[1] Schwartz L H, Seymour L, Litière S, et al. RECIST 1.1-Standardisation and disease-specific adaptations: Perspectives from the RECIST Working Group. Eur J Cancer 2016; 62:138-45.
[2] Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131(6): 1190-1203.
[3] Bergethon K, Shaw A T, Ou S H, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2013; 30: 863-870.
[4] Gainor J F, Shaw A T. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 2013; 18(7):865-75.
[5] Davies K D, Le A T, Theodoro M F, et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res 2012. 18(17): 4570-4579.
[6] Shaw A T, Ou S H, Bang Y J, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014. 371(21): 1963-1971.
[7] Rolfo C, Ruiz R, Giovannetti E, et al. Entrectinib: a potent new TRK, ROS1, and ALK inhibitor. Expert Opin Investig Drugs 2015; 24(11):1493-500.
[8] Shaw A T, Felip E, Bauer T M, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol 2017; 18(12): 1590-1599.
[9] Lim S M, Kim H R, Lee J S, et al. Open-label, multicenter, phase II study of ceritinib in patients with non–small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol 2017; 35(23): 2613-2618.
[10] Drilon A, Ou S H, Cho B C, et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov 2018; 8(10):1227-1236.
[11] Fujiwara Y, Takeda M, Yamamoto N, et al. Safety and pharmacokinetics of DS-6051b in Japanese patients with non-small cell lung cancer harboring ROS1 fusions: a phase I study. Oncotarget 2018; 9(34): 23729.
[12] Katayama R, Kobayashi Y, Friboulet L, et al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res 2015; 21(1): 166-174.
[13] Yoshida T, Oya Y, Tanaka K, et al. Clinical impact of crizotinib on central nervous system progression in ALK-positive non-small lung cancer. Lung Cancer 2013; 88(3): 43-47.
[14] Dziadziuszko R. Beneath the blood brain barrier: the challenge of diagnosis and management of central nervous system involvement in ALK-positive lung cancer. J Thorac Oncol 2013; 8(12): 1465-1466.
[15] Ou S H, Chalmers Z R, Azada M C, et al. Identification of a novel TMEM106B-ROS1 fusion variant in lung adenocarcinoma by comprehensive genomic profiling. Lung Cancer 2015. 88(3): 352-354.
[16] Xu S, Wang W, Xu C, et al. ROS1-ADGRG6: a case report of a novel ROS1 oncogenic fusion variant in lung adenocarcinoma and the response to crizotinib. BMC Cancer 2019; 19: 1-4.
[17] Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18(3):378-381.
[18] Brauer P M, Tyner A. RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK. Cell cycle 2009, 8(17):2728-2732.
[19] Bayard Q, Caruso S, Couchy G, et al. Recurrent chromosomal rearrangements of ROS1, FRK and IL6 activating JAK/STAT pathway in inflammatory hepatocellular adenomas. Gut 2020; [In ahead of print].
[20] Sehgal K, Patell R, Rangachari D, et al. Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Transl Cancer Res 2018; 7(Suppl 7):S779-S786.
[21] Shen L, Qiang T, Li Z, et al. First-line crizotinib versus platinum-pemetrexed chemotherapy in patients with advanced ROS1-rearranged non-small-cell lung cancer. Cancer Med 2020; 9(10): 3310-3318.
[22] Collier T L, Maresca K P, Normandin M D, et al. Brain penetration of the ROS1/ALK inhibitor lorlatinib confirmed by PET. Mol Imaging 2017; 16: 1536012117736669.