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Abstract
Background: Glioblastoma (GBM) multiforme is a common malignant brain tumor with high mortality. It
is urgently necessary to develop a new treatment because traditional approaches have reached a
bottleneck.

Purpose: Here we created an immune-related gene (IRGs)-based prognostic signature to comprehensively
de�ne the prognosis of glioblastoma (GBM).

Methods: Glioblastoma samples were abstracted from the Chinese Glioma Genome Atlas (CGGA) and the
Gene Expression Omnibus (GEO). We retrieved IRGs from the ImmProt data resource. Univariate Cox
analysis was adopted to determine the prognostically remarkable IRGs for individual with GBM. The
prognostically optimal IRGs were determined via LASSO regression, and predictive model created.
Besides, the association of speci�c factors with the overall survival (OS) of individuals with GBM was
explored via multivariate Cox-regression. Lastly, we constructed a predictive nomogram integrating the
independent predictive factors to determine the one-, two-, and three-year OS likelihoods of individuals
with GBM. Additionally,gene set enrichment analysis(GSEA) and single sample GSEA(ssGSEA) were
performed to understand the correlation between the risk score and immune activity.

Results: Overall, 273 IRGs which exhibited differential expression were identi�ed in GBM tumor in contrast
with the non-malignant samples. Of these 273 IRGs, only six were remarkably linked to OS of individuals
with GBM, which were employed in constructing the predictive signature. The GBM were categorized into
either the high-risk GBM group or the low-risk GBM group. There were remarkable differences between the
high-risk GBM and the low-risk GBM groups regarding OS. The AUC for predicting one-,two-, and three-
year OS in training set was 0.610,0.698 and 0.694.In line with the AUC of validation set was 0.608,0.692
and 0.678.Besides,the results of ssGSEA showed the score of prognostic signature is closely related to
immune activity.

Conclusion: Herein, a robust predictive model based on IRGs was created to estimate the diversity of OS
likelihoods in GBM patients, as well as aid future clinical research.

1. Introduction
Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor tied to high mortality along
with morbidity. GBM in the USA comprises 14.7%, 47.7%, and 56.6% of all primary brain tumors,
malignant brain tumors, and gliomas, respectively.(Preusser M 2011)(Stupp R 2005) At present, treating
GBM entails maximal surgical resection and subsequent combination of radiation therapy (RT) with
chemotherapeutics. Chemotherapy regimens most often include the alkylating agent, temozolomide
(TMZ) according to Stupp’s protocol, which has been shown to positively impact long-term outcomes.
(Zinn PO 2013)(Darefsky AS 2012) Nonetheless, there are some challenges that need redress, including
how to entirely resect the whole tumor based on its location in core or in-operable sites of the brain, as
well as its proliferation into neighboring healthy brain tissues. Even with aggressive, as well as
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comprehensive treatment, cancer relapse cannot be completely avoided. Patients with GBM exhibit
dismal prognosis, with a 5.6% of �ve-year OS and a median OS of 12-15 months.(Hanif F 2017)(Ostrom
QT 2018) Considering the dismal survival of individuals with GBM and the low effectiveness of the
current treatment regimes, there is a pivotal need of identifying novel treatment targets, as well as
alternative therapeutic approaches.

The major function of human immune system constitutes modulating organ homeostasis, to offer
protection against infectious pathogens, as well removal of damaged cells. Research evidence shows
that adaptive along with innate immunity play indispensable roles in the onset of cancer, which
contributes to the progress and treatment of cancer.(S.R. Woo 2015)(S.K. Biswas 2015) For decades,
immunotherapy has been a revolutionary anti-cancer therapy. It has shown considerable bene�ts, such as
enhancing survival in numerous cancers, for instance lung cancer, melanoma, as well as breast cancer.
(Iams WT 2020)(Emens LA 2018) Through manipulation of the immune system, immunotherapy
potentially achieves prolonged cancer remission with minimal complications. Current investigations have
documented that anti-cancer responses to immunotherapy might take place in the brain, providing
appropriate information for the development of new approaches for treating GBM(Sanmamed, MF 2019).
Currently, numerous immunotherapy modalities have been proposed and established for GBM. They
include immune checkpoint inhibitors, such as antibodies to cytotoxic T lymphocyte antigen 4(CTLA-4),
programmed cell death protein 1(PD-1) along with its ligand programmed death-ligand1 (PD-L1), CAR-T,
vaccines and oncolytic viruses.(Dougan M 2009) Generally, a combination strategy involving
immunotherapies, surgery, and chemoradiotherapy has been opined as a prospective effective approach
for treating GBM. Therefore, the current premise purposed to create an immune-related gene (IRGs)-based
prognostic signature to comprehensively de�ne the prognosis of glioblastoma (GBM). Differently
expressed immune-linked genes in GBM were obtained. Six immune-related genes (CRH, CRLF1,
SERPINA3, SSTR2, TNC and TNFRSF19), drastically linked to the OS of GBM, were determined using
univariate Cox along with Lasso regression analyses. A risk score, an independent predictive factor, was
de�ned. Consequently, a nomogram model was constructed using the six immune-linked signatures to
prognosticate the prognosis of patients with GBM. The signatures were combined with clinical factors
consisting of age, gender, IDH mutation status, radiochemotherapy, as well as MGMT promoter
methylation status. The six IRGs signature was found remarkablly associated with clinical characteristics
and immune cell population in the tumor microenvironment. These data illustrated that the IRGs
signature is a reliable predictive assessment tool for determining high-risk GBM individuals.

2. Materials And Methods

2.1 Study population
The RNA-seq data coupled with related clinical information of individuals with GBM were abstracted from
the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/). Overall, 139 GBM samples and 249
GBM were included in the mRNAseq_325 and mRNAseq_693 datasets, respectively. Besides, Genotype-
Tissue Expression(GTEX) RNA-seq data was abstracted from UCSC Xena (http://xena.ucsc.edu/). This
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included a total of 207 samples of non-malignant brain tissues. In addition, mRNAseq data of 158 GBM
samples and 8 non-malignant brain tissues were abstracted from the Gene Expression Omnibus (GEO)
data resource, with an accession number of GSE16011.

2.2 Immune-related genes
The gene list comprising 1793 IRGs was abstracted from the Immport data resource. There were 1098
IRGs with mRNA expression patterns in both the CGGA and Gtex datasets. About 1244 IRGs was
contained in GEO. Finally, tumor-related transcription factors (TFs) were abstracted from the Cistrome
Cancer data resource (http://cistrome.org/). All expression data was transformed with log2 (n+1), which
were retained and used for the subsequent analyses.

2.3 Differential expression analysis
The R edge package was adopted to perform differential expression analysis(M.D. Robinson 2010). IRGs
which were expressed differentially had a P  0.05 along with an absolute log2 fold change (FC)  1.

2.4 Construction of Risk score
To construct the risk score of IRGs, 237 GBM patients in the mRNAseq693 dataset, with survival
information (survival time and death status), were taken as a training set. In addition, 137 individuals
with GBM in the mRNAseq325 cohort served as the validation set. The immune genes which were
remarkably linked to prognosis were determined via Univariate Cox assessment, with P< 0.05 serving as
the cut-off. After that, the training cohort was subject to LASSO regression with the R glmet package to
explore the most remarkable prognostic genes.(J. Friedman 2010) Shrinkage of the regression coe�cient
was done on the genes which were remarkable in the univariate analysis via imposition of the penalty
proportional to their size. IRGs that corresponded to the smallest partial probability of deviance were
retained �nally. The Risk score formula was calculated as follows: -0.0475*Express Value of CRH-
0.0260*Express Value of CRLF1+0.0640*Express Value of SERPINA3-0.0162*Express Value of
SSTR2+0.0456*Express Value of TNC+0.0272*Express Value of TNFRSF19,for computing the risk of
inferior survival likelihood for each GBM sample was created as per the expressions of predictive genes in
multivariate Cox-regression assessment. Then, the correlations between IRGs in risk score and
remarkablly different TFs were analyzed using the pearson method. The regulatory networks were then
constructed and visualized using Cytoscape software.The pathway and process enrichment analyses
were carried out by using Metascape (http://metascape.org). Finally, the relationship of the risk score with
different clinical information (age, IDHmutation, gender, MGMT promoter methylation and chr1p19q
codeletion) was determined.

2.5 Establishment of a nomogram model
After excluding samples with missing clinical information, the �nal sample sizes for the training and
validation sets were 156 patients and 127 patients, respectively. The 156 GBM patients with complete
clinical information, consisting of IDH mutation status, age, chemotherapy, MGMT promoter methylation
status, gender, 1p19q codeletion status, and radiotherapy in the training set were used to construct the
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nomogram model. The 127 individuals with GBM in the veri�cation set were utilized to verify the
e�ciency of the nomogram model. Consequently, the package ”rms” in R, a multivariate Cox assessment
was adopted to assess the independent prognostic indicators, consisting of radiotherapy, chemotherapy,
and the risk score. Afterwards, these factors were used to create a predictive model, which was adopted
to explore the one-year, two-year, as well as three-year OS for GBM. In addition, calibration curves for the
test cohort and the veri�cation set were drawn to determine the nomogram’s estimation potential
regarding the GBM patients’ prognosis.

2.6 Immune in�ltration analysis of the Risk score
The R “gsva” package was adopted to conduct single-sample gene set enrichment analysis (ssGSEA).
The invasion scores of 16 immune cells along with the activity of 13 immune-linked cascades were
computed (Chen X 2020). Afterwards, the association of the level of risk score and immune cell invasion
with immune-linked cascades was explored.

2.7 Statistical analyses
The remarkable difference in OS between Risk High and Risk Low was estimated using the log-rank test.
We expressed the survival result as a Kaplan-Meier (KM) curve, via the survival along with the survminer
packages in R. The Chi-square test coupled with the t-test were adopted to compare clinical categorical
variables and continuous variables, in that order. The relationship of the IRGs with immune cells was
analyzed using Spearman correlation. A P 0.05 signi�ed statistically signi�cant. All the statistical
analyses were implemented in SPSS (IBM SPSS 26.0, SPSS INC) and R version 4.0.3.

3. Results

3.1 Differentially expressed Immune-related genes
A total of 273 different expression IRGs, consisting of 202 upregulated genes along with 71
downregulated genes from GSE16011, were identi�ed. Besides, 291 different expression IRGs, consisting
of 152 upregulated genes along with 139 downregulated genes, were obtained from the differentially
expressed genes in CGGA and GTEX. Subsequently, the intersection set was obtained and used as the
�nal set of different genes, including 89 upregulated genes and 53 downregulated genes. Finally, 16
tumor-related transcription factors (TFs), including 11 upregulated factors and 5 downregulated factors,
were obtained from Cistrome.

3.2 Glioblastoma prognostic signature
The 237 patients in the mRNAseq 693 dataset, CGGA, were taken as the test set. The univariate Cox
regression data identi�ed 27 genes among the 273 differently expressed IRGs. Then, the multivariate
regression was trained using the features selected by LASSO-COX regression analysis. Finally, six genes
(CRH, CRLF1, SERPINA3, SSTR2, TNC, and TNFRSF19) were obtained. On calculating the risk score of
every patient with the same formula, the patients were strati�ed into high-risk GMB and low-risk GBM
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groups, per the median risk score. The cutoff risk score was 0.700. Expressions of six genes incorporated
in the risk score formula were evidently different between the high-risk GBM and low-risk GBM groups.
The Kaplan-Meier data exhibited that the OS was considerably different between the high-risk GBM and
low-risk GBM groups in the test set (p=1.938e-02). The median OS was 1.093-year (95%CI: 0.758-1.428)
for the low-risk GBM group and 0.945-year (95%CI: 0.698-1.193) for the high-risk GBM group. Besides,
time-dependent ROC data exhibited that the risk score could e�ciently estimate one-year, two-year and
three-year OS likelihood. The results for the calculation of one-year AUC= 0.610,2-year AUC=0.698 and 3-
year AUC=0.694 are presented in [Figure 1] The Chinese Glioma Genome Atlas was utilized to validate the
risk score among the 137 patients in mRNAseq 325. The data exhibited that the expression of six genes
was obviously different. The median OS was 1.521-year (95%CI: 0.950-2.091) for low-risk and 0.912-year
(95%CI: 0.709-1.115) for high-risk. The resultant KM survival curves for the samples were statistically
remarkable (p=8.813e-03). Finally, the ROC curves showed AUC of 0.608 for 1-year, 0.692 for 2-year and
0.678 for 3-year. These values exhibit the robust potential of the prognostic signature to distinguish
prognostic different GBM patients [Figure 2]

The regulatory network between six genes and TFs was constructed to assess how TFs modulate the
clinically relevant IRGs. Triangular nodes represent transcription factors, circular nodes represent
prognostic IRGs. Based on the results, higher expression of genes, which were represented by the red
node, increased the probability of dismal prognosis. In contrast, elevated expression of genes represented
by the green node increased the probability of good prognosis. Red lines designate upregulation, while
green lines designate downregulation. The pathway and process enrichment analysis and human disease
enrichment were performed in Metascape to determine the function of the IRGs and TFs [Figure 3]The
result of the analysis of the risk score proved that patients with different IDH mutation status, different
MGMT promoter methylation status, and different 1p19q codeletion status were remarkablly different.
Younger patients had a lower risk score. Meanwhile, patients with MGMT promoter methylation, IDH
mutant and 1p19q codel had a lower risk score. All these differences in molecular features prove the
existence of a strong link between the risk score and the molecular tumor subtype [Figure 4].

3.3 Nomogram and independent validation
The clinical information of 283 patients in two groups is shown in [Table 1]. There was a remarkable
difference between the training and veri�cation sets. More patients (85.3%) in the test set had
radiotherapy (p=0.04) and more patients (87.8%) in the training set had chemotherapy (p=0.005).

A multivariate COX regression was adopted to explore the independence of the risk score in estimating
prognosis. The data illustrated that the risk score could be adopted as an independent variable to
estimate the prognosis of individuals with GBM (p=0.005). Moreover, radiotherapy and chemotherapy
were also independent prognosis factors. The nomograms were constructed to estimate one-year, two-
year and three-year survival probabilities using independent factors (radiotherapy, chemotherapy and risk
score). The �nal nomogram model was well calibrated with a concordance index of 0.63 in the training
set. Calibration pots were created for the test set for forecasted 1-year, 2-year and 3-year survival and the
for the veri�cation set for visual comparison. The red lines designate the estimated survival rates, while
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the gray lines actual the ideal survival rates. All three observed lines are closely aligned, exhibiting good
calibration in the test set. Then, the data of the validation set are also acceptable in terms of predictive
power [Figure 5].

3.4 Gene set enrichment analysis and assessment of
immune in�ltration
Gene set enrichment analysis (GSEA) was used to determine the enriched features along with the
functional differences between the high risk-GBM and low risk -GBM expression groups. The top 10
entries of the Gene Ontology (GO) term along with the Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms were selected [Figure 6]. The high-risk GBM group was primarily abundant in complement
activation classical cascade, complement activation, and humoral immune response modulated by
circulating immunoglobulin and immunoglobulin complex of GO as well as enriched in allograft rejection.
Also, mediation was by Asthma Autoimmune thyroid disease and Grafta Autoimmune thyroid disKEGG.
To understand the association of the risk score with immune invasion, the enrichment score of different
immune cells and the immune-tied roles and cascades based on the ssGSEA algorithm were calculated.
Interestingly, there was a remarkable difference in 13 kinds of immune cells between the high risk GBM
group and the low risk GBM group. Besides, the 13 immune cells revealed a remarkable correlation with
the risk score. Similarly, there was a remarkable difference in the immune-linked functions between the
two groups, which also revealed a remarkable relationship with risk score [Figure 7].

This study further sought to understand whether expressions of core immune checkpoints along with the
expressions of HLA family were related to risk score groups. The data illustrated that 6 core checkpoints
were expressed differently between the high risk GBM group and the low risk GBM group: PD-L1,B7-
H3,CD28,CD40,TIM-3 and PD-1,were positively tied to risk score. The data also illustrated that 19 HLA
antigens were expressed differently between the high risk GBM group and the low risk GBM group:
HLA−DOA, HLA−DPB2, HLA−A, HLA−DPB1, HLA−H, HLA−B, HLA−DMA, HLA−DOB, HLA−DPA1, HLA−DMB,
HLA−DQA1, HLA−DQB1, HLA−DRA, HLA−DRB1, HLA−C, HLA−E, HLA−F, HLA−DQA2, and HLA−J,all these
different expressed HLA family genes were also positively correlated with risk score.[Figure 8]

3.5 Hub Gene Drug Sensitivity
The drug sensitivity of the hub genes was explored, based on the Gene Set Cancer Analysis (GSCA) portal
[32], to give support for drug-targeted therapy. The top targeted therapy drugs were screened using GDSC
and CDRP for the six IRGs in the signature: ciclopirox, BRD-K51490254, FK866, Vorinostat, MI-2, NVP-
BEZ235, tipifarnib-P1, KU-0063794 and MST-312.

4. Discussion
Glioblastoma multiforme (GBM), an aggressive primary malignant brain tumor, is common in adults.
Currently, treatment strategies for GBM consist of surgery alone which is adopted for an early-stage
disease, whilst adjuvant radio/chemotherapy integrated with surgical resection is adopted for advanced
stage. Nevertheless, the outcome of most GBM patients remains poor. For instance, surgical resection
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does not yield a satisfactory outcome since cancer cells may have developed metastasis.(Cunha ML
2019) In addition, there are still controversies as to whether systemic adjuvant treatment can be
administered after surgery considering potential adverse effects or tumor heterogeneity. (Abdul KU 2018)
Therefore, it is essential to identify critical biomarkers to estimate GBM prognosis. In the current premise,
an immune-related gene (IRGs)-based prognostic signature was explored as a comprehensive method to
de�ne the prognosis of glioblastoma (GBM) and provided importance in most analyses.

Much recent investigations have focused on the association of IRG expression with the onset and
progress of diverse (Wilson CL 2005) Comprehensive research evidence has documented that IRGs
harbor stable capacity to estimate the prognosis of patients, numerous IRGs with robust estimation roles
have been (Jia D 2018) Hitherto, some existing nomograms have employed IRGs as predictive factors of
individuals with glioma. A recent premise established an immune-linked gene pairs nomogram for
estimating the survival of individuals with GBM (Wang S 2021), as well as a risk model on the basis of 20
differentially expressed IRGs was demonstrated to exhibit e�cient OS estimation potential for LGG.(Song
LR 2020) Nevertheless, numerous prognosis-linked nomograms are limited by variables, for instance
sample size coupled with inadequate veri�cation.

After an array of analyses on the basis of the CGGA dataset a prognostic signature consisting of six IRGs
(CRH, CRLF1, SERPINA3, SSTR2, TNC, and TNFRSF19) were constructed. Herein, all patients were
strati�ed into low-risk GBM and high-risk GBM cohorts, per the median risk score in two datasets. The OS
of the low-risk cohort was better in contrast with that of the high-risk GBM cohort in both the test and
veri�cation sets. Besides, the ROC curves showed the e�ciency of the prognostic signature for
forecasting one-year, two-year and three-year OS of GBM. To further explore its clinical application, the
relationship of the risk score with IDH1 mutation, 1p19q codeletion and MGMT promoter status were
investigated. In additon, we created nomograms, on the basis of the IRGs signature risk score,
radiotherapy and chemotherapy for the training set. In the veri�cation process, we established that the
model had robust potential to estimate the prognosis of GBM patients. Besides, we determined the
connection of the risk score with invasion of several immune cells, HLA family and core checkpoints, the
data exhibited that high risk patients had high immune in�ltration and were more likely to bene�t from
immunotherapy.Finally,some hub genes targeted agents had also been found for the subsequent
experiment.

The six IRGs needs further investigation.In our risk score signature,CRH, CRLF1 and SSTR2 were
considered bene�cial to OS, while SERPINA3, TNC and TNFRSF19 were considered deleterious.The
results of single-cell RNA sequencing exhibited that high expression of CRH leads to the downregulation
of invasion (r=-0.44), DNA repair (r=-0.37) and Epithelial-Mesenchymal Transitio (EMT) (r=-0.37)
(Panossian A 2018)(Cancer SEA 2019) .It was previously reported that CRLF1 cross talks with MYH9,
triggering PTC cell growth along with metastasis via the ERK/ETV4 cascade, in vitro along with in vivo.
(Yu ST 2020) Besides, CRLF1 may contribute to neuroprotection because of its activity in enhancing
neuronal cell survival and in modulating neuronal apoptosis.(Niada S 2018) High expression of CRLF1
was negatively associated with invasion (r=-0.44), DNA repair (r=-0.39) and DNA damage (r=-0.38). In
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addition,high expressin of SSTR2 was negatively associated with invasion (r=-0.38) and EMT (r=-0.32).
All three genes were negative for invasion, considered inhibiting tumor enlargement and recurrence, which
were remarkablly bene�cial to patients’ prognosis.

Montserrat Lara-Velazquez et al. evaluated the impacts of silencing and over-expression (OE) of
SERPINA3 on cell migration, viability, and cell proliferation.(Appay R 2018) The authors reported that
SERPINA3 KD caused a reduction in cell growth, migration, in�ltration, as well as stem cell characteristics,
whilst SERPINA3 OE caused elevated cell migration. The data of single-cell RNA sequencing showed that
high expression of SERPINA3 leads to the upregulation of hypoxia (r=0.32) and in�ammation (r=0.31)
[24].Tenascin-c (TNC) participates in Vasculogenic mimicry (VM) formation. Vasculogenic mimicry (VM) is
the generation of vessel-like structures via highly in�ltrative tumor cells. The VM has been regarded one
of the numerous mechanisms which account for the failure of anti-angiogenesis treatment in individuals
with glioma(Cai HP 2019). The last gene, TNFRSF19, a member of the TNF receptor superfamily is
negatively linked to patient survival. It triggers glioblastoma cell migration along with in�ltration in vitro
by Pyk-Rac 1 signaling, JAK1-STAT3 and PDZ-RhoGF.(Liu CJ 2018) Hence,we propose that the six IRGs in
our signature might be promising molecular targets for GBM treatment.

Our prognostic index was based on gene expression data provided by CCGA, however some limitations
remain. First, our data were all abstracted from publicly accessible datasets. Even though all data were
analyzed after normalization, due to differences of microarray with sequencing technology, some
systematic errors likely remained.Second,some of the clinical data were missed,decreasing our sample
size to a large extent.Moreover,the conclusions made from a series of limited bioinformatics analyses are
inadequate and require further validation via comprehensive experiments, as well as clinical studies.

5 Conclusion
In this study, an immunogenomic landscape analysis was performed and an IRG-related prognostic
signature for GBM was constructed. The results of this premise provide a more comprehensive
understanding of the immune response in the TME and prospective immune treatment targets for clinical
practice.
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Tables
Table 1: Characters of GBM patients in the test set and the veri�cation set.

Variables Training set(N=156) Validation set(N=127) P-Value

Age(mean(SD))[Range] 47.93(13.631)[14-73] 46.48(12.648)[8-79] 0.919

Gender (N(%))     0.141

Male 86(55.1) 81(63.8)  

Female 70(44.9) 46(36.2)  

IDHmutation (N (%))     0.070

Mutant 31(19.9) 37(29.1)  

Wildtype 125(80.1) 90(70.9)  

MGMTp_methylation(N(%))     0.563

Methylated 84(53.8) 64(50.4)  

Un-methylated 72(46.2) 63(49.6)  

1p19q_codeletion (N(%))     0.598

Non-codel 145(92.9) 120(94.5)  

Codel 11(7.1) 7(5.5)  

Radiotherapy (N (%))     0.04*

Treated 133(85.3) 96(75.6)  

Untreated 23(14.7) 31(24.4)  

Chemotherapy (N (%))     0.005*

Treated 137(87.8) 95(74.8)  

Untreated 19(12.2) 32(25.2)  

Death status (N (%))     0.201

  Alive 24(15.4) 13(10.2)  

  Dead 132(84.6) 114(89.8)  

Figures
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Figure 1

Construction of IRGs prognostic signature.(a) Coe�cients of determined characteristics are exhibited via
lambda parameter Partial probability deviance relative to log (λ)was generated via LASSO Cox regression
approach. (b) Prognostic assessment of the gene signature in the CGGAmRNAseq693 cohort. Top:The
dotted line designates the median risk score and strati�ed the patients into low-risk GBM and high-risk
GBM groups.Middle: Survival status of the patients. More dead patients matching to the higher risk
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score.Bottom: Heatmap illustrating the expression patterns of the prognostic genes in low risk GBM and
high-risk GBM groups.(c)Kaplan-Meier survival assessment of the gene signature. Time-dependent ROC
assessment the of the gene signature.

Figure 2

Patients in the veri�cation set (CGGAmRNAseq325) were used to verify the risk score.(a) Top:The dotted
line designates the median risk score and strati�ed the patients into low-risk GBM and high-risk GBM
groups.Middle: Survival status of the patients.Bottom: Heatmap of the prognostic genes in low risk GBM
and high-risk GBM groups.(b)Kaplan-Meier survival curve and Time-dependent ROC curve of the
validation set.
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Figure 3

PPI of IRGs and TFs.(a) The results of PPI network analysis of six IRGs and �fteen TFs. (Triangular nodes
represent transcription factors, circular nodes represent prognostic IRGs, and the higher the expression of
genes represented by the red node, the higher the probability of poor prognosis. Similarly, the higher the
expression of the genes represented by the green node, the higher the probability of good prognosis. Red
lines designate upregulation, while green lines designate downregulation). (b) Pathway and Process
enrichment analysis of PPI networks in Metascape. (c) Diseases Enrichment Analysis of PPI networks in
DisGeNET.
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Figure 4

Boxplots showing the distribution of risk scores in GBM samples categorized by different factors,
consisting of (a)age, (b) gender,(c)IDH mutation status,(d) MGMT promoter methylation status,
(E)Chr1p19q codelerion status.



Page 19/23

Figure 5

The construction of nomogram.(a) Multivariate COX regression was adopted to select the independent
variables, including radiotherapy, chemotherapy, and risk score. (b)The nomogram using
radiotherapy,chemotherapy and risk score. For each patient, three lines are drawn upward to verify the
points received from the three predictors of the nomogram. The sum of these points situates on the‘Total
Points’axis. Then a line is drawn downward to assess the one-year, two-year, and three-year overall
survival of GBM.(c) The calibration curve for the evaluation of the nomogram. The Y-axis designates the
actual survival, while the X-axis designates nomogram estimated one-year, two-year and three-year OS of
patients in the training set. (d) The predicted one-year, two-year along with three-year OS in the veri�cation
set.
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Figure 6

GSEA analysis between the high risk GBM group and the low risk GBM group.(a)GO enrichment analysis.
(b)KEGG enrichment analysis.
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Figure 7

The correlation between riskscore and immune microenvironment (a) Heatmap indicating the relationship
between the high-risk GBM and low-risk GBM groups with the expression of immune cells and immune-
linked functions. (b) Boxplots illustrating the level of 16 immune cells in the high-risk GBM and low-risk
GBM groups(c) Radar plot illustrating the association of the risk score with 16 immune cells. (d) Boxplots
illustrating the level of 13 immune-linked functions in the high-risk GBM and low-risk GBM groups.(e)
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Radar plot illustrating the correlation of the risk scores with the 13 immune-related functions. The p-
values were uniformly designated using the following symbols: *p < 0.05, **p < 0.01, ***p < 0.001

Figure 8

The predicting e�cacy of immunetherapy in different risk groups.(a) Boxplot illustrating the difference in
immune checkpoints between the high risk GBM group and the low risk GBM group.(b)Radar plot
illustrating the correlation of the risk scores with the immune checkpoints. (c) Boxplots illustrating the
differences between the high-risk GBM group and the low-risk GBM group in the HLA family.(d) Radar plot
illustrating the correlation of the risk scores with the expression of HLA family.The p-values were
uniformly designated using the following symbols: *p < 0.05, **p < 0.01, ***p < 0.001.
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