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Abstract
Background: Previous research showed association between frailty and an impaired autonomic nervous
system; however, the direct effect of frailty on heart rate (HR) behavior during physical activity is unclear.
The purpose of the current study was to determine the association between HR increase and decrease
with frailty during a localized upper-extremity function (UEF) task to establish a multimodal frailty test.

Methods: Older adults aged 65 or older were recruited and performed the UEF task of rapid elbow flexion
for 20 seconds with the right arm. Wearable gyroscopes were used to measure forearm and upper-arm
motion, and electrocardiography were recorded using leads on the left chest. Using this setup, HR
dynamics were measured, including time to peak HR, recovery time, percentage increase in HR during UEF,
and percentage decrease in HR during recovery after UEF.

Results: Fifty-six eligible participants were recruited, including 12 non-frail (age=76.92±7.32 years), and
44 pre-frail/frail (age=81.23±8.14 years). Analysis of variance models showed that the percentage
increase in HR during UEF and percentage decrease in HR during recovery were both 47% smaller in pre-
frail/frail older adults compared to non-frails (p<0.01, effect size = 1.42 and 1.17 for increase and
decrease percentages). Using logistic models with both UEF kinematics and HR parameters as
independent variables, frailty was predicted with a sensitivity of 0.82 and specificity of 0.83.

Conclusion: Current findings showed evidence of strong association between HR dynamics and frailty. It
is suggested that combining kinematics and HR data in a multimodal model may provide a promising
objective tool for frailty assessment. 

Introduction
The concept of frailty is used to identify older adults with low physiological reserves, leading to
vulnerability to illness, and increased risk of institutionalization and mortality [1, 2]. Muscle loss and
weakness (sarcopenia and dynapenia) are the main symptoms of frailty, caused by inflammatory
(elevated interleukin 6 (IL-6), C-reactive protein (CRP), tumor necrosis factor alpha (TNFα)), metabolic
(deficiencies of various mitochondrial subunits), and hormonal derangements (cortisol and testosterone)
that shift homeostasis from an anabolic to a catabolic state [3–11]. Previous research also showed
association between frailty and an impaired autonomic nervous system (ANS) because of alterations in
electrical conduction and action potential morphology [12, 13]. The presence of a compromised
neurohormonal homeostasis associated with frailty as measured by ANS dysfunction is, in turn,
associated with health complications and mortality [14–17].

Heart rate variability (HRV: variability in RR intervals) and HR complexity (entropy analysis) during resting
have been used for assessing ANS dysfunction and proposed as a vital sign [18–20]. Although resting
HRV provides information about abnormal ANS performance, it may not be directly associated with HR
increase or recovery in response to physical activities, which show a natural decline with age [21]. Further,
between-subject variability exists in resting HR/HRV data (e.g., due to breathing regulation and
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environmental factors [22–24]). In our previous research we measured HR dynamics defined as HR
increase and recovery parameters during and after walking, and investigated the association between
these parameters with frailty [25]. We observed that non-frail participants had significantly larger and
faster increases in HR during walking, compared to pre-frail/frail older adults [25].

Based on the previous evidence, the aim of the current study, was to establish and validate a platform for
simultaneous assessment of motor and cardiac function to assess HR dynamics and predict frailty in
community dwelling older adults. For the motor function we have previously validated an upper-extremity
function (UEF) test, including rapid elbow flexion, to accurately detect systematic decrements in function,
including slowness, weakness, inflexibility, and fatigue.[26, 27]. We have validated the UEF motor test for
discriminating between frailty groups, among both community dwelling older adults and bed-bound
trauma patients, using the Fried frailty index and the short-version Rockwood questionnaire as a
comparators [28–30]. The hypotheses for the current work were: 1) HR dynamics due to UEF would be
significantly associated with frailty; and 2) a combined model including both motor and HR parameters
would more strongly be associated to frailty compared to models incorporating only one of these
individual measures.

Methods

Participants
Older adults were recruited from the primary, secondary, and tertiary health care settings, community
providers, assisted living facilities, retirement homes, and aging service organizations between October
2016 and March 2018. Inclusion criteria were: 1) being 65 years or older; and 2) the ability to walk a
minimum distance of 9.14 m (30 feet) with or without an assistive device (for the frailty assessment).
Exclusion criteria were: 1) severe motor disorders (Parkinson’s disease, multiple sclerosis, or recent
stroke); 2) severe upper-extremity disorders (e.g., elbow bilateral fractures or rheumatoid arthritis); 3)
cognitive impairment identified by a Mini-Mental State Examination (MMSE) score ≤ 23 [31]; 4) terminal
illness (i.e., progressive disease where death within six months is expected as a consequence); 5)
diseases/disorders that can directly influence HR (including arrhythmia and use of pacemaker) and 6)
usage of β-blockers or similar medications that can influence HR. Written informed consent was obtained
according to the principles expressed in the Declaration of Helsinki [32]. The study was approved by the
University of Arizona Institutional Review Board.

Frailty assessment
Frailty was assessed using the five-component Fried phenotype as an extensively validated and reliable
tool [2]. This frailty test included: 1) self-reported unintentional weight loss of 4.54 kg (10 pounds) or
more in the previous year; 2) weakness based on grip strength test; 3) slow walking speed; 4) self-
reported exhaustion; and 5) self-reported low energy expenditure. Participants were categorized as non-
frail if they met none of the criteria, pre-frail if they met one or two criteria, and frail if they met three or
more criteria.
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UEF test
Details of UEF validation and index development have been explained comprehensively within our
previous work [28–30], and only crucial aspects of UEF regarding the measurement procedure and frailty
category assessment were presented here. For UEF, while sitting on a chair, participants performed one
trial of full elbow flexion and extension as fast as possible for 20 seconds using the right arm. Of note,
we have shown UEF results are similar on both sides [28]. Before the test, participants performed a short
practice trial with their non-dominant arm to become familiar with the protocol. The protocol was
explained to participants, and they were encouraged only once, before elbow flexion, to do the task as
fast as possible. To assure consistency, exact same verbal instruction was used, and participants were
not further encouraged during the task. Wearable motion sensors (triaxial gyroscope sensors, BioSensics
LLC, Cambridge, MA, sampling frequency = 100Hz) were used to measure forearm and upper-arm motion,
and ultimately the elbow angular velocity.

Motor function outcomes representing physical frailty features were derived, including slowness (speed
of elbow flexion), flexibility (range of motion), weakness (strength of upper-extremity muscles), speed
variability (motor accuracy), speed reduction (fatigue), and flexion number. Based on these parameters a
motor score (range: resilient=0; extremely frail=1) was calculated for each participant, based on the
previously established model [30].

HR assessment
HR was measured using a wearable system with synchronized electrocardiogram (ECG) and
accelerometer sensors (360° eMotion Faros, Mega Electronics, Kuopio, Finland; ECG sampling frequency
= 1000Hz and accelerometer sampling frequency = 100Hz). One channel ECG was recorded using two
electrodes. Electrodes were placed on the left chest, one on the upper mid-thorax, and the other one
inferior to the left rib cage. Using the synchronized accelerometer data, the exact starting and endpoints
of the UEF task were selected manually. Then a period of 5 seconds before and 10 seconds after the
activity were selected, respectively, as baseline and recovery periods. To extract RR intervals, QRS peak
detection was performed using the Pan-Tompkins algorithm [33], and detected peaks were manually
inspected by two researchers (NT and ME).

Two types of HR measures were extracted, representing: 1) resting-state HR and HRV during baseline; and
2) HR dynamics including HR increase during UEF and HR recovery after UEF. HR baseline parameters
included: 1) HR mean; 2) beat-to-beat (RR) interval mean; 3) RR CV: the coefficient of variation (standard
deviation divided by mean) of RR intervals; and 4) RMSSD: root mean square of successive heartbeat
interval differences. HR dynamics parameters explain the amount and timing of HR changes in response
to UEF, which include: 1) time to peak HR: elapsed time to reach maximum HR during the task with
reference to minimum baseline HR; 2) HR recovery time: elapsed time to reach minimum HR during the
recovery with reference to maximum HR; 3) HR percent increase: percentage increase in HR during the
task compared to minimum baseline HR; and 4) HR percent decrease: percent decrease in HR during the
recovery compared to maximum HR during the task.
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Statistical analysis and power analysis
Analysis of variance (ANOVA) models were used to evaluate the differences in demographic parameters
between frailty groups, except sex; chi-square (χ2) test was used to assess differences in sex categories
among frailty groups. HR parameters were compared between groups using ANOVA models; age, sex, and
body mass index (BMI) were considered as covariates, and Cohen’s effect size (d) was estimated. Age,
sex, and, BMI were selected as adjusting variables, since they have been previously associated with HR
measures and frailty [30, 34–36]. In the next step of the analysis, HR and motor parameters, separately
and combined, were used in multiple logistic regression models as independent variables to identify
frailty status. A stepwise parameter selection based on Akaike information criterion (AIC) values was
implemented to identify predictive independent variables. For each predicting model, the area under the
curve (AUC) with 95% CI was calculated using receiver operator characteristics (ROC) curves. Power
calculation was performed to detect differences in HR dynamic parameters between frailty groups for the
sample size obtained for the current study using G*Power, ANOVA, Fixed-effect, one-way analysis. The
number of participants in the current study (12 participants in each frailty group) was sufficient to provide
85% power to detect differences in HR dynamics (and UEF score) parameters with effect size of 0.65 and
larger.

Results

Participants
Fifty-six eligible participants were recruited, including 12 non-frail (age = 76.92±7.32 years), 40 pre-frail
(age = 80.53±8.12 years), and four frail (age = 88.25±4.42 years). For statistical analyses, the pre-frail
and frail groups were merged due to the small number of included frail older adults in this study. None of
the demographic information was significantly different between the two frailty groups (p>0.10, Table 1).

Table 1
Demographic information of participants.

Demographic information Non-frail (n=12) Pre-frail/Frail (n=44) p-value (effect size)

Male, n (% of the group) 5 (42%) 10 (23%) 0.20

Age, year (SD) 76.92 (7.32) 81.23 (8.14) 0.10 (0.55)

Height, cm (SD) 164.36 (9.13) 164.23 (10.27) 0.97 (0.01)

Weight, kg (SD) 66.58 (14.69) 75.56 (19.60) 0.15 (0.52)

Body mass index, kg/m2 (SD) 24.67 (5.55) 27.74 (5.71) 0.10 (0.55)

SD: standard deviation

UEF motor and HR Parameters
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UEF motor score was significantly different between the two frailty categories; UEF motor score was
0.32±0.18 on average for non-frail and 0.53±0.23 for pre-frail/frail participants (p<0.01, Table 2). For HR
dynamic parameters, pre-frail/frail older adults showed almost half of the amount of HR increase during
UEF, and HR decrease during the recovery compared to non-frail participants (p<0.01, Table 2 and Fig. 1).
Time to peak and recovery of HR, however, were not significantly different between the frailty groups
(p>0.49, Table 2). Although trends of higher HR and smaller HRV for pre-frail/frail were observable, none
of the baseline HR parameters were significantly different between the frailty groups (p>0.23, Table 2).

Table 2
Results for ANOVA models (adjusted with age, sex, and body mass index), representing differences in UEF

motor score and baseline HR and HR dynamics. A significant difference is identified by the asterisk.
Parameters Non-frail (n=12) Pre-frail/Frail (n=44) p-value (effect size)

UEF motor score, 0-1 (SD) 0.32 (0.18) 0.53 (0.23) <0.01 (1.02) *

HR baseline      

HR mean, BPM (SD) 71.52 (11.38) 77.59 (15.97) 0.23 (0.44)

RR mean, second (SD) 0.86 (0.13) 0.80 (0.14) 0.23 (0.44)

RR CV, % (SD) 1.70 (1.39) 1.58 (1.49) 0.77 (0.08)

RMSSD, millisecond 16.80 (18.14) 15.80 (14.73) 0.81 (0.06)

HR dynamics      

Time to peak HR, second (SD) 16.84 (6.46) 16.11 (5.82) 0.49 (0.12)

HR recovery time, second (SD) 13.71 (6.22) 14.04 (5.76) 0.54 (0.06)

HR percent increase, % (SD) 19.28 (7.55) 10.29 (4.79) <0.001 (1.42) *

HR percent decrease, % (SD) 15.24 (7.65) 8.13 (3.97) <0.01 (1.17) *

UEF: upper-extremity function; HR: heart rate; SD: standard deviation; BPM: beats per minute; CV:
coefficient of variation; RMSSD: root mean square of successive differences

Results from logistic models showed that percent increase and decrease in HR, as well as UEF motor
score were all significantly associated with frailty (p<0.01). Using previously developed UEF motor score
in the logistic model, an area under curve (AUC) of receiver operating characteristic (ROC) of 0.78 was
achieved. Combining both UEF HR dynamic (i.e., HR percent increase) and motor score, the AUC was
improved to 0.87 (Table 3). Using this model, pre-frailty/frailty was predicted with a sensitivity and
specificity of 0.82 and 0.83 (Table 3).
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Table 3
Results for logistic models using HR dynamics and UEF motor score. A significant association is

represented by the asterisk.
Independent
variable

Parameter
estimate

Standard
error

Chi-square
(χ2)

p-value (95% CI)

Model 1 - UEF motor score (AUC=0.78; Sensitivity=0.75; Specificity=0.75)  

Intercept 0.61 0.73 0.70 0.4 (-0.81:2.12)

UEF motor score -0.05 0.02 6.85 <0.01 (-0.08:-0.01) *

Model 2 - HR dynamics (AUC=0.84; Sensitivity=0.80; Specificity=0.75)  

Intercept -4.91 1.27 14.97 <0.001 (-7.92:-2.81)
*

HR percent increase 0.25 0.08 10.38 <0.001 (0.12:0.44) *

Model 3 - Combined UEF (AUC=0.87; Sensitivity=0.82; Specificity=0.83)  

Intercept -3.21 1.55 4.28 0.04 (-6.68:-0.45) *

HR percent increase 0.23 0.08 7.73 <0.01 (0.09:0.42) *

UEF motor score -0.03 0.02 2.67 0.1 (-0.07:0.01)

HR: heart rate; UEF: upper-extremity function; AUC: area under curve; CI: confidence interval

Discussion

HR dynamics and frailty
As hypothesized, significant associations were observed between frailty status and HR changes during
the activity and afterwards during the recovery period. During physical activity, an increase in sympathetic
outflow increases HR and stroke volume to match demand [37, 38]. During recovery from the physical
activity, parasympathetic activity increases to reduce HR to baseline [39–41]. Lack of resilience in
changing HR in pre-frail/frail older adults can be explained by both a compromised ANS performance or
lack of cardiac reserve. Previous research provided evidence of ANS dysfunction with frailty. Focusing on
resting state differences in HRV as an indicator of ANS performance, a smaller HRV has been observed
among pre-frail and frail older adults compared to non-frails [42]. On the other hand, lack of cardiac
reserve during resting, can move pre-frail/frail individuals to a more imbalance (less homeostatic) and
already stressed state, causing an inability to respond to additional stress such as a simple task of arm
movement. In confirmation of this theory, although not significant, we observed trends of higher mean HR
during resting among pre-frail/frail participants compared to non-frails (Table 3).

Only a few studies exist to assess HR dynamics during activity across frailty groups. Smaller changes in
HR has been reported previously for lying-to-standing and seated step test [43, 44]. Also, in our previous
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research we observed that pre-frail/frail older adults had 46% smaller and 49% slower increase in HR
during walking compared to pre-frail/frail older adults [45]. One noticeable difference between our
previous and current findings is that time to peak HR during activity was significantly different in 15 feet
walk test, while this parameter was not different in the current study. One possible explanation is that for
pre-frail and frail older adults performing a walking test with a set distance takes longer than non-frails,
which consequently may lead to a slower HR increase. This explanation needs to be further assessed by
executing walking test with a set duration rather than distance. Nevertheless, based on current findings,
assessing changes in HR magnitude, rather than timing of HR changes (both increase and recovery) may
provide a more robust way of measuring HR dynamics.

Another important observation was that HR increase can characterize cardiac imbalance behavior, similar
or even better than HR recovery. Most previous research has focused on HR recovery for disease
diagnosis; studies showed prognostic value in measuring HR recovery one minute after cardiopulmonary
exercise testing for heart failure prediction [17, 46]. Nevertheless, all these HR assessments were
performed after the physical activity, since performing whole body exercise makes accurate HR
assessment complex due to motion artifacts. In the implemented UEF approach, participants performed
elbow flexion with the right arm while HR data measurement electrodes were placed on the left side. This
ECG placement provided minimal motion artifact from the right-side arm movement to permit accurate
dynamic HR assessment.

Combined HR and motor model
In confirmation of our hypothesis, current results suggest that combining HR and motor function in a
single model can enhance frailty prediction in comparison to models involving each of these
physiological systems individually. It is believed now that frailty is caused by loss of homeostasis not
necessary in one domain, but multiple physiological systems; in other words, frailty is the result of a
compromised dynamic interaction between several physiological systems, rather than one specific
pathway [47]. Accordingly, the concept of frailty assessment across multiple physiological systems and
their interactions has recently drawn more attention. Ghachem et al., for instance, assessed dysregulation
of six physiological systems including oxygen transport, kidney/liver function, leukopoiesis,
micronutrients, lipids, and electrolytes in association with frailty [48]. They have provided evidence that
frailty is more strongly associated with the number of dysregulated systems, rather than the type of
dysregulation [48]. In confirmation to previous research, current findings support the hypothesis that
assessing multiple physiological systems would improve frailty assessment. Unlike previous work, our
approach involved one testing, within which, both cardiac and motor performance were evaluated, to
efficiently balance the accuracy and the burden of testing.

Limitation and future direction
Although current findings were promising, there are limitations that warrant future research. First, the
sample of community dwelling older adults chosen for the current study was small and may not reflect
condition of hospitalized older adults. Due to the small sample of participants additional analyses were
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not performed, including assessment of interaction effect of frailty and HR on motor function
performance. Further, in the current study the association between baseline HR and HR dynamic
parameters were not reported. Since these results were similar to our previous work, we encourage
readers to read previously reported findings regarding HR measure analysis during gait tests [45]. One
other limitation of the current study is the lack of long-term resting HR measurement. Although five
seconds of rest before UEF would be enough for short-term HRV assessment, several other analyses
related to regularity (complexity analysis) of HR data could not be accomplished here due to limited
number of samples for nonlinear dynamic analysis. Previous studies demonstrated significant
association between HR complexity and frailty [49–51], and therefore, it would be interesting to explore
how the HR complexity during basal condition is related to HR dynamics in response to physical activity,
especially across frailty groups. Lastly, older adult participants with arrhythmia and those who used β-
blockers and pacemakers were excluded from the study. Therefore, effects of these disorders and
medications on HR measures need to be studies in future.

Conclusion And Clinical Implications
Current findings showed that HR changes due to physical activity was smaller among pre-frail/frail
individuals during the activity and afterwards during the recovery period. We also showed that by
combining HR and motor function we may improve frailty prediction compared to models incorporating
each of these measures individually. The proposed multimodal HR and motor frailty assessment
approach is objective and easy to perform. Due to its simplicity, compared to gait test, this test can be
performed on hospitalized patients to predict therapy complications and identify patients with treatment-
responsive frailty for directing appropriate care, with potential implications for older adults with heart
diseases.
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Figures

Figure 1

Differences in HR dynamic parameters between non-frail (NF) and pre-frail/frail (PF/F) participants. p-
values for ANOVA model, adjusted with age, sex, and body mass index are presented


