Nanofluids are generally utilized in providing cooling, lubrication phenomenon, controlling the thermophysical properties of the working fluid. In this work, nanoparticles of Al2O3 are added to the base fluid which flows through the counter flow arrangement in a turbulent flow condition. The hot and cold fluids used are ethylbenzene and water respectively and have different velocities on both shell and tube side. This study emphasizes the analysis of flow properties, friction loss, and energy transfer in terms of heat using nanofluid in the heat exchanger. The heat transfer rate of present investigation with nanoparticle addition is 4.63% higher in comparision to Dittus Boelter correlation. Apart from this, the obtained friction factor is 0.0376 very much closer to Gnielinski and Blasius correlations. This investigation proved that appropriate nanoparticle additions and baffle inclinations have fabulous impact upon the performance of heat exchanger and its effectiveness.