The current theoretical knowledge concerning the influence of epistasis on heterosis is based on simplified multiplicative model. The objective of this study was to assess the impact of epistasis in the heterosis and combining ability analyses, assuming additive model, hundreds of genes, linkage disequilibrium (LD), dominance, and seven types of digenic epistasis. We developed the quantitative genetics theory for supporting the simulation of the individual genotypic values in nine populations, the selfed populations, the 36 interpopulation crosses, 180 doubled haploids (DHs) and their 16,110 crosses, assuming 400 genes in 10 chromosomes of 200 cM. Epistasis only affects population heterosis if there is LD. Only additive x additive and dominance x dominance epistasis can affect the components of the heterosis and combining ability analyses of populations. Both analyses can lead to completely wrong inferences regarding the identification of the superior populations, the populations with greater differences of gene frequencies, and the populations with maximum variability, when the number of interacting genes and the magnitude of the epistatic effects are high. There was a decrease in the average heterosis by increasing the number of epistatic genes and the magnitude of their epistatic effects. The same results are generally true for the combining ability analysis of DHs. Surprisingly, the combining ability analyses of subsets of 20 DHs showed no significant average impact of epistasis on the identification of the most divergent ones, even assuming a high number of epistatic genes and great magnitude of their effects. However, a significant negative effect can occur.