1. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105-111.
2. Hang K, Ye C, Chen E, Zhang W, Xue D, Pan Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones. 2018;23:1153-1164.
3. Sreedhar AS, Kalmar E, Csermely P, Shen YF. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 2004;562:11-15
4. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5:761-772.
5. Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10:537-549.
6. Rong B, Yang S. Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: New discoveries and developments (Review). Int J Oncol. 2018;52:321-336.
7. Haque A, Alam Q, Alam MZ, Azhar EI, Sait KH, Anfinan N, et al. Current Understanding of HSP90 as a Novel Therapeutic Target: An Emerging Approach for the Treatment of Cancer. Curr Pharm Des. 2016;22:2947-2959.
8. Xu W, Neckers L. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res. 2007;13:1625-1629.
9. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8:422.
10. Sims NA, Morris HA, Moore RJ, Durbridge TC. Increased bone resorption precedes increased bone formation in the ovariectomized rat. Calcif Tissue Int. 1996;59:121-127.
11. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76-81.
12. Morikawa M, Derynck R, Miyazono K. TGF-b and the TGF-b family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8: pii: a021873.
13. Wu M, Chen G, Li YP. TGF-b and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016;4:16009.
14. Zhang YE. Non-Smad pathways in TGF-b signaling. Cell Res. 2009;19:128-139.
15. Hatakeyama D, Kozawa O, Niwa M, Matsuno H, Ito H, Kato K, et al. Upregulation by retinoic acid of transforming growth factor-b-stimulated heat shock protein 27 induction in osteoblasts: involvement of mitogen-activated protein kinases. Biochim Biophys Acta. 2002;1589:15-30.
16. Hayashi K, Takai S, Matsushima-Nishiwaki R, Hanai Y, Kato K, Tokuda H, et al. (-)-Epigallocatechin gallate reduces transforming growth factor b-stimulated HSP27 induction through the suppression of stress-activated protein kinase/c-Jun N-terminal kinase in osteoblasts. Life Sci. 2008;82:1012-1017.
17. Kainuma S, Tokuda H, Yamamoto N, Kuroyanagi G, Fujita K, Kawabata T, et al. Heat shock protein 27 (HSPB1) suppresses the PDGF-BB-induced migration of osteoblasts. Int J Mol Med. 2017;40:1057-1066.
18. Kato K, Adachi S, Matsushima-Nishiwaki R, Minamitani C, Natsume H, Katagiri Y, et al. Regulation by heat shock protein 27 of osteocalcin synthesis in osteoblasts. Endocrinology. 2011;152:1872-1882.
19. Romanello M, Bivi N, Pines A, Deganuto M, Quadrifoglio F, Moro L, et al. Bisphosphonates activate nucleotide receptors signaling and induce the expression of Hsp90 in osteoblast-like cell lines. Bone. 2006;39:739-753.
20. Miyasaka M, Nakata H, Hao J, Kim YK, Kasugai S, Kuroda S. Low-intensity pulsed ultrasound stimulation enhances heat-shock protein 90 and mineralized nodule formation in mouse calvaria-derived osteoblasts. Tissue Eng Part A. 2015; 21:2829-2839.
21. Fujita K, Otsuka T, Kawabata T, Sakai G, Matsushima-Nishiwaki R, Kozawa O, et al. Inhibitors of heat shock protein 90 augment endothelin‑1‑induced heat shock protein 27 through the SAPK/JNK signaling pathway in osteoblasts. Mol Med Rep. 2018;17:8542-8547.
22. Kim W, Tokuda H, Kawabata T, Fujita K, Sakai G, Nakashima D, et al. Enhancement by HSP90 inhibitor of PGD2-stimulated HSP27 induction in osteoblasts: Suppression of SAPK/JNK and p38 MAP kinase. Prostaglandins Other Lipid Mediat. 2019;143:106327.
23. Fujita K, Otsuka T, Kawabata T, Kainuma S, Sakai G, Matsushima-Nishiwaki R, et al. HSP90 limits thrombin‑stimulated IL‑6 synthesis in osteoblast‑like MC3T3‑E1 cells: Regulation of p38 MAPK. Int J Mol Med. 2018;42:2185-2192.
24. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1982;96:191-198.
25. Kozawa O, Tokuda H, Miwa M, Kotoyori J, Oiso Y. Cross-talk regulation between cyclic-AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells. Exp Cell Res. 1992;198:130-134.
26. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-685.
27. Egorin MJ, Lagattuta TF, Hamburger DR, Covey JM, White KD, Musser SM, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol. 2002;49:7-19.
28. Woodhead AJ, Angove H, Carr MG, Chessari G, Congreve M, Coyle JE, et al. Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem. 2010;53:5956-5969.
29. Yamamoto N, Otsuka T, Kondo A, Matsushima-Nishiwaki R, Kuroyanagi G, Kozawa O, et al. Rac limits TGF-β-induced VEGF synthesis in osteoblasts. Mol Cell Endocrinol. 2015;405:35-41.
30. Ochel HJ, Eichhorn K, Gademann G. Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones. 2001;6:105-112.
31. Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001;98:13681-13686.
32. Smith V, Sausville EA, Camalier FR, Fiebig HH, Burger AM. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol. 2005; 56:126-137.
33. Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, et al. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother. 2018;102:608-617.
34. Kozawa O, Hatakeyama D, Tokuda H, Oiso Y, Matsuno H, Uematsu T. Sphingomyelinase amplifies BMP-4-induced osteocalcin synthesis in osteoblasts: role of ceramide. Cell Signal. 2002;14:999-1004.
35. Chen H, Xing J, Hu X, Chen L, Lv H, Xu C, et al. Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol. 2017;171:236-246.