage (0.003),
stage 3/4(P<0.001), lymph node invasion (P=0.040), and high-risk score (P<0.001) were risk factors of
recurrence-free survival via univariate Cox regression analysis. The multivariate Cox regression analysis
con�rmed that T 3/4 (HR (95%CI): 2.056(1.320-3.204); P=0.001), and high-risk score (HR (95%CI):
1.779(1.286-2.462); P=0.001) were independent risk factors for RFS (Fig. 5). Overall, these results
validated the good performance of the seven-gene signature for RFS prediction.



Page 9/26

Table 3
Correlation between risk score and clinicopathological features of HCC

patients for RFS in the TCGA HCC cohort.
Characteristics   N Risk score level X2 P-Value

Low High

Age >60 180 83 97 1.971 0.160

<=60 191 102 89

Gender Male 250 128 122 0.546 0.460

Female 121 57 64

Race White 192 91 101 0.971 0.325

Other 179 94 85

Tumor grade G1/G2 236 128 108 4.959 0.026

G3/G4 135 57 78

Radiation Yes 10 3 7 1.600 0.203

No 361 182 179

Pharmaceutical Yes 24 7 17 4.397 0.036

No 247 178 169

Pathologic stage I/II 266 137 129 1.009 0.315

III/ IV 105 48 57

T T1/T2 260 143 117 9.165 0.002

T3/T4 111 42 69

N Yes 15 1 14 11.669 0.001

No 156 184 172

M Yes 13 3 10 3.867 0.048

No 358 182 176

Recurrence Yes 171 62 109 23.496 <0.001

No 200 123 77

Death Yes 130 55 75 4.572 0.032

No 241 130 111

Establishment and validation of a predictive nomogram.
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We next established a nomogram that integrated all the independent risk factors including gender, risk
score, and tumor stages identi�ed from the multivariate Cox regression analysis to predict the RFS of 1-
year, 3-year, and 5-year (Fig. 6A). The C-index of the combined nomogram model was 0.872. The
calibration curve representing the actual and combined model-predictive RFS of the training set
(GSE14520) at 1-year, 3-year, and 5-year exhibited an accurate performance for predicting recurrence of
the nomogram (Fig. 6B-D). Furthermore, the ROC analysis showed that the AUCs for 1-year, 3-year, 5-year
RFS predictions were 0.824, 0.807, and 0.762, respectively (Fig. 6E). In addition, the DCA curve exhibited
the best net bene�t of the combined model for 1-year, 3-year, and 5-year RFS prediction compared with
the individual predictive factors (Fig. 6F-H). Summarizing, these results demonstrated that the combined
model of nomogram exhibited an excellent predictive ability for 1-year, 3-year, and 5-year RFS of HCC
patients, which might help the clinical therapy decision.

Genetic alteration of gene signature correlated with poor survival probability.

We queried the genetic alteration of the seven-gene signature in the Liver Hepatocellular Carcinoma
cohort (TCGA, Firehose Legacy) of the cBioPortal database. Among 352 HCC patients, 95 patients
(27.0%) shown genetic alterations of gene signature (Fig. 7A). In addition, the patients with genetic
alteration have poorer overall survival probability (P=2.98e-3, Fig. 7B), disease-free probability (P=0.0274,
Fig. 7C), progression-free survival probability (P=0.0474, Fig. 7D), and disease-speci�c survival probability
(P=0.0118, Fig. 7E) than the patients without genetic alterations. We further investigate the protein
expression of gene signature between the HCC tissues and adjacent normal liver tissues in the Human
Protein Atlas database. In HCC tissues, the expression of MAPK9, SLC1A4, ACSL3, and STMN1 proteins
increased, while the expression of PCK2 and CDO1 proteins decreased (Fig. 7F). However, we didn't �nd
the CXCL2 protein expression in the Human Protein Atlas database.

GO, KEGG enrichment analysis and protein-protein interaction (PPI) network constructions of FDEGs.

We performed the GO and KEGG enrichment analysis on the 39 FDEGs to explore the potential
mechanism that these genes regulating the tumorigenesis and progression of HCC. GO analysis revealed
that in the biological process, the FDEGs signi�cantly enriched in the pathway of response to nutrient
levels, response to the metal ion, response to starvation, response to oxidative stress, etc (Fig. 8A). In the
cellular component, the FDEGs are mainly enriched in neuron projection cytoplasm, pigment granules,
melanosome, etc (Fig. 8B). In the molecular function, the FDEGs are mainly enriched in protein serine
kinase activity, decanoate-CoA ligase activity, etc. (Fig. 8C) KEGG analysis showed that the FDEGs
signi�cantly enriched in the pathway of Ferroptosis, Hepatocellular carcinoma, MAPK signaling pathway,
and other cancer-related pathways (Fig. 8D). We further constructed a PPI network of these FDEGs in the
STRING database and visualized it utilizing the Cytoscape software (Fig. 8E).

GSEA enrichment analysis.

We performed the GSEA analysis to further investigate the signi�cant signaling pathway that genes of
the high-risk score and low-risk score patients were enriched. We found that the high-risk score group was
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signi�cantly correlated with pathways of cancers, such as cell cycle (NES=1.5, P<0.001), notch signaling
pathway (NES=1.5, P<0.001), pathway in cancer (NES=1.5, P<0.001), VEGF signaling pathway (NES=1.7,
P<0.001), etc (Fig. 8F). Meanwhile, the low-risk score group was negatively correlated with the signaling
pathway of lysine degradation (NES=-2.2, P<0.001), peroxisome (NES=-2.1, P<0.001), propanoate
metabolism (NES=-1.9, P<0.001), etc (Fig. 8G).

Discussion
Cancer, a currently urgent public health issue that should be addressed, has brought a tremendous
economic and health burden worldwide[27]. HCC, a type of highly aggressive cancer, was a primary cause
of cancer-related death in many areas of the world, especially in East Asia and sub-Saharan Africa[28,
29]. According to data released by the American Cancer Society in 2021, the 5-year survival probability of
HCC patients for all stages was only 20%[4]. With the heightened health-conscious and improved
diagnostic capacity, an increasing number of HCC patients were diagnosed during the physical
examinations, and those patients can be treated by curative surgery. However, studies revealed that those
who have undergone radical resection still have a 70% recurrence rate within 5 years[5, 30–32]. The high
recurrence rate was the main responsibility for the short overall survival and poor prognosis of HCC
patients. Therefore, establishing an effective model for predicting postoperative recurrence and
identifying high-risk patients early, and taking the initiative to take clinical actions is of great value to
improve the prognosis. The conventional predictive model of recurrence integrated tumor stage, tumor
size, microvascular invasion, tumor differentiation, and other relevant clinical characteristics, and some
supplemented by a single serum alpha-fetoprotein expression. But their speci�city and sensitivity were
not enough to distinguish patients with heterogeneity. In recent years, the gene signature based on the
mRNA aberrant expression has been reported to address the problems of heterogeneity and exhibited an
ampli�cated diagnostic sensitivity and speci�city. Massive studies focus on establishing prognostic-
related gene signature models to improve diagnostic e�ciency and overall survival prognosis[33]. Wang
et al. established an RNA-binding proteins-related gene signature to predict the overall survival and found
that this gene signature can be an independent risk factor for HCC patients[34]. Yang and colleagues
constructed a two-gene signature (HNRNPA2B1 and RBM15) to identify and treat HBV-related HCC
patients and has the predictive value for OS[35]. However, rarely are studies devoted to investigating the
recurrence-related gene signature of HCC[36].

In recent years, it has been con�rmed that ferroptosis plays a signi�cant role in inducing HCC cell death
and inhibiting cell proliferation and metastasis, and the ferroptosis-related genes were the carriers of this
function. Previous research revealed that DAZAP1 was the ferroptosis suppressor gene and signi�cantly
overexpressed in HCC cells. DAZAP1 also promoted proliferation and signi�cantly reduced the cellular
sensitivity to sorafenib[37]. Another study reported that metallothionein (MT)-1G increases the sorafenib-
resistance of HCC cells by inhibiting the process of ferroptosis[38]. Furthermore, a recent study revealed
that ACSL4, a positive-activating enzyme of ferroptosis, can increase the sensitivity of HCC patients to
sorafenib by activating the ferroptosis[39–41]. Some studies focus on the predictive value of ferroptosis-
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related gene signature for overall survival of HCC patients, but rarely research to establish the gene
signature to predict the RFS probability[42–45].

In this current study, we established a novel ferroptosis-related seven-gene signature (including MAPK9,
SLC1A4, PCK2, ACSL3, STMN1, CDO1, and CXCL2) for HCC RFS prediction. The seven-gene signature
exhibited an excellent predictive performance in the training set (GSE14520). The Kaplan–Meier survival
analysis revealed that patients in the high-risk group exhibited a poorer RFS than patients in the low-risk
group. And the correlation analysis demonstrated that high-risk scores correlated to TNM stage, serum
AFP level, ALT, predicted risk metastasis PRMS, recurrence, and death. Moreover, the multivariate Cox
regression analyses revealed that high-risk score was independent risk factors for RFS. All these results
were also veri�ed in the validation set (TCGA HCC cohort).

We next established a nomogram that integrated all the independent risk factors to predict the RFS of 1-
year, 3-year, and 5-year. The C-index of the combined nomogram model was 0.872. The calibration curve
representing the actual and combined model-predictive RFS at 1-year, 3-year, and 5-year exhibited an
accurate performance for predicting recurrence of the nomogram. In addition, the DCA curve exhibited the
best net bene�t of the combined model for 1-year, 3-year, and 5-year RFS prediction compared with the
individual predictive factors. Summarizing, these results demonstrated that the combined model of
nomogram exhibited an excellent predictive ability for 1-year, 3-year, and 5-year RFS of HCC patients,
which might help the clinical therapy decision. We also queried the genetic alteration of the seven-gene
signature in the cBioPortal database and found these genes alteration correlated with poor survival
probability. Moreover, the KEGG analysis revealed that the FDEGs signi�cantly enriched in the pathway of
Ferroptosis, Hepatocellular carcinoma, MAPK signaling pathway, and other cancer-related pathways.
Finally, GSEA further revealed several signi�cantly enriched oncological signaling pathways, which might
explain the underlying molecular mechanisms of the gene signature.

Conclusion
Our study constructed a seven ferroptosis-related gene signature and established a prognostic
nomogram for clinically predicting recurrence after hepatectomy and offered novel research directions for
personalized treatment in HCC patients.

Abbreviations
HCC: hepatocellular carcinoma; FDEGs: ferroptosis-related differentially expressed genes; TCGA: The
Cancer Genome Atlas; DCA: decision curve analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of
Genes and Genomes; GSEA: Gene set enrichment analyses; RFS: Recurrence-free survival; LIHC: The liver
hepatocellular carcinoma; ROC: Receiver operating characteristic; AFP: Alpha-fetoprotein; C-index:
concordance index; OS: Overall survival; FDR: false discovery rate; AUC: Area under the curve; MAPK9:
mitogen-activated protein kinase 9; SLC1A4: solute carrier family 1 member 4; PCK2:
phosphoenolpyruvate carboxykinase 2; ACSL3: acyl-CoA synthetase long-chain family member 3;



Page 13/26

STMN1: stathmin 1; CDO1: cysteine dioxygenase type 1; CXCL2: chemokine ligand 2; TNM: tumor-node-
metastasis; PRMS: predicted risk metastasis signature; HR: Hazard ratio; CI: Con�dence interval; PPI:
Protein-protein interaction; NES: Normal enrichment score.

Declarations
Acknowledgements

The authors are grateful to the contributors of the GEO and TCGA for sharing the HCC expression pro�le
data set on open access. In addition, we would like to acknowledge to all the people who have given us
help on our article.

Authors’ contributions

YJ and JF had designed the study. HW, FX and RK had collected data. HW, FX and RK had analyzed and
interpreted the data. All authors were involved in writing paper and approved of the submitted and
published versions. All authors read and approved the �nal manuscript.

Funding

This work was supported by The Key Project of Natural Science Foundation of Fujian Province, (No.
2020Y0078), the Surface Project of Natural Science Foundation of Fujian Province (No. 2020J011144),
the Civil-Military Integration Project of the 900th Hospital (No: 2018J06).

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding
author on reasonable request.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the
authors. All gene expression and clinical data were obtained from the publicly available database, hence
it was not required for additional ethical approval.

Animal Research

Not applicable.

Consent to participate

This article does not contain any studies with human participants or animals performed by any of the
authors.

Consent to Publish



Page 14/26

All participants provided written informed consent for publication of the data and any associated images.

Clinical Trials Registration

Not applicable.

Plant Reproducibility

Not applicable.

Con�icts of interest

The authors Huaxiang Wang, Fengfeng Xu, Ruisheng Ke, Huanzhang Hu, Yi Jiang, and Jian Fang declare
that there are no con�icts of interest.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:

GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA
Cancer J Clin. 2018;68(6):394–424.

2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14.

3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA
Cancer J Clin. 2016;66(2):115–32.

4. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics. 2021. CA Cancer J Clin. 2021;71(1):7-33.

5. Zhou T, Cai Z, Ma N, Xie W, Gao C, Huang M, et al. A Novel Ten-Gene Signature Predicting Prognosis
in Hepatocellular Carcinoma. Front Cell Dev Biol. 2020;8:629.

�. Chan AWH, Zhong J, Berhane S, Toyoda H, Cucchetti A, Shi K, et al. Development of pre and post-
operative models to predict early recurrence of hepatocellular carcinoma after surgical resection. J
Hepatol. 2018;69(6):1284–93.

7. Villanueva A, Hoshida Y, Battiston C, Tovar V, Sia D, Alsinet C, et al. Combining clinical, pathology, and
gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology.
2011;140(5):1501–12 e1502.

�. Ren A, Li Z, Zhou X, Zhang X, Huang X, Deng R, et al. Evaluation of the Alpha-Fetoprotein Model for
Predicting Recurrence and Survival in Patients With Hepatitis B Virus (HBV)-Related Cirrhosis Who
Received Liver Transplantation for Hepatocellular Carcinoma. Front Surg. 2020;7:52.

9. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with
tumourous diseases. J Cell Mol Med. 2017;21(4):648–57.

10. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends
Cell Biol. 2020;30(6):478–90.



Page 15/26

11. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death:
opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34.

12. Wang Y, Wei Z, Pan K, Li J, Chen Q. The function and mechanism of ferroptosis in cancer. Apoptosis.
2020;25(11-12):786–98.

13. Liang C, Zhang X, Yang M, Dong X. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv
Mater. 2019;31(51):e1904197.

14. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug
resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.

15. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer
Cell. 2019;35(6):830–49.

1�. Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Maziere JC, Chauffert B, et al. Iron-dependent cell
death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133(7):1732–42.

17. Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, et al. HCAR1/MCT1 Regulates Tumor Ferroptosis through the
Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Rep.
2020;33(10):108487.

1�. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63(1):173–84.

19. Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, et al. RNA-binding protein ZFP36/TTP protects
against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy.
2020;16(8):1482–505.

20. Barrett T, Edgar R. Gene expression omnibus: microarray data storage, submission, retrieval, and
analysis. Methods Enzymol. 2006;411:352–69.

21. Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and
ferroptosis-disease associations. Database (Oxford). 2020;2020.

22. Cancer Genome Atlas Research N. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et
al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.

23. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex
cancer genomics and clinical pro�les using the cBioPortal. Sci Signal. 2013;6(269):pl1.

24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression pro�les. Proc Natl
Acad Sci U S A. 2005;102(43):15545–50.

25. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.
2000;28(1):27–30.

2�. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation,
Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3.

27. Global Burden of Disease. Cancer C, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al.
Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With



Page 16/26

Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic
Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3(4):524–48.

2�. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular
carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol.
2019;16(10):589–604.

29. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380(15):1450–62.

30. Hasegawa K, Kokudo N, Makuuchi M, Izumi N, Ichida T, Kudo M, et al. Comparison of resection and
ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. J
Hepatol. 2013;58(4):724–9.

31. Zhang X, Li C, Wen T, Yan L, Li B, Yang J, et al. Appropriate treatment strategies for intrahepatic
recurrence after curative resection of hepatocellular carcinoma initially within the Milan criteria:
according to the recurrence pattern. Eur J Gastroenterol Hepatol. 2015;27(8):933–40.

32. Xu XF, Xing H, Han J, Li ZL, Lau WY, Zhou YH, et al. Risk Factors, Patterns, and Outcomes of Late
Recurrence After Liver Resection for Hepatocellular Carcinoma: A Multicenter Study From China.
JAMA Surg. 2019;154(3):209–17.

33. Liu GM, Zeng HD, Zhang CY, Xu JW. Identi�cation of a six-gene signature predicting overall survival
for hepatocellular carcinoma. Cancer Cell Int. 2019;19:138.

34. Wang L, Zhou N, Qu J, Jiang M, Zhang X. Identi�cation of an RNA binding protein-related gene
signature in hepatocellular carcinoma patients. Mol Med. 2020;26(1):125.

35. Fang Q, Chen H. The signi�cance of m6A RNA methylation regulators in predicting the prognosis and
clinical course of HBV-related hepatocellular carcinoma. Mol Med. 2020;26(1):60.

3�. Long J, Chen P, Lin J, Bai Y, Yang X, Bian J, et al. DNA methylation-driven genes for constructing
diagnostic, prognostic, and recurrence models for hepatocellular carcinoma. Theranostics.
2019;9(24):7251–67.

37. Wang Q, Guo Y, Wang W, Liu B, Yang G, Xu Z, et al. RNA binding protein DAZAP1 promotes HCC
progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res.
2021;399(1):112453.

3�. Sun X, Niu X, Chen R, He W, Chen D, Kang R, et al. Metallothionein-1G facilitates sorafenib resistance
through inhibition of ferroptosis. Hepatology. 2016;64(2):488–500.

39. Feng J, Lu PZ, Zhu GZ, Hooi SC, Wu Y, Huang XW, et al. ACSL4 is a predictive biomarker of sorafenib
sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42(1):160–70.

40. Xia H, Lee KW, Chen J, Kong SN, Sekar K, Deivasigamani A, et al. Simultaneous silencing of ACSL4
and induction of GADD45B in hepatocellular carcinoma cells ampli�es the synergistic therapeutic
effect of aspirin and sorafenib. Cell Death Discov. 2017;3:17058.

41. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis
sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.



Page 17/26

42. Liu Y, Zhang X, Zhang J, Tan J, Li J, Song Z. Development and Validation of a Combined Ferroptosis
and Immune Prognostic Classi�er for Hepatocellular Carcinoma. Front Cell Dev Biol. 2020;8:596679.

43. Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, et al. The ferroptosis and iron-metabolism signature
robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular
carcinoma. Cell Commun Signal. 2020;18(1):174.

44. Liang JY, Wang DS, Lin HC, Chen XX, Yang H, Zheng Y, et al. A Novel Ferroptosis-related Gene
Signature for Overall Survival Prediction in Patients with Hepatocellular Carcinoma. Int J Biol Sci.
2020;16(13):2430–41.

45. Du X, Zhang Y. Integrated Analysis of Immunity- and Ferroptosis-Related Biomarker Signatures to
Improve the Prognosis Prediction of Hepatocellular Carcinoma. Front Genet. 2020;11:614888.

Figures



Page 18/26

Figure 1

The �ow chart showing the scheme of our study on ferroptosis-related gene signatures for clinically
predicting recurrence after hepatectomy of hepatocellular carcinoma patients.
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Figure 2

Risk score analysis, time dependent ROC analysis, and Kaplan–Meier analysis for the seven gene
signature in HCC in the training set (GSE14520 HCC cohort). (A) Risk score, heatmap of mRNA expression
of the seven gene signature in the training set of GSE14520 HCC cohort. (B) AUC of time-dependent ROC
curves validated the prognostic performance of the risk score in the GSE14520 HCC cohort. (C) Kaplan-
Meier curves for the RFS of HCC patients in the high-risk group and low-risk group in the GSE14520
cohort.
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Figure 3

Forrest plot of the univariate and multivariate Cox regression analysis in GSE14520 HCC cohort.
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Figure 4

Risk score analysis, time dependent ROC analysis, and Kaplan–Meier analysis for the seven gene
signature in HCC in the validation set (TCGA HCC cohort). (A) Risk score, heatmap of mRNA expression of
the seven gene signature in the validation set of TCGA HCC cohort. (B) AUC of time-dependent ROC
curves validated the prognostic performance of the risk score in the TCGA HCC cohort. (C) Kaplan-Meier
curves for the RFS of HCC patients in the high-risk group and low-risk group in the TCGA cohort.
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Figure 5

Forrest plot of the univariate and multivariate Cox regression analysis in TCGA HCC cohort.
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Figure 6

Nomogram predicting recurrence-free survival for HCC patients. (A) Nomogram established based on
gender, TNM stage, and risk score as predictive factors to predict 1-year, 3-year, and 5-year recurrence-free
survival probability. (B-D) The calibration plot for the recurrence-free survival probability at 1-year (B), 3-
year (C), and 5-year (D) for internal validation of the nomogram. The Y‐axis and X‐axis represents actual
survival and nomogram‐predicted survival, respectively. (E) The time‐dependent ROC curves for
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1‐year,3‐year, and 5‐year recurrence-free survival prediction of the nomogram. (F-G) DCA curves of gender,
TNM stage, risk score and combined model to evaluate the clinical utility of different decision strategies.
The blue line represented the combined nomogram and exhibited the best net bene�t for predicting the
recurrence-free survival probability at 1-year (F), 3-year (G), and 5-year (H).

Figure 7

The genetic alterations and protein expression analysis of the seven-gene signature in HCC. (A) The
genetic alteration pro�les of the seven genes in the TCGA liver cancer RNA‐seq (n=352) dataset from the
cBioPortal database. (B-E) Patients with genetic alteration have poorer overall survival probability (B),
disease-free probability (C), progression-free survival probability (D), and disease-speci�c survival
probability (E) than the patients without genetic alterations. (F) The representative protein expression of
the MAPK9, SLC1A4, PCK2, ACSL3, STMN1, and CDO1 in HCC and normal liver tissue. Data were from the
Human Protein Atlas database.
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Figure 8

Representative results of functional enrichment analysis via GO, KEGG, and GSEA. (A-D) The 39
ferroptosis-related differentially expressed genes were mainly enriched pathway based on the biological
process (A), cellular component (B), molecular function (C) and KEGG pathway (D). (E) Protein-protein
interaction network shown the interactions between the 39 ferroptosis-related differentially expressed
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genes. (F-G) The signi�cant signaling pathway that genes of the high-risk score (F) and low-risk score
patients (G) were enriched in the GSEA.


