1. Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol
Rev. 2005;29:625–51. doi:10.1016/j.femsre.2004.09.003.
2. De Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in
metabolism. Cell Metab. 2013;17:657–69. doi:10.1016/j.cmet.2013.03.013.
3. Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, et al. Metabonomics of
human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy
individuals. Metabolomics. 2015;11:122–33. doi:10.1007/s11306-014-0677-3.
4. Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, et al. Metabolomics
of Fecal Extracts Detects Altered Metabolic Activity of Gut Microbiota in Ulcerative
Colitis and Irritable Bowel Syndrome. J Proteome Res. 2011;10:4208–18. doi:10.1021/pr2003598.
5. Jacobs JP, Goudarzi M, Singh N, Tong M, McHardy IH, Ruegger P, et al. A Disease-Associated
Microbial and Metabolomics State in Relatives of Pediatric Inflammatory Bowel Disease
Patients. Cell Mol Gastroenterol Hepatol. 2016;2:750–66. doi:10.1016/J.JCMGH.2016.06.004.
6. Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, et al. Metabolomics
Reveals Metabolic Biomarkers of Crohn’s Disease. PLoS One. 2009;4:e6386. doi:10.1371/journal.pone.0006386.
7. Huttenhower C, Kostic AD, Xavier RJ. Inflammatory Bowel Disease as a Model for
Translating the Microbiome. Immunity. 2014;40:843–54. doi:10.1016/J.IMMUNI.2014.05.013.
8. Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal Crosstalk between Bile
Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016;24:41–50.
doi:10.1016/J.CMET.2016.05.005.
9. Wahlström A, Kovatcheva-Datchary P, Ståhlman M, Bäckhed F, Marschall H-U. Crosstalk
between Bile Acids and Gut Microbiota and Its Impact on Farnesoid X Receptor Signalling.
Dig Dis. 2017;35:246–50. doi:10.1159/000450982.
10. Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, et al. A metabolomic
view of how the human gut microbiota impacts the host metabolome using humanized and
gnotobiotic mice. ISME J. 2013;7:1933–43. doi:10.1038/ismej.2013.89.
11. Mallonee DH, White WB, Hylemon PB. Cloning and sequencing of a bile acid-inducible
operon from Eubacterium sp. strain VPI 12708. J Bacteriol. 1990;172:7011–9. http://www.ncbi.nlm.nih.gov/pubmed/2254270. Accessed 6 May 2018.
13. Kang D-J, Ridlon JM, Moore DR, Barnes S, Hylemon PB, Hylemon PB. Clostridium scindens
baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic
acid oxidoreductases. Biochim Biophys Acta. 2008;1781:16–25. doi:10.1016/j.bbalip.2007.10.008.
14. Ridlon JM, Harris SC, Bhowmik S, Kang D-J, Hylemon PB. Consequences of bile salt
biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39. doi:10.1080/19490976.2015.1127483.
15. Gothe F, Beigel F, Rust C, Hajji M, Koletzko S, Freudenberg F. Bile acid malabsorption
assessed by 7 alpha-hydroxy-4-cholesten-3-one in pediatric inflammatory bowel disease:
Correlation to clinical and laboratory findings. J Crohn’s Colitis. 2014;8:1072–8.
doi:10.1016/j.crohns.2014.02.027.
16. Jones B V., Begley M, Hill C, Gahan CGM, Marchesi JR. Functional and comparative
metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.
Proc Natl Acad Sci U S A. 2008;105:13580–5. doi:10.1073/pnas.0804437105.
17. Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2008;37
suppl_1:D443–7.
18. Ridlon JM, Hylemon PB. Identification and characterization of two bile acid coenzyme
A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal
bacterium. J Lipid Res. 2012;53:66–76. doi:10.1194/jlr.M020313.
20. Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and
Bifidobacterium. Front Microbiol. 2013;4:396. doi:10.3389/fmicb.2013.00396.
21. Frickey T, Lupas A. CLANS: a Java application for visualizing protein families
based on pairwise similarity. Bioinforma Appl NOTE. 2004;20:3702–4. doi:10.1093/bioinformatics/bth444.
22. Labbé A, Ganopolsky JG, Martoni CJ, Prakash S, Jones ML. Bacterial Bile Metabolising
Gene Abundance in Crohn’s, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS
One. 2014;9:e115175. doi:10.1371/journal.pone.0115175.
23. Nagao M, Ohhira S, Kishi H, Komatsu W, Kobashi G, Uchiyama K. Lipid and Bile Acid
Dysmetabolism in Crohn’s Disease. J Immunol Res. 2018;2018:1–6.
24. Amre DK, D’souza S, Morgan K, Seidman G, Lambrette P, Grimard G, et al. Imbalances
in dietary consumption of fatty acids, vegetables, and fruits are associated with
risk for Crohn’s disease in children. Am J Gastroenterol. 2007;102:2016.
25. Watanabe K, Igarashi M, Li X, Nakatani A, Miyamoto J, Inaba Y, et al. Dietary
soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent
biotransformation of bile acids. PLoS One. 2018;13:e0202083. doi:10.1371/journal.pone.0202083.
26. Becker C, Neurath MF, Wirtz S. The Intestinal Microbiota in Inflammatory Bowel
Disease. ILAR J. 2015;56:192–204. doi:10.1093/ilar/ilv030.
27. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin
Immunopathol. 2015;37:47–55. doi:10.1007/s00281-014-0454-4.
28. Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I. Role of the gut
microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the
past 10 years? World J Gastroenterol. 2014;20:1192–210. doi:10.3748/wjg.v20.i5.1192.
29. Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, et al.
Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat
Microbiol. 2018;3:337–46. doi:10.1038/s41564-017-0089-z.
30. The Integrative HMP Research Network Consortium. The Integrative Human Microbiome
Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human
Health and Disease. Cell Host Microbe. 2014;16:276–89.
31. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S,
et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease.
Nat Microbiol. 2018;:1. doi:10.1038/s41564-018-0306-4.
32. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert M-A, Quervain E, et al. Connecting
dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases.
Gut. 2013;62:531–9. doi:10.1136/gutjnl-2012-302578.
33. Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health
and disease. Mol Aspects Med. 2017;56:54–65. doi:10.1016/J.MAM.2017.06.002.
34. Lundeen SG, Savage DC. Characterization of an extracellular factor that stimulates
bile salt hydrolase activity in Lactobacillus sp. strain 100-100. FEMS Microbiol Lett.
1992;94:121–6. doi:10.1016/0378-1097(92)90594-E.
35. Travers M-A, Sow C, Zirah S, Deregnaucourt C, Chaouch S, Queiroz RML, et al. Deconjugated
Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the
Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth.
Front Microbiol. 2016;7:1453. doi:10.3389/fmicb.2016.01453.
36. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation
of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58:949–55.
doi:10.1016/j.jhep.2013.01.003.
37. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, et al. Altered
profile of human gut microbiome is associated with cirrhosis and its complications.
J Hepatol. 2014;60:940–7. doi:10.1016/j.jhep.2013.12.019.
38. Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids and gut microbiota:
unraveling a complex relationship. Gut Microbes. 2013;4:382–7. doi:10.4161/gmic.25723.
39. Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause
of colon cancer. World J Surg Oncol. 2014;12:164. doi:10.1186/1477-7819-12-164.
40. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function
of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun. 2008;372:78–84.
doi:10.1016/J.BBRC.2008.04.171.
41. Pols TWH, Puchner T, Korkmaz HI, Vos M, Soeters MR, de Vries CJM. Lithocholic
acid controls adaptive immune responses by inhibition of Th1 activation through the
Vitamin D receptor. PLoS One. 2017;12:e0176715. doi:10.1371/journal.pone.0176715.
42. Martinot E, Sèdes L, Baptissart M, Lobaccaro J-M, Caira F, Beaudoin C, et al.
Bile acids and their receptors. Mol Aspects Med. 2017;56:2–9.
43. Ward JBJ, Lajczak NK, Kelly OB, O’dwyer AM, Giddam AK, Gabhann JN, et al. Ursodeoxycholic
acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol
Gastrointest Liver Physiol. 2017;312:550–8. doi:10.1152/ajpgi.00256.2016.
44. Tursi A, Brandimarte G, Papa A, Giglio A, Elisei W, Giorgetti GM, et al. Treatment
of Relapsing Mild-to-Moderate Ulcerative Colitis With the Probiotic VSL#3 as Adjunctive
to a Standard Pharmaceutical Treatment: A Double-Blind, Randomized, Placebo-Controlled
Study. Am J Gastroenterol. 2010;105:2218–27. doi:10.1038/ajg.2010.218.
45. Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW. Systematic
review of randomized controlled trials of probiotics, prebiotics, and synbiotics in
inflammatory bowel disease. Clin Exp Gastroenterol. 2014;7:473–87. doi:10.2147/CEG.S27530.
46. Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. Appl
Environ Microbiol. 2006;72:1729–38. doi:10.1128/AEM.72.3.1729-1738.2006.
47. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut
microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
doi:10.1038/nature08821.
48. Arumugam M et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.
doi:10.1038/nature09944.
49. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt:
the universal protein knowledgebase. Nucleic Acids Res. 2004;32 suppl_1:D115–9.
50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
tool. J Mol Biol. 1990;215:403–10. doi:10.1016/S0022-2836(05)80360-2.
52. Harris SC, Devendran S, Méndez- García C, Mythen SM, Wright CL, Fields CJ, et
al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243 T. Gut Microbes.
2018;:1–17.
53. Yokota A, Fukiya S, Islam KBMS, Ooka T, Ogura Y, Hayashi T, et al. Is bile acid
a determinant of the gut microbiota on a high-fat diet? Gut Microbes. 2012;3:455–9.
doi:10.4161/gmic.21216.
54. Han SW, Evans DG, el-Zaatari FA, Go MF, Graham DY. The interaction of pH, bile,
and Helicobacter pylori may explain duodenal ulcer. Am J Gastroenterol. 1996;91:1135–7.
http://www.ncbi.nlm.nih.gov/pubmed/8651159. Accessed 6 Jun 2018.
55. Itoh M, Wada K, Tan S, Kitano Y, Kai J, Makino I. Antibacterial action of bile
acids against Helicobacter pylori and changes in its ultrastructural morphology: effect
of unconjugated dihydroxy bile acid. J Gastroenterol. 1999;34:571–6. http://www.ncbi.nlm.nih.gov/pubmed/10535483. Accessed 6 Jun 2018.
56. Finegold SM. Anaerobic Gram-Negative Bacilli. University of Texas Medical Branch
at Galveston; 1996.
58. Gillespie SH, Hawkey PM. Principles and practice of clinical bacteriology. John
Wiley & Sons; 2006.
59. Lambert JM, Siezen RJ, de Vos WM, Kleerebezem M. Improved annotation of conjugated
bile acid hydrolase superfamily members in Gram-positive bacteria. Microbiology. 2008;154:2492–500.
60. Panigrahi P, Sule M, Sharma R, Ramasamy S, Suresh CG. An improved method for specificity
annotation shows a distinct evolutionary divergence among the microbial enzymes of
the cholylglycine hydrolase family. Microbiology. 2014;160 Pt_6:1162–74.
61. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam
protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
doi:10.1093/nar/gkv1344.
62. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, et al. eggNOG:
automated construction and annotation of orthologous groups of genes. Nucleic Acids
Res. 2008;36 Database issue:D250-4. doi:10.1093/nar/gkm796.
63. Wickham H. ggplot2: elegant graphics for data analysis. Cham: Springer International
Publishing; 2016.
64. Tyner S, Briatte F, Hofmann H. Network Visualization with ggplot2. R J. 2017.
65. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
66. Kim J, Kim MS, Koh AY, Xie Y, Zhan X. FMAP: Functional Mapping and Analysis Pipeline
for metagenomics and metatranscriptomics studies. BMC Bioinformatics. 2016;17:420.
doi:10.1186/s12859-016-1278-0.
67. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation
of large-scale molecular data sets. Nucleic Acids Res. 2011;40:D109–14.
68. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering
the genome. Nucleic Acids Res. 2004;32 suppl_1:D277–80.
69. Team RC. R: A language and environment for statistical computing. 2016.