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Abstract
Proteins are the effector molecules of biology and are the target of most drugs. To identify proteins and
related pathways that may play a causal role in stroke pathogenesis, we used Mendelian randomisation
(MR). We tested potential causal effects of 308 plasma proteins (measured in 4,994 blood donors from
the INTERVAL study) on stroke outcomes (derived from the MEGASTROKE GWAS) in a two-sample MR
framework and assessed whether these associations could be mediated by cardiovascular risk factors.
We extended the analysis to identify whether pharmacological targeting of these proteins might have
potential adverse side-effects or beneficial effects for other conditions through Phenome-wide MR (Phe-
MR) in UK Biobank.

MR showed an association between stroke and genetically predicted plasma levels of TFPI, IL6RA,
MMP12, CD40, TMPRSS5 and CD6 (P≤1.62⋅10−4). We identified six risk factors (atrial fibrillation, body
mass index, smoking, blood pressure, white matter hyperintensities and type 2 diabetes) that were
associated with stroke (P≤0.0071) using MR. The association of TFPI, IL6RA and TMPRSS5 with stroke
could be mediated by these risk factors, such as body mass index, white matter hyperintensity and atrial
fibrillation. Thirty-six additional proteins were potentially causal for one or more of these risk factors. The
Phe-MR suggested that targeting TFPI could have potential beneficial effects on other disorders of
arteries and hyperlipidaemia in addition to stroke. Our results highlight novel causal pathways and
potential therapeutic targets for stroke.

Introduction
Stroke is the second leading cause of death worldwide, estimated to cause ~5.5 million deaths annually
and is the leading cause of long-term disability, with a growing burden on global health 1.   Therefore,
there is a need for new and improved treatments and prevention strategies for stroke. While conventional
risk factors, such as hypertension 2, account for ~50% of stroke risk, there remains a need to identify new
risk factors, biomarkers and therapies for stroke3.  In 2017, ~75% of FDA-approved drugs were targeted at
human proteins4.  Plasma proteins play a central role in a range of biological processes frequently
dysregulated in diseases 5-8, and represent a major source of therapeutic targets for many
indications 4,9,10.  In particular, plasma proteins are particularly relevant for circulatory diseases such as
stroke as they are in physical contact with the blood vessels (compared to tissue-specific diseases, e.g.
inflammatory bowel disease).

Genome-wide association studies (GWAS) of plasma protein levels have identified genetic variants that
are associated with proteins, usually referred to as ‘protein quantitative trait loci (pQTLs)’ 11-13, offering
an opportunity to test the causal effect of potential drug targets on the human disease phenome using
Mendelian randomization (MR) 14,15.  Briefly, MR can be thought of as nature’s randomized trial, by
capitalising on the random allocation of genetic variants at conception to separate individuals into
subgroups (one equivalent to placebo and the other to intervention in a randomized control trial, RCT)
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and so allows testing of the potential causal association of risk factors (e.g. plasma proteins) with
disease outcomes (e.g. stroke) as confounders should also be randomised.  

Here, we perform a two-sample MR to estimate the causal effects of plasma proteins on stroke, where we
derived genetic instrumental variables of 308 circulating plasma proteins from 4,994 participants 16 and
obtained genetic associations of stroke subtypes, (any stroke (AS), any ischemic stroke (IS), large-artery-
stroke (LAS), cardio-embolic-stroke (CES) and small-vessel-stroke (SVS)) from the MEGASTROKE
GWAS 17.  Then, to verify the robustness of the proteins’ instrumental variables, we perform
colocalization analyses.   We evaluate the causal relationship of plasma proteins on stroke risk factors
and assess potential safety effects of targeting the proteins for stroke therapy by performing a phenome-
wide MR in UK Biobank GWASs 18. 

Methods
The overall study design is illustrated in Figure 1.  Details of the methods and study participants are
provided below.

 

Proteomic profiling and quality control
A subset of 4,994 blood donors at mean age of 61 years (SD 6.7 years) enrolled in the INTERVAL
BioResource16, were processed for proteomic profiling using the Olink Proseek® Multiplex platform by 4
high-throughput, multiplex immunoassays: Inflammatory I (INF1), Cardiovascular II (CVD2),
Cardiovascular III (CVD3) and Neurology I (NEURO) (Olink Bioscience, Uppsala, Sweden).  Each panel
enables the simultaneous measurement of 92 proteins through relative quantification using the Proximity
Extension Assay (PEA) Technology 19, in which each pair of oligonucleotide-labelled antibodies (“probes”)
are allowed to bind to their respective target present in the sample and trigger extension by DNA
polymerase.  DNA barcodes unique to each protein are then amplified and quantified using a standard
real‐time polymerase chain reaction (PCR).  Default pre-processing of the proteomic data by Olink
included applying median centring normalization between plates, where the median is centred to the
overall median for all plates, followed by log2 transformation to provide normalised protein expression
(NPX) values.  Further details on the Olink proteomic data processing can be found
at http://www.olink.com.  Probes were labelled using Uniprot identifiers, which we re-mapped to HUGO
gene name nomenclature for the (cis-) gene encoding the relevant protein.  All protein names and
descriptions are provided in Supplementary Table 1.  

Samples that failed standard Olink quality control metrics were removed.  4,902, 4,947, 4,987, and 4,660
samples passed quality control for the ‘INF1’, ‘CVD2’, ‘CVD3’ and ‘NEURO’ panels, respectively.  According

http://www.olink.com/
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to the manufacturer's recommendation, we also removed four proteins (HAGH, BDNF, GDNF and CSF3) in
the ‘NEURO’ panel and one protein (GDNF) in the ‘INF1’ panel due to high levels of missingness.

 

Proteome GWAS
The INTERVAL study16 was genotyped using the UK Biobank Affymetrix Axiom array
(http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/ ), and imputed to 1000 Genomes
Phase 3-UK10K  combined reference panel, employing the PBWT imputation algorithm 20.  Genetic data
for the ~5000 participants with Olink proteomic profiling were extracted to test for association of the
genetic variants with plasma proteins.  More details regarding the INTERVAL genetic data QC can be
found here 21.  Within the ~5,000 participant subset, we removed six related individuals (those individuals
with pairwise values of twice the kinship coefficient (PI_HAT) > 0.1875 (removing the individuals with the
lowest call rate from each pair). The final imputed dataset was additionally filtered for imputation quality
(only retaining variants with an info score > 0.4) and Hardy-Weinberg equilibrium (retaining variants with
PHWE > 1´10-4). 

354 proteins (of 363) that passed quality control were taken forward for the GWAS.  Normalized protein
levels (‘NPX’) were regressed on sex, age, plate, time from blood draw to processing (in days), season (as
a categorical variable: ‘Spring’, ‘Summer’, ‘Autumn’, ‘Winter’), and batch when appropriate.  The residuals
were then rank-inverse normalized.  Linear regression of the rank-inversed normalize residuals on
genotype was carried out in SNPTEST v.2.5.2 22, with the first three components of multi-dimensional
scaling as covariates to adjust for ancestry.  Only proteins with at least one SNP with an association P-
value passing the genome-wide significant threshold (P ≤ 5.0´10-8) were kept, resulting in 308 proteins
for MR analyses.

 

Genetic variants associated with proteins
For each plasma protein, cis- and trans- pQTLs from its corresponding GWAS were used as genetic
instruments.  We followed these steps to select pQTL instruments: (i) we obtained SNPs that were also
tested in the MEGASTROKE GWAS of stroke outcomes (see below), (ii) we performed linkage
disequilibrium (LD) clumping using PLINK 1.90 (www.cog-genomics.org/plink/1.9/) 23 to obtain
approximately independent SNPs for each protein.  In brief, the LD clumping algorithm groups SNPs in
LD (r2 ≥ 0.1 in 4,994 European ancestry participants from the INTERVAL study 16,21) within +/- 1MB of an
index SNP (SNPs with association P ≤ 5x10-8).  Analyses assessing sensitivity to the r2 ≥ 0.1 LD
threshold are detailed below. The algorithm loops through all index SNPs, beginning with the smallest P-

http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/
http://www.cog-genomics.org/plink/1.9/
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value and only allowing each SNP to appear in one clump.  The final output therefore contains the most
significant protein-associated SNPs for each LD-based clump across the genome.  We split pQTL variants
into cis-pQTLs (+/-1MB window of the gene encoding the target protein) and trans-pQTLs (outside the
+/-1MB window).  We then performed MR in a two-step approach. Our primary analysis was restricted to
cis-pQTLs.  Having performed MR restricted to cis-pQTL only as IVs, we broadened the analysis to
consider the effects of adding in trans-pQTLs as IVs. We estimated the variance of each protein explained
by its IVs through calculating the R2 24 and the strength of each IV by the F-statistic 25.  Summary
association statistics of all the instrumental variables (IVs) for the 15 significant proteins are provided in
Supplementary Table 2.

To assess the robustness of the r2 ≥ 0.1 threshold for IV selection, we performed two additional
sensitivity analyses  (Supplementary Table  11) for proteins of interest to verify the robustness of MR
causal relationship: 1) we performed conditional analysis to derive conditionally independent variants as
IVs using the FINEMAP software package 26 with --cond flag; 2) we performed fine-mapping to obtain
variants in the 95% credible set as IVs using FINEMAP software package 26  with ---sss flag.  

 

Genetic variants associated with stroke and its risk factors
The primary outcomes were the risk of stroke and its subtypes.  Genetic association estimates for stroke
outcomes were obtained from the MEGASTROKE consortium, a large-scale international collaboration
launched by the International Stroke Genetics Consortium (ISGC).  A detailed description of the study
design and characteristics of study participants were provided in the original publication 17.  To reduce
confounding by population stratification, we extracted estimates for the associations of the protein IVs
with stroke and its subtypes restricted to individuals of European ancestry (40,585 cases and 406,111
controls).  The primary outcomes for this study were any stroke (including both ischemic and
haemorrhagic stroke; AS, Ncases = 40,585), any ischemic stroke (IS, Ncases = 34,217), and the three
etiologic ischemic stroke subtypes: large-artery stroke (LAS, Ncases = 4,373), cardio-embolic stroke (CES,
Ncases = 7,193) and small-vessel stroke (SVS, Ncases = 5,386).  Summary-level data (beta coefficients and
standard errors) for the associations of the five stroke outcomes were obtained from the MEGASTROKE
GWAS http://www.megastroke.org/index.html.  

The secondary outcomes we considered were stroke risk factors, including blood pressure (BP) 27, atrial
fibrillation (AF) 28, type 2 diabetes (T2D) 29, white matter hyperintensity (WMH) 30, body mass index
(BMI) 31, alcohol consumption and smoking behaviour 32.   We used the same pQTLs as IVs for the
secondary outcomes as for the primary outcomes.  The SNP-outcome effects for all the above risk
factors were obtained from previously published GWASs when available.  Table 1 provides full details of
the data sources and sample size for these GWASs.

http://www.megastroke.org/index.html
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Phenome-wide MR (Phe-MR) analysis of 784 phenotypes
for target proteins
We expanded the exploration of side-effects for the six stroke-associated proteins to include non-stroke
phenotypes by performing Phe-MR analyses for a range of diseases.  We used summary statistics for
SNP-outcome effects calculated using the UK Biobank cohort (N ≤ 408,961) by Zhou et al. 33, who
performed GWAS using the Scalable and Accurate Implementation of GEneralized mixed model (SAIGE
v.0.29) method 33 to account for unbalanced case-control ratios.  They defined disease outcomes based
on “PheCodes”, a system developed to organize International Classification of Diseases and Related
Health Problems (ICD-9/-10) codes into phenotypic outcomes suitable for systematic genetic analysis of
numerous disease traits 18,33.  Outcomes with fewer than 500 cases were excluded due to statistical
power, leaving 784 diseases for Phe-MR analyses (Supplementary Table 8).  SNP-outcome associations
were downloaded from SAIGE GWAS 33 (https://www.leelabsg.org/resources).  pQTLs were derived from
the same proteome GWAS as in the primary analysis with stroke subtypes.  

Phe-MR findings can be interpreted as the risk/protective effect per-SD increase in the plasma protein
level, same as with primary stroke outcomes.  That is, if the effect direction of the additional indication is
consistent with the effect direction in Stroke, the identified protein that is therapeutically targeted for the
treatment of stroke may also be “beneficial” for the additional indication, and vice versa.  MR causal
effects are considered statistically significant at P ≤ 1.06×10-5 (Bonferroni-adjusted for 6 proteins and
784 phenotypes: 0.05/6/784).

 

Systematic MR screening for causal proteins of stroke and
stroke risk factors
We used two-sample MR 34-36 to estimate the associations between genetically-predicted protein levels
and target outcomes (stroke, stroke risk factors, and potential adverse effects or additional indications).
 Two sample MR 37 is where the genetic associations with the risk factor are derived in one cohort (e.g.
pQTLs from INTERVAL) and the association of these genetic variants with the outcome is tested in a
second cohort (e.g. stroke GWAS from MEGASTROKE).  Two-sample MR allows evaluation of causal
effects using summary genetic association data, negating the need for individual participant data.  The
MR approach was based on the following assumptions: (i) the genetic variants used as instrumental
variable (IV) are associated with target exposure, i.e., protein levels; (ii) there are no unmeasured
confounders of the associations between genetic variants and outcome; (iii) the genetic variants are
associated with the outcome only through changes in the exposure, i.e., no pleiotropy.

https://www.leelabsg.org/resources
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After extracting the association estimates between the variants and the exposures or the outcomes, we
harmonized the direction of estimates by effect alleles, and applied the Wald’s ratio method to estimate
the causal effects when there was only one IV available for target exposure.  If more than one IV was
available, we applied the inverse-variance weighting (IVW) method, either in a fixed-effect framework (IVs
≤ 3) or in a multiplicative random-effect meta-analysis framework (IVs > 3) 34. We chose 3 as a cut-off
for the random effects model, as with >3 variants, there is potential for some heterogeneity within
instrumental variables.  (The multiplicative random-effects model allows for heterogeneity between
causal estimates targeted by the genetic variants by allowing over-dispersion the regression model.) We
also performed several sensitivity analyses to assess the robustness of our results to potential violations
of the MR assumptions given these analyses have different assumptions for validity: (i) heterogeneity
was estimated by Cochran Q test 34; (ii) horizontal pleiotropy was estimated using MR-Egger’s
intercept 38; (iii) influential outlier IVs due to pleiotropy were identified using MR Pleiotropy Residual Sum
and Outlier (MR-PRESSO) 39; (iv) reverse MR was used to eliminate spurious results due to reverse
causation.  Additionally, the contamination mixture method 40, which can explicitly model multiple
potential causal estimates and therefore infer multiple causal mechanisms associated with the same risk
factor that affect the outcome to different degrees, was also used to calculate the MR estimates.
 Although these methods may have differing assumptions and statistical power, the rationale for using
them is that if they give a similar conclusion, this provides greater certainty in inferring that any positive
results are unlikely to be driven by violation of the MR assumptions.  

Effects on binary outcomes (i.e., stroke, AF, T2D, smoking initiation/cessation) are reported as odds ratios
(ORs) with their 95% confidence intervals (CIs) scaled to a one standard deviation (SD) higher plasma
protein level.  Effects on quantitative outcomes (i.e., BP, WMH, BMI) are reported as the effect size (95%
CI) scaled to a 1-SD higher plasma protein levels.  All statistical tests were two-sided and considered
statistically significant at PCausalEstimate ≤ 1.62×10-4 (Bonferroni-adjusted for 308 proteins:

0.05/308=1.62×10-4), PQ-stat ≥ 0.05, PEgger-Intercept ≥ 0.05 and PGlobalTest ≥ 0.05.  The MR analyses were

conducted using MendelianRandomization (Version: 0.4.2) 35, TwoSampleMR (Version: 0.4.22) 36 and
MR-PRESSO (Version: 1.0) 39 packages in R 3.5.1 (R Foundation, www.R-project.org).  Plots were
generated using various R packages including ggplot2 (Version: 3.2.0), forestplot (Version: 1.9), and
PheWAS (Version: 0.99.5-4).  We employed the same statistical analysis framework, incorporating the
sensitivity analyses for all MR analyses. 

 

Multi-trait colocalization analyses
As the instruments used in the current setting were identified based on their statistical associations with
the protein level, we conducted another sensitivity analysis – colocalization, to investigate whether the
genetic associations with both protein and phenotypes shared the same causal variants.  We conducted

http://www.r-project.org/
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colocalization analysis for each potential causal protein across multiple traits, including protein level and
five stroke outcomes, to estimate the posterior probability (PP) of multiple traits sharing the same causal
SNP simultaneously using a multi-trait colocalization (HyPrColoc) method 41.  HyPrColoc extends the
established coloc methodology 42 by approximating the true posterior probability of colocalization with
the posterior probability of colocalization at a single causal variant and a small number of related
hypotheses.  If all traits do not share a causal variant, HyPrColoc employs a novel branch-and-bound
selection algorithm to identify subsets of traits that colocalize at distinct causal variants at the locus. We
used uniform priors for the primary analysis.  We also performed sensitivity analysis with non-uniform
priors to access the choice of priors, which used a conservative trait-level prior structure with P=1×10-4

(prior probability of a SNP being associated with one trait) and γ=0.98 (1-prior probability of a SNP being
associated with an additional trait given that the SNP is associated with at least one other trait), i.e., 1 in
500,000 variants are expected to be causal for two traits.

Variants within a ±1Mb window around the pQTL with the smallest P-value, with imputation (INFO)-score
≥ 0.8 and minor allele frequency (MAF) ≥ 0.01 were included.  All variants across each of the datasets
were harmonized to the same effect alleles prior to colocalization analyses.  We conducted the
colocalization analysis using the ‘HyPrColoc’ R package 41.  

Results

Genetically determined plasma protein levels and risk of
stroke
Three hundred and eight plasma proteins were tested for causal associations with stroke outcomes
(Figure 1).  As cis-pQTLs were considered to have a more direct and specific biological effect upon the
protein (compared to trans-pQTLs) 43, we first performed MR analyses using only cis-pQTLs as
instrumental variables and identified six putatively causal proteins with at least one stroke outcome (P ≤
1.62´10-4 =0.05/308 proteins; Table 2, Figure  2 & Figure 3, Supplementary Figure 1): TFPI (Tissue Factor
Pathway Inhibitor), TMPRSS5 (Transmembrane Serine Protease 5), CD40 (B Cell Surface Antigen CD40),
MMP12 (Matrix Metallopeptidase 12), IL6RA (Interleukin 6 Receptor), and CD6 (T-Cell Differentiation
Antigen CD6).  TFPI, CD40, IL6RA, and MMP12 were significantly associated with lower risk of any stroke
and any ischemic stroke, while TMPRSS5 and CD6 was significantly associated with higher risk of any
stroke.  Among the ischemic stroke subtypes, genetic predisposition to upregulated TMPRSS5 was
associated with higher risk of any ischemic stroke (OR per-1-SD higher plasma protein level
[95%CI]=1.059[1.038, 1.08]; P=1.36×10-8) and Cardioembolic stroke (OR[95%CI]=1.089[1.045, 1.134];
P=5.33×10-5).  Higher genetically predicted levels of both MMP12 (OR[95%CI]=0.793[0.73, 0.861];
P=3.53×10-8) and CD40 (OR[95% CI]= 0.795[0.723, 0.874]; P=2.09×10-6) were associated with lower risk
of Large-artery stroke.  Higher genetically predicted soluble IL6RA (and lower IL6R signalling 44) was
associated with lower risk of Small-vessel stroke  (OR[95% CI]= 0.939[0.909, 0.970]; P=1.60×10-4). 
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We extended the MR analyses to include trans-pQTLs as instrumental variables and identified nine
additional proteins significantly associated with at least one stroke outcome (P ≤ 1.62´10-4;
Supplementary Table 3).  However, seven proteins (VSIG2, EPHB4, Gal4, ICAM2, LIFR, SELE, and vWF),
included instrumental variables from the ABO locus, which is well known to have pleiotropic effects. We
note that the ABO protein has previously been identified as a genetic risk factor for stroke45 .
 Interestingly, both Bone Morphogenetic Protein 6 (BMP6)  and Growth Differentiation Factor 2 (GDF2,
also known as BMP9) were instrumented by trans-pQTLs located in the genetic regions of KNG1
(Kininogen 1) and F11 (Coagulation Factor XI).  Both genes are essential for blood coagulation and the
latter has previously been reported to be a causal risk factor for stroke 46.  GDF2 has also been found to
have a causal role in pulmonary artery hypertension (PAH)47. We therefore focused further analyses on
the proteins with cis pQTL only (i.e., TFPI, TMPRSS5, CD40, MMP12, IL6RA, CD6), as these associations
with stroke are unlikely to be due to pleiotropy.  

Results of sensitivity analyses confirmed the robustness of the primary MR analyses.  There was no
evidence for heterogeneity in the association of any of the six proteins in Supplementary Table 3 as
measured by Cochran Q statistics (PQ-stat > 0.05), and no indication that the instrumental variables had
horizontal pleiotropy as assessed by MR-Egger intercept (PEgger-Intercept > 0.05) or MR-PRESSO global
pleiotropy test (PGlobalTest > 0.05).   All MR causal effect estimates adjusting for correlation of IVs’ were
consistent with the primary analyses (Supplementary Table 10).   Moreover, MR causal estimates using
IVs derived from conditionally independent variants and credible sets of variants from fine-mapping
showed consistent results (Supplementary Table 11 & 12).  There was no evidence of reverse causations
(Supplementary Table 13). 

 

Co-localization
We formally tested whether the associations of the variant with the protein levels used as IVs and the
stroke outcome are shared for the six proteins using statistical colocalization analysis.  We applied a
Bayesian algorithm, Hypothesis Prioritization in multi-trait Colocalization (HyPrColoc), which allows for
the assessment of colocalization across multiple complex traits simultaneously (Methods), to test
whether the protein associations and stroke associations are shared.  The association of the genetic
variants selected as instrumental variables for four proteins (TFPI, TMPRSS5, CD40, and CD6)
colocalized with the stroke associations (posterior probability (PP) ≥ 0.7) (Supplementary Table 4,
Supplementary Figure 2) i.e., the associations in these regions were likely due to the same underlying
causal variants.  The colocalization suggested the genetic variants associated with TFPI (pQTLs) were
due to the same genetic variants underlying the association with all-stroke. Similarly, CD6 pQTLs
colocalized with all-stroke genetic associations; CD40 pQTLs colocalized with the genetic associations
for all-stroke, ischemic-stroke and large-artery-stroke; TMPRSS5 pQTLs colocalized with all-stroke,
ischemic-stroke and cardioembolic-stroke genetic associations.  Notably, we found for TFPI, CD40, and
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CD6 that >80% of the posterior probability of colocalization of the primary genetic association with stroke
and the respective protein levels were explained by a single variant (rs67492154, rs4810485, and
rs2074227 for TFPI, CD40, and CD6, respectively).  The colocalization evidence at MMP12, was less
strong than with the other proteins, with colocalization PP>0.6 and there was no colocalization evidence
for IL6RA with stroke, which could be due to violation of the single causal variant assumption of the
HyprColoc method.       

 

Characterizing the potential causal effects of stroke risk
factors on stroke
To understand potential causal mechanisms between plasma proteins and stroke, we conducted
mediation MR analyses for conventional stroke risk factors.   First, we performed two-sample MR
analyses to characterize the causal relationship of the stroke risk factors with all stroke outcomes.
 Second, we assessed the causal effects of the proteins on the highlighted risk factors. 

For each of the six stroke risk factors we considered (i.e., blood pressure (BP), atrial fibrillation (AF), type 2
diabetes (T2D), white matter hyper-intensity (WMH), body mass index (BMI), smoking behaviours and
alcohol consumption), instrumental variables were derived from published GWAS summary statistics
restricted to European populations (Table 1 & Supplementary Table 5).  AF, T2D, smoking, increased
systolic BP, diastolic BP, pulse pressure, WMH, and BMI significantly increased the risk of any stroke
(P≤0.05/7=0.007, Bonferroni adjusted for seven risk factors; Figure 4, Supplementary Table 6 &
Supplementary Figure 3).  As expected, systolic BP exhibited the strongest effect of all the risk factors on
any ischemic stroke and LAS (OR per-1-SD [95% CI]=1.68[1.57, 1.80] and 2.58[2.21, 3.01], respectively)
 and AF had a positive association with CES (OR[95% CI]: 2.04[1.92, 2.16]; P=2.72×10-125).  WMH
increased risk of any stroke and SVS (1-SD increased in WMH was associated with 49% higher odds for
SVS (OR[95% CI]=1.49[1.17, 1.9]; P=0.00147).  Both genetically determined higher T2D risk and smoking
initiation were associated with increased risk of LAS and SVS; and genetically determined higher BMI was
associated with higher risk of LAS.  No significant association was observed for alcohol consumption
with any of the stroke outcomes (P>0.05).

 

Associations of genetically determined plasma protein
levels with stroke risk factors
We performed MR of all 308 plasma proteins with the highlighted stroke risk factors (excluding alcohol
consumption which was not associated with increased stroke risk in the above MR analyses).  After
multiple testing correction, 39 proteins instrumented with cis-pQTLs were significantly associated with at
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least one stroke risk factor (P ≤ 1.62´10-4): 5 with Systolic BP; 7 with Diastolic BP; 7 with Pulse Pressure;
6 with AF; 4 with T2D; 9 with BMI; 3 with WMH; and 8 with smoking.  There was no evidence of horizontal
pleiotropy, and sensitivity analyses yielded consistent causal effect estimates (Supplementary Table 14).
 

Among the six stroke-associated proteins, three proteins were found to be significantly associated with
one or more of the stroke risk factors (Figure 5; Table 3; Supplementary Figure 4).  Of note, we found
genetically predicted higher TFPI level was associated with lower WMH and lower BMI (a 0.06 SD lower
WMH β[95% CI]= -0.06[-0.08, -0.04]; P=7.15×10-10 and a 0.013 SD lower BMI  β[95% CI]= -0.013[-0.019,
-0.007]; P=3.56×10-5 per-SD higher TFPI; Supplementary Table 7).  We thus inferred that the association
between TFPI and stroke could be partially mediated by BMI and WMH.  Genetically determined higher
TMPRSS5 levels were associated with higher risk of AF (OR[95% CI]: 1.03[1.016, 1.045]; P=2.15×10-5 ).
 Together with the causal relationship of AF and cardioembolic stroke, we can also infer that AF is a
possible mediator on the effect of TMPRSS5 on cardioembolic stroke.  Genetically higher IL6RA levels
were associated with a 4.1% lower risk of AF (OR[95% CI]: 0.96[0.95, 0.97]; P=2.55×10-18).  All the effect
directions of these associations of proteins with risk factors were consistent with those of the proteins
with stroke, indicating that these risk factors may be potential mediators of the protein-stroke
associations.

Among the 39 proteins that were associated with at least one stroke risk factor, 36 were found to be
associated with the risk factors but not stroke outcome (Supplementary Table 14).  For example,
genetically determined Fibroblast Growth Factor 5 (FGF5) level was associated with higher risk of AF
(OR=1.056 per SD higher FGF5); each SD higher genetically determined Glypican 5 (GPC5) was
associated with higher risk of T2D (OR=1.02); each SD higher in genetically determined Scavenger
Receptor Class F Member 2 (SCARF2) was associated with a 0.062-SD higher WMH.  We found that
higher genetically determined Alpha-L-Iduronidase (IDUA) and Sialic Acid-Binding Ig-Like Lectin 9
(SIGLEC9) were both associated with lower BMI.  Higher genetically determined Serine Protease 27
(PRSS27) was associated with higher SBP, higher DBP and higher PP, while higher genetically determined
levels of Neurocan (NCAN) were associated with lower risk of T2D (OR=0.76) and 0.07-SD lower SBP.

 

Phenome-wide MR (Phe-MR) analysis of stroke-associated
proteins in UK Biobank
To assess whether the six stroke-associated proteins have either beneficial or deleterious effects for other
indications, we performed a broader MR screen of 784 diseases and traits in UK Biobank (Supplementary
Table 8).  Our Phe-MR results can be interpreted as a per-SD increase in genetically determined plasma
protein level that leads to an higher or lower odds of a given disease or trait.  If the effect direction of the
protein on the disease or trait is the same as on stroke, the effect is considered “beneficial” and
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“deleterious” otherwise.  Overall, 34 significant associations were identified (P ≤ 0.05/6/784 =1.06´10-

5), of which 21 (61.7%) were in the same direction as the stroke association (Supplementary Table 9).  

Notably, genetically higher levels of plasma TFPI were not only associated with lower risk of stroke, but
also lower risk of other diseases involving the circulatory system (cerebrovascular disease, other
disorders of arteries), metabolic traits (hyperlipidemia and hypercholesterolemia, disorders of lipid
metabolism) and digestive system disorders (acute gastritis); however, they were also associated with
higher risk of excessive or frequent menstruation (Figure 6 & Supplementary Figure 5).  Genetically higher
levels of plasma TMPRSS5 were associated with higher risk of cardioembolic stroke, as well as
protein−calorie malnutrition (metabolic trait) (Figure 6 & Supplementary Figure 5).   All the significant
associations for CD40, including haemoptysis and abnormal sputum (respiratory system) were
consistent with the effect direction of that with stroke.  Effects of IL6RA on risk of diseases on circulatory
system disorders (ischemic heart disease, cardiac dysrhythmias, atrial fibrillation and flutter, coronary
atherosclerosis, angina pectoris, abdominal aortic aneurysm) and musculoskeletal disease (other
inflammatory spondylopathies) were consistent with that on risk of stroke; but had inverse effects on
dermatologic symptoms (e.g. cellulitis and abscess of arm/foot), digestive system (e.g. cholelithiasis)
and chronic renal failure [CKD] (Supplementary Figure 6 & Supplementary Table 9).  Genetically predicted
CD6 was associated with alcoholic liver damage and degeneration of intervertebral disc (musculoskeletal
system) but in the inverse direction to stroke.  Summary results of the primary and sensitivity MR
analyses for all the 784 phenotypes are provided in Supplementary Table 9.    

Discussion
Based on genetic data for 308 proteins involved in cardiovascular disease, inflammation and
neurological processes from ~5000 individuals 16, our study provides robust evidence that six proteins
(TFPI, TMPRSS5, CD40, MMP12, IL6RA, and CD6) are causally associated with stroke. We showed that
AF, systolic and diastolic BP, BMI, T2D, WMH and smoking were causally associated with risk of any
stroke (and some ischemic stroke subtypes), demonstrating a key role of the risk factors in the
pathogenesis of stroke consistent with classical epidemiological data 48–56. We found the associations
of TFPI, IL6RA, and TMPRSS5 with stroke were likely to be mediated by one or more of these risk factors.
In addition, we showed that 36 additional proteins were causal for these risk factors. Finally, the Phe-MR
highlighted additional beneficial indications of therapeutically targeting the six stroke-associated proteins
and importantly, indicated few potential safety concerns. Although, as many of the phenotypes tested are
not independent, the definition of significance used here might be too conservative (Bonferroni-corrected
P-value adjusted for the number of proteins tested (six) and the total number of phenotypes (784)
(P=0.05/6/784=1.06×10−5).

Tissue factor pathway inhibitor (TFPI) is primarily secreted by endothelial cells and is an anticoagulant
that acts on the clotting cascade 57. Observational studies showed that lower levels of free TFPI were
associated with higher risk of ischemic stroke 58 and higher risk of first and recurrent venous thrombosis
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59, while inhibition of TFPI showed to be an effective treatment of bleeding associated with hemophilia
60. Consistent with this, we provided genetic evidence for directionally consistent effects of TFPI on
multiple ischemic traits, such as ischemic stroke and ischemic heart disease, and opposite effects on
haemorrhagic traits (e.g., gastrointestinal haemorrhage, P=5.23×10−5; excessive or frequent menstruation
in females, P=2.70×10−10). We also showed that higher levels of TFPI were associated with lower BMI
and WMH (Figure 5), and lower risk of hyperlipidemia, specifically hypercholesterolemia (Figure 6),
suggesting that the pathways through which TFPI influences stroke risk might go beyond
anticoagulation, e.g., inflammation or atherosclerotic changes. Animal studies 60,61 provide supporting
evidence that TFPI has a role in attenuating arterial thrombus formation and atherosclerosis
development. Future studies of TFPI in cardiovascular diseases focusing on the role of TFPI activity and
different TFPI isoforms in the development of atherogenesis could provide further insights.

TMPRSS5 (Transmembrane Protease Serine 5, also known as Spinesin) is a member of the Type II
Transmembrane Serine Protease Family (TTSPs) 62. For example, TMPRSS10 (Corin), one member of the
TTSPs, has been reported to be involved in cardiac conduction and myometrial relaxation and
contraction pathways in regulating blood pressure and promoting natriuresis, diuresis and vasodilation
63. Unlike Corin, the function of TMPRSS5 on cardiovascular systems is poorly understood. Human
TMPRSS5 mRNA has been shown to be expressed in the brain and the protein is predominantly
expressed in neurons, in their axons in the spinal cord 64. A mouse model with mutant TMPRSS5 had
reduced proteolytic activity and suggested a role in hearing loss 65. We were unable to find other studies
that implicate TMPRSS5 in cardiovascular disease, both for any ischemic stroke and cardioembolic
stroke, an effect that might be mediated by risk of atrial fibrillation (Figure 4). Furthermore, Phe-MR
analysis revealed suggestive additional beneficial effects when targeted at TMPRSS5, e.g., reduced risk
of Parkinson’s disease (P=2.15×10−5) and left bundle branch block (P=1.43×10−5). Taken together,
TMPRSS5 represents a potentially promising therapeutic target for atrial fibrillation and cardioembolic
stroke, and further research is warranted to decipher the mechanism through which it protects against
cardiovascular and neurological diseases.

In addition, we have identified CD6, a lymphocyte surface receptor, associated with increased risk of any
stroke. CD6 is a pan T cell marker 66,67, and involved in T cell proliferation and activation through its
interaction with ALCAM (activated leukocyte cell adhesion molecule) 68. The interaction of CD6 and
ALCAM is required to promote an inflammatory T cell response 69. Interestingly, Smedbakken L et al 70

found that acute ischemic stroke patients with upregulated ALCAM at admission had a significantly
poorer survival rate (P<0.001). Given this interaction and that the recruitment of leukocytes and platelets
is widely regarded as a pivotal step in the inflammatory response associated with cerebral ischemia 71,72,
together with our finding that CD6 is associated with stroke, further investigation of CD6 in the context of
stroke is justified.

Our study not only identified potentially novel targets (i.e. TFPI, TMPRSS5 and CD6) for stroke, but also
validated proteins that had been identified as causally associated with cardiovascular diseases in
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previous proteome MR studies 11,46,73, e.g. CD40, MMP12 and IL6RA. Genetic variants in the IL6R region
are associated with risk of inflammatory related diseases 44, including coronary heart disease 74, stroke
73, atrial fibrillation 75 and rheumatoid arthritis 76. Moreover, IL6R is the target of an FDA-approved
therapy (Tocilizumab) for the treatment of several diseases, e.g., rheumatoid arthritis and systemic
juvenile idiopathic arthritis. Phase II clinical trials testing tocilizumab for the therapy of Non-ST Elevation
Myocardial Infarction have reported promising results 77 and a phase III clinical trial testing Ziltivekimab
in cardiovascular disease and chronic kidney disease has recently started (NCT05021835).

To avoid violating the MR assumptions, we performed various sensitivity analyses. We used LD clumping
at R2 0.1for pQTLs with P5.0×10−8 to choose instruments for each of plasma protein level. However,
concern 78 has been raised about the independency of the variants used as instrumental variables
leading to violation of the InSIDE (instrument strength independent of direct effect) assumption of the
MR-Egger method used. Therefore, we performed several sensitivity analyses to validate the robustness
of the instrumental variables used in the MR analysis. Firstly, we performed MR analyses adjusting for
the correlation of the variants used and obtained consistent and similar causal effect estimates to those
obtained without adjusting for the correlation (Supplementary Table 10). Secondly, we performed
conditional analysis and fine-mapping analysis to obtain instrumental variables for the six potential
causal proteins and we obtained consistent MR results (Supplementary Table 12 & Supplementary Figure
7). Finally, colocalization analyses across the genetic associations with protein levels and stroke
outcomes showed they were likely to have shared causal variants across these traits, supporting the
validity of instrumental variables and the causal protein associations (Supplementary Table 4).

The Olink assay19 used in our study measures the bulk concentration of protein in plasma. However,
because this assay cannot distinguish free from bound protein or active from inactive, only limited
mechanistic insights can be made. Due to the limited capture of human proteome (1.5% of all known
proteins), we could not evaluate the effects of all proteins within the same family or all proteins encoded
within the same genomic region. For instance, we found that TMPRSS5 was a potential novel drug target
for cardioembolic stroke, while other proteins in the Type II Transmembrane Serine Protease Family
(TTSPs) that play crucial roles in cardiac functions 62,79 could not be evaluated. Thus, a targeted study of
the TTSP family is warranted to comprehensively evaluate their effects in cardiovascular and
neurological traits.

Our results highlight potential targets of future therapies for stroke outcomes and illustrates the relevance
of proteomics in identifying drug targets. Further research is necessary to assess the viability of the six
identified proteins as drug targets for stroke treatment. Additional drug targets may be uncovered as more
comprehensive proteomics platforms become available and more diverse non-European ancestry
populations are increasingly studied. Finally, there is an increasing need for similarly comprehensive
proteomics across different tissues and organs to evaluate tissue- or organ- specific protein effects.
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Tables
Table 1. Data sources for the Mendelian Randomization analysis for current study.
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Phenotype Source N (Total or
Cases/Controls)

Imputation
reference
panel

Ancestry

Olink protein levels INTERVAL study (unpublished data) 4,994 1000 Genomes
Phase 3 +
UK10K

European 

Inflammation
Panel (INF1)


 


Cardiovascular
Panels
(CVD2/CVD3)


 


Neurology
Panel (NEURO)


 


Primary Outcomes 
 
    

Any stroke 17 studies (Malik et al) 17 40,585/406,111 1000 Genomes
Phase 1

European

Ischemic stroke 
 34,217/406,111  

Large artery
stroke


 4,373/406,111  

Cardio-embolic
stroke


 7,193/406,111  

Small vessel
stroke


 5,386/406,111  

Secondary Outcomes 
 
 
 


Atrial
fibrillation (AF)

6 Studies (Nielsen, et al) 28  60,620/970,216 HRC* European

Type 2 Diabetes
(T2D)

32 Studies (Mahajan, et al) 29 74,124/824,006 HRC European

Body Mass
Index (BMI)

GIANT + UK Biobank (Pulit, et al) 31  694,649 HRC European

Tobacco and
alcohol use

29 Studies (Liu, et al) 32 
 HRC European

AgeSmk 
 341,427

CigDay 
 337,334

SmkCes 
 547,219

SmkInit 
 1,232,091

DrnkWk 
 941,280

Blood pressure
(BP)

UK Biobank (Surendran, et al.) 27 445,415 HRC European

Systolic
BP

       

Diastolic    
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BP

Pulse
pressure
(PP)

   

White Matter
Hyperintensity
(WMH)

UK Biobank + CHARGE + study in
stroke patients (Persyn et al.,
2020) 30

42,310 HRC Trans-ethnic,
mainly
European

On-target side effects
evaluation


 
 
 


784 Phenotypes UK Biobank (Zhou, et al) 33 408,961 HRC European

*HRC: The Haplotype Reference Consortium (HRC); AgeSmk: Age of Initiation of Regular Smoking; CigDay: Cigarettes
per day; SmkCes: Smoking Cessation; SmkInit: Smoking Initiation; DrnkWk: Drinks per week. 

 

Table 2. Proteins representing potential causal factors for stroke and subtypes.

Protein N SNPs Outcome OR [95%CI]# P value

TFPI 21 Stroke 0.949[0.926, 0.972] 2.01×10-5


 21 Ischemic-stroke 0.934[0.91, 0.959] 4.68×10-7

TMPRSS5 20 Stroke 1.058[1.039, 1.077] 1.17×10-9


 20 Ischemic-stroke 1.059[1.038, 1.08] 1.36×10-8


 20 Cardioembolic-stroke 1.089[1.045, 1.134] 5.33×10-5

CD40 10 Stroke 0.919[0.891, 0.949] 2.05×10-7


 10 Ischemic-stroke 0.913[0.882, 0.946] 3.61×10-7


 10 Large-artery-stroke 0.795[0.723, 0.874] 2.09×10-6

CD6 23 Stroke 1.039[1.021, 1.057] 1.26×10-5

IL6RA 39 Stroke 0.972[0.96, 0.984] 5.43×10-6


 39 Ischemic-stroke 0.969[0.955, 0.982] 7.99×10-6


 39 Small-vessel-stroke 0.939[0.909, 0.97] 1.60×10-4

MMP12 13 Stroke 0.922[0.901, 0.945] 3.42×10-11

  13 Ischemic-stroke 0.918[0.895, 0.942] 9.07×10-11


 12 Large-artery-stroke 0.793[0.73, 0.861] 3.53×10-8

#OR [95%CI]=Odds ratio and  its 95% confidence interval per 1-SD higher genetically-predicted plasma protein
level

 

Table 3.
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results of risk factors and stroke outcomes. 

Risk Factors Stroke outcome N SNPs OR [95%CI] * P-value
AF Stroke 130 1.21[1.18, 1.24] 2.23×10-39

Ischemic-stroke 130 1.22[1.19, 1.26] 1.11×10-39

Large-artery-stroke 131 1.04[0.97, 1.12] 0.315
Cardioembolic-stroke 133 2.04[1.92, 2.16] 2.72×10-125

Small-vessel-stroke 131 0.99[0.92, 1.06] 0.714
BMI Stroke 792 1.19[1.13, 1.25] 1.73×10-10

Ischemic-stroke 791 1.17[1.11, 1.24] 3.25×10-08

Large-artery-stroke 794 1.29[1.12, 1.49] 3.24×10-04

Cardioembolic-stroke 792 1.15[1.04, 1.28] 7.49×10-03

Small-vessel-stroke 794 1.11[0.98, 1.25] 0.118
SBP Stroke 701 1.67[1.57, 1.78] 1.37×10-56

Ischemic-stroke 704 1.68[1.57, 1.81] 3.49×10-48

Large-artery-stroke 710 2.58[2.21, 3.01] 3.69×10-33

Cardioembolic-stroke 705 1.36[1.2, 1.53] 8.31×10-07

Small-vessel-stroke 708 1.99[1.72, 2.29] 3.66×10-21

DBP Stroke 661 1.5[1.4, 1.6] 1.04×10-32

Ischemic-stroke 667 1.5[1.4, 1.62] 1.67×10-28

Large-artery-stroke 674 1.72[1.46, 2.02] 5.01×10-11

Cardioembolic-stroke 673 1.26[1.12, 1.43] 2.11×10-04

Small-vessel-stroke 677 1.8[1.54, 2.1] 6.30×10-14

PP Stroke 723 1.4[1.31, 1.49] 1.07×10-25

Ischemic-stroke 723 1.41[1.33, 1.51] 1.82×10-25

Large-artery-stroke 725 2.23[1.92, 2.59] 3.29×10-26

Cardioembolic-stroke 726 1.19[1.06, 1.33] 3.21×10-03

Small-vessel-stroke 725 1.53[1.34, 1.75] 4.17×10-10

T2D Stroke 340 1.09[1.07, 1.12] 2.23×10-13

Ischemic-stroke 341 1.1[1.08, 1.13] 3.96×10-15

Large-artery-stroke 341 1.24[1.16, 1.32] 1.76×10-11

Cardioembolic-stroke 337 1.05[1, 1.1] 0.0352
Small-vessel-stroke 342 1.17[1.1, 1.24] 1.05×10-07

WMH Stroke 16 1.21[1.07, 1.36] 2.21×10-03

Ischemic-stroke 17 1.15[1, 1.31] 0.046
Large-artery-stroke 18 1.13[0.9, 1.43] 0.295
Cardioembolic-stroke 18 1.14[0.94, 1.37] 0.183
Small-vessel-stroke 15 1.49[1.17, 1.9] 1.47×10-03

SmkInit Stroke 365 1.24[1.16, 1.32] 1.80×10-11

Ischemic-stroke 364 1.22[1.15, 1.31] 6.34×10-10

Large-artery-stroke 365 1.66[1.42, 1.93] 8.88×10-11

Cardioembolic-stroke 365 1.11[0.98, 1.25] 0.116
Small-vessel-stroke 365 1.46[1.25, 1.71] 1.27×10-06

 

R results of stroke associated proteins and risk factors.
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Protein N SNPs Risk Factors OR/β [95%CI] # P value

TFPI 19 BMI -0.013[-0.019, -0.007] 3.56×10-5


 19 WMH -0.06[-0.08, -0.04] 7.15×10-10

TMPRSS5 21 AF 1.03[1.016, 1.045] 2.15×10-5

IL6RA 46 AF 0.959[0.95, 0.968] 2.55×10-18

#OR/ β [95%CI]: Odds ratio/log(odds ratio) and its 95% confidence interval, indicates pe-1-SD increase in
protein level and its effect on each outcome, if the outcome is a continuous trait, e.g. BMI, BP, we report the
effect using β, otherwise, we use OR (for binary outcome).  OR=Odds Ratio; CI=Confidence Interval; AF=Atrial
Fibrillation; BMI=Body Mass Index; WMH=White Matter Hyperintensity; T2D=Type 2 Diabetes; SBP=Systolic
Blood Pressure; DBP=Diastolic Blood Pressure; PP=Pulse Pressure; SmkInit=Smoking Initiation.

Figures

Figure 1

Overview of MR analyses. Four O-link panels were used to measure plasma proteins in a subset of ~5000
samples from the INTERVAL study 16. Genetic variants associated with plasma protein levels were
identified based on results from their corresponding GWAS. These genetic variants were then used as
proxies for the protein level and tested their relationship with stroke was tested used data from the
MEGASTROKE consortium 17 for stroke outcomes (Primary MR), with conventional stroke risk factors
(Secondary MR), and with 784 phenotypes (Phe-MR) in UK Biobank to test a broad spectrum of potential
effects of hypothetical therapeutic agents for stroke.



Page 28/33

Figure 2

Venn diagram of identified potential causal proteins for stroke subtypes.
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Figure 3

Effects of six potential causal proteins on stroke subtypes. OR: Odds ratio; I2: heterogeneity. CD40: B Cell
Surface Antigen CD40; TFPI: Tissue Factor
Pathway Inhibitor; MMP12: Matrix Metallopeptidase 12;
IL6RA: Interleukin 6 Receptor Subunit
Alpha; TMPRSS5: Transmembrane Serine Protease 5; CD6: T-Cell
Differentiation Antigen CD6.
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Figure 4

Causal effects of risk factors on stroke subtypes. I2: heterogeneity. SBP = Systolic Blood Pressure; AF =
Atrial Fibrillation; WMH = White Matter
Hyperintensity; T2D = Type 2 Diabetes; BMI = Body Mass Index;
Smoking = Smoking Initiation.
OR (P-value) I2
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Figure 5

Effect sizes (Z-score) of six potential causal proteins on stroke subtypes and causal risk factors for
stroke. Colours in each lattice of the heatmap represent the effect size (Z-score), with genetically
predicted increased protein level associated with higher risk of outcomes coloured in brown and lower
risk of outcomes coloured in blue. The darker the colour the larger the effect size.
* indicates that the
causal association is significant, which passed Bonferroni correction of PcausalEstimate_IVW ≤
0.05/308 =1.61×0-4 and passed sensitivity tests with PQstat ≥ 0.05 and PEggerIntercept ≥ 0.05.
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Figure 6

Forest plots illustrating the potential on-target side-effects associated with causal proteins
revealed by
Phe-MR analysis for TFPI (A) and TMPRSS5 (B). In general, results can be perceived as the effects of per
SD higher circulating protein level on each
phenotype. If the effect direction of the target protein on the
phenotype is consistent with that on
stroke outcomes, it represents “beneficial” additional indications
through intervention of circulating
protein level. Conversely, opposing effect directions of the target
protein on the phenotype and stroke
represents “deleterious” side-effects. For example, a higher level of
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TFPI is associated with lower risk of ischemic stroke and so phenotypes with OR<1 represents “beneficial
effects”, OR>1 represents “deleterious effects” when the hypothetical intervention increases TFPI levels.
Only significant associations that passed Bonferroni correction (P ≤ 0.05/6/784 =1.06×10-5) were
plotted. See Supplementary Table 9 for more clinical information of the ICD code phenotypes.
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