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Abstract

The endophytic microbial communities of plant seeds are either early or late colonizers, from the vascular system and stigma
of mother plants or through contact from the environmental niches. Microbial communities get established in the plant
progenies, particularly seeds, by vertical or horizontal transmission. The composition of seed microbiome determines the type
of microbial associations, ranging from mutualism to pathogenicity with the emerging plants and also, the environmental
conditions have a significant effect on their diversity.

Wheat associated microbiota, especially rhizobacteria and endophytes from different plant organs possess competencies for
plant growth promotion, and mitigation of abiotic and biotic stress. Improved yield and adaptation, as well as sustained
wheat production across different ecologies necessitate the microbiome basis for understanding the genotype-environment
(GxE) interactions. Hence,we investigated the diversity and functions of culturable endophytes from different ecological
conditions on seed germination and the growth and fitness of plants. The core culturable microbiome members associated
with seeds were identified, and evaluated for their potential for application and ensuing colonization in wheat plants.The
diversity indices such as Shannon diversity (H), Chao1, Simpson's reciprocal index and Species evenness (J) were generally
highest in the PZ, followed by the NHZ. Likewise,this study showed that the genotypes play a profound role in their diversity,
with variations in the hydrolytic enzyme production, plant growth promotion and priority effects on seedling colonization of
wheat. The potential for hydrolytic enzyme production also suggest the multifarious mechanisms mediated by these
endophytic bacteria for colonization and antagonism against plant pathogens.

Introduction

Plants have various microorganisms internally as endophytes, living as the commensals and accomplishing several
beneficial functions to the hosts but without their presence seen. The endophytes and other microbiota associated with the
surfaces of the host plants as the ‘holobiont, determine growth, differentiation, development, health, and productivity. The
endophytes can explicitly contribute to seed germination and growth before other types of microbial associations establish in
the emerging plants (Berg et al., 2015). The gymnosperm and angiosperm plants (the spermatophytes) give out seeds that
germinate to produce new plants, and all the seeds harbour endophytes, just like roots, leaves, and other plant organs. The
transfer of endophytes to seeds may occur through the environmental niches, and the vascular connections from different
plant organs. Besides, the gametes or the reproductive meristems may also provide endophytes for the embryo- and
endosperm colonization (Malfanova et al., 2013). Thus, the endophytic communities of seeds are either the early colonizers
from the vascular system and stigma of mother plants or the late colonizers through contact from the environmental niches.

Seed transmission of microorganisms from one generation to another is known for a long, evidently from the seed-borne
pathogens (Johnston-Monije et al., 2016). In different organs of plant progenies including seeds, endophytic microbial
communities may establish either through vertical or horizontal transmission (James et al., 2002). The co-evolutionary
processes suggest that the vertically transmitted microbiota, through direct transfer from parents to progenies, may have the
conserved endophyte properties with active involvement in the preservation and germination of seeds (Truyens et al., 2014 &
2015). During seed germination, the endophytes aid in nutrient acquisition by plants and synthesize plant hormones addedly
(Xu et al., 2014). The endophytic metabolites, such as lipopeptides, possess antifungal activities (Gagne-Bourgue et al.,
2013). Herrera et al. (2016) reported that the endophytic communities of wheat seeds had members of Paenibacillus and
Pantoea with potentials for plant growth promotion and biocontrol activities against Fusarium graminearum. The wheat
associated microbiota, especially rhizobacteria and endophytes from different plant organs possess competencies for plant
growth promotion, and mitigation of drought, acidity, salinity or low temperature (Mishra et al., 2011; Verma et al., 2013 &
2014).

Wheat is cultivated under different agro-ecological conditions worldwide. In India, the zones are classified based on sail
characteristics, rainfall patterns, temperature, and terrain as Northern Hill Zone (NHZ), North-Western Plains Zone (NWPZ),
North Eastern Plains Zone (NEPZ), Central Zone (CZ), Peninsular Zone (PZ), and Southern Hill Zone (SHZ) (Trethowan et
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al,2018; Table 1). The assemblages of microbiota in wheat seeds from these ecological conditions are poorly investigated.
Information on the seed microbial assemblages (seed microbiome) will recognize the genotype-specific members and the
variations in their compositions and functional capabilities due to the ecological conditions. In rice plants, most seed
endophytes colonize shoots while some strains move to the rhizosphere (Mano et al., 2006). Truyens et al. (2015) suggested
that the vertical transmission of microbiota ensures the ‘continuity of partnership’ with the host plants. The compositions of
seed microbiome determine the type of microbial associations, ranging from mutualism to pathogenicity with the emerging
plants.

The genetic relationships among wheat varieties and environments are a constituent factor for yield evaluation of new
genotypes and identifying locations as the yield predictors across ecological conditions under the varietal release systems all
over the world(Trethowan et al.,, 2018). Improved yield and adaptation, and sustained production of wheat across different
ecologies necessitate the microbiome basis for understanding the genotype-environment (GxE) interactions. In this present
study, we hypothesized that the culturable endophytic communities of seeds differed in the wheat genotypes adapted to
different agro-ecological zones. This study examined the functions of culturable endophytes on seed germination and the
growth and fitness of plants. The members of endophytes from the genotypes adapted to different agro-ecological zones are
investigated to identify the core culturable microbiome members that are associated with seeds, and to evaluate the potential
for their application and the ensuing colonization in wheat plants.

Results
Abundance of culturable endophytic bacteria in wheat seeds

The mean population densities of culturable, bacterial endophytes ranged from 2.79+ 0.05 to 5.19 + 0.06 log CFU g™ d.w.
seed, with variations which could be attributed to the type of medium tested and the wheat cultivation zones. The total
endophytic bacterial population densities were the least in the CZ with the use of nutrient agar (NA) medium while the highest
was in the NHZ with the use of newly designed, Wheat Flour-based Agar (WFA) medium (SaiPrasad, et al. 2020; Table 2). The
zonal influences were apparently lesser on the total population densities, when cultured using the Trypticase Soy Agar (TSA)
medium. In general, the culturable endophytic bacterial populations were lesser in the seeds sampled from the CZ, PZ, and
SHZ than those from the NEPZ, NHZ, and NWPZ. The culturability of bacterial endophytes differed among the media used
and additionally, the abundance of these bacteria was typically more in the seeds from the NEPZ, followed by the NWPZ and
NHZ. On the basis of morphometric analyses including morphology, size, and pigmentation of colonies, a total of 220
endophytes (43, 40, 38, 28, 34 and 37 from the NWPZ, NEPZ, NHZ, CZ, PZ and SHZ, respectively) were selected for
biochemical and phylogenetic investigations.

Phenotyping and Phylotyping of Wheat Seed Endophytic Bacteria

The phenotyping of Wheat Seed Endophytic Bacteria (WSEB) which was performed by examining their growth at different
temperatures (4-40 °C), pH (3 to 10), salt concentrations (5-15%), and polyethylene glycol concentrations (PEG 6000, 10-15%)
showed considerable variations in their potentials (Supplementary Fig. 1).

The most predominant, distinctly different isolates from each zone were further subjected to the phylotyping by sequencing
the partial 16S rRNA genes. The accession numbers of the NCBI GenBank for the phylotypes (46) were MT184815-
MT184857(Supplementary Fig. 2). The diversity indices of these phylotypes in the wheat cultivation zones showed marginal
differences (Table 2). The Shannon diversity (H) value was the highest in the PZ while those of Chao1 and Simpson’s
reciprocal indices were the lowest in the NEPZ. The values of species evenness were higher in the NHZ, followed by the NEPZ.
Irrespective of these minor differences in the diversity indices, seeds were enriched with three bacterial phyla (i.e., Firmicutes,
Actinobacteria and Proteobacteria with the distribution ratios of 87.0%, 6.5% and 6.5%, respectively) (Supplementary Fig. 3).
In all the six wheat cultivation zones, the members of Bacillus belonging to the Phylum Firmicutes were predominant and the
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numbers of other identified species were about three each in Actinobacteria and Proteobacteria.The niche specific species
were Bacillus cereus in the NWPZ, Saccharibacillussacchariin the NEPZ, B. paranthracis in the NHZ, B. australimaris in the
PZ and B. aeriusin the SHZ, respectively (Fig. 1). The phylogenetic relationships among the identified bacterial species

showed that the endophytes were more diverse in the NWPZ than in other zones.

Table 1

Major wheat cultivation zones with the characteristic features of area, productivity, number of varieties released and

constraints

Wheat
cultivation
zone

Norther
Hills Zone
-NHzZ

(31° 06'
12" N: 77°
10' 20" E)

North
Western
Plains
Zone -
NWPZ

(28° 36'
50" N: 77°
12' 32" E)

North
Eastern
Plains
Zone -
NEPZ

(25° 51'
39" N: 85°
46' 56" E)

Central
Zone - CZ

(22° 43'
31" N: 75°
51' 55'E)

Peninsular
Zone-PZ

(20° 04
59" N: 74°
07' 00" E)

Southern
Hill Zone-
SHZ

(11° 22
12" N: 06°
48' 00" E)

Area
(Million
ha)

0.8

10.5

52

1.6

0.1

Productivity
(t/ha)

16.6

39.4

251

241

290.8

10.1

No. of
varieties
notified

36

80

55

56

57

Major varieties

Major zonal

constraints

VL 616, HS 240, HPW
251, HS 507, VL 907,
VL 892, HPW 349

HD 2009, HD 2285, HD
2329, PBW 343, DBW
17,HD 2967, HD 3086

UP 262, HUW 234, HD
2967, DBW 14, DBW
39, LBW 38, K 0307, K
1006, HD 2733, NW
5054

Jairaj, Sujata, Swati, HI
1544, HI 8498, MP
4010, GW 322, GW 366,
GW 273

HD 2189, DWR 162, NI
5439, NIAW 917, MACS
6222

NP 200, HW 5216, HW
1085, HUW 318, HW
517,HD 2135

Low temperature, Moisture
stress, Low soil fertility, frost
damage

High fertilizer dose, Decline of
water table, intensive tillage,
terminal heat stress

High temperature, Moisture
stress, Micronutrient
deficiencies

Moisture stress, High
temperature

High temperature, Imbalanced
fertilizer usage, Light soils,
Moisture stress

Moisture stress, Acidic soils

Number of samples

15

18

12

12
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Table 2

Population densities of culturable endophytic bacteria and the diversity indices of phylotypes of predominant cultural

isolates
Wheat cultivation zone Repertoire of cultures? Diversity indices of phylotypes
Medium used Shannon- Simpson- Chaol Evenness
H D J
NA* TSA* WFA"

Norther Hills Zone 4.87+0.072b 3.26+0.05b¢ 5.19 2.72 0.95 16 0.95
+0.06°

NHZ

North Western Plains Zone 4 74+0.02P 377+004d 432 2.66 0.95 15 0.95

NWPZ +0.042

North Eastern Plains Zone  502+0112  4.25+0.08% 440 2.41 0.94 13 0.94
+0.052

NEPZ

Central Zone 279+0.05¢ 3.12+0.03¢ 3.32 2.08 0.96 14 0.96
+0.05¢

cz

Peninsular Zone 373+006°  3.38+0.05° 2.99+0.04c 274 0.96 16 0.96

Pz

Southern Hill Zone 3.14 +0.044 326+0.03P¢ 4.06+t007¢ 2.73 0.96 16 0.96

SHz

@ Colony forming units are given as the mean Log CFU+ Standard Error. NA represents ‘Nutrient Agar, TSA-Trypticase
Soy Agar, and WFA-"Wheat Flour-based Agar.’

3.2.1. Qualitative and quantitative analyses of phenotypic traits

Of all the culturable WSEB isolates, about 83%, 72%, 72%, 46%, 41%, 57%, 67%, and 50% tested positive for the activities of
amylase, cellulase, xylanase, protease, phytase, lipase, pectinase and esterase lytic enzymes, respectively. The endophytic
isolates such as NH-4, PZ-24, CZ-39, and SHZ-35 were positive for all the lytic enzymes tested. Both NWP-9 and NWP-10 were
positive for all the enzymes except lipase while the isolates such as NEP-19, PZ-27 and NWPZ-60 were positive for all the
enzymes except esterase (Supplementary Table 1).

The potentials for hydrolytic enzyme production varied quantitatively among the representative isolates, randomly selected
eight each from the wheat cultivation zones (Table 3). The amylase activities of the selected endophytic isolates were
between 8.15 and 15.17 nkatal with the minimum by the isolates from NEPZ but the maximum by the isolates from the
NWPZ. Highest activities of phytase were by the WSEB of the NHZ but those from the SHZ has the lowest. The pectinase
activities were lesser in the representative WSEB from the NWPZ, followed by those from the NHZ. The representative WSEB
from all other zones had comparable activities. The xylanase activities were between 2.09 and 5.69 nkatal while the higher
activities were in both NHZ and PZ while the lower were in the NEPZ and NWPZ. The cellulase activities were the highest in
the PZ (6.64 nkatal), followed by the SHZ and NWPZ. The protease activities ranged from 2.78 to 4.79 nkatal, maximum in
the PZ, followed by the NHZ. The activities of esterase were more in the culturable bacteria of the NHZ while those in the
NEPZ and CZ had lesser activities. The lipase activities were the highest in the culturable bacteria from the NHZ, followed by
the NWPZ while those from all other zones had comparable activities.
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Plant growth promoting traits and antagonism against fungal
pathogens by WSEB

Traits such as N, fixation, and the solubilization of phosphorous and potassium were qualitatively observed in about 46%,
78% and 9% of all the endophytic bacterial isolates from the wheat seeds, respectively. Likewise, the production of I1AA,
siderophores, ammonia and HCN production were observed in 89%, 11%, 72% and 59% of the isolates tested, respectively.
The NWP-11 isolate possessed all the traits tested qualitatively. The isolate NWP-10 was positive for all traits except the
ammonia production while the isolate NEP-22 had an exception of siderophore production(Supplementary Table 2).

The production of indole acetic acid was considerably higher in the culturable bacteria from the NWPZ than those from other
zones. While the WSEB from the PZ had the least potentials, those from the NHZ and SHZ, and from the NEPZ and CZ had
comparable potentials for the IAA production. The acetylene reduction activity (ARA), a quantitative estimate of N, fixation of

putative endophytes were between 0.81 and 32.06 nmol ethylene h™" mg™" protein(Table 4). The isolates from the NWPZ had
the highest potential for the ARA. On the contrary, the endophytic isolates from the NHZ, followed by those from the CZ were
the poorest in their potentials for the ARA. The potentials for the phosphate solubilization were higher in the isolates from the
NHZ and NWPZ than those from other zones. The phosphate solubilization was the least in the WSEB from the SHZ (Table
4).

The endophytes showed variable antagonistic reactions against three potent fungal pathogens tested (F. graminearum, B.
sorokiniana and T. indica). The endophytic isolates from each of these zones which reacted antagonistically to individual
pathogens were tested for per cent inhibition. In general, the endophytic isolates from the NWPZ had higher levels of per cent
inhibition against three pathogens tested(Supplementary Table 3).

Table 3

Hydrolytic enzyme activities of representative culturable endophytic bacteria isolated from different wheat cultivation zones

Wheat Amylase Phytase Pectinase Xylanase Cellulase Protease Esterase Lipase
cultivation

Zone
Norther 1261+ 565+ 298+ 5.69:0.09¢ 378:0.06° 4.33:t0.07°  3.10:0.04° 6.55%
Hills Zone- ¢ 16° 0.134 0.04 0.07¢
NHZ
North 1517+ 379 1.01+ 2.540.03%° 578£0.10° 3.30:0.05%® 2.54:0.04° 4.29+0.06"
Western 0.169 0.04¢ 0.012
Plains
Zone-
NWPZ
North 815+  3.00+  325% 2.09+0.01%  4.80+0.10> 3.55+0.03°  1.20+0.01®  2.340.03°
Eastern 0.142 0.04° 0.02°
Plains
Zone-NEPZ
Central 927+ 372t  3.59% 3.78+0.04° 4.69+0.08> 2.78+0.05%  1.88+0.02% 2.61+0.04°
Zone-CZ 0.17 0.04¢ 0.05¢
Peninsular ~ 1393+ 393+  3.26+¢ 5.40£0.05¢ 6.64+0.099 4.79:0.08°  2.42+0.04>  2.43+0.03?
Zone-PZ 0.24¢ 0.08° 0.03¢
Southern  845% 211+  3.97% 4.8610.04° 586 3.03:0.04%  4.00£0.07¢  2.65+0.05°
Hill Zone- g goa 0.032  0.06° +0.05°
SHz
The enzyme activity measurements of the endophytic isolates were expressed in nkatal. The mean values (+ S.E.)
followed by the same letter(s) are not significantly different from each other (p = 0.05 ANOVA followed by the DMRT test).
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Table 4

Plant growth promoting traits and antagonism against fungal pathogens by the representative culturable endophytic bacteria
isolated from different wheat cultivation zones

Wheat cultivation IAAT ARAZ2 Phosphate Antagonism against*
Zone solubilization®
F B. T indica
graminearum  sorokiniana
Norther Hills Zone- 91.75+1.25P 0.81 415.03+5.254 39.71 41.47 35.88+0.412%(6)
NHZ +0.022 +0.48%(7) +0.37°(6)
North Western 203.02+3.38¢ 3206 4402545634 5235 35.88 43.38+0.53°(6)
Plains Zone-NWPZ +0.31¢ +0.894(7) +0.46% (5)
North Eastern Plains  152.25 17.94 203.25+3.38P 30.81 29.85 24.63+0.41%0 (4)
Zone-NEPZ +1.75° 0184 10273 (6)  +0.3820(6)
Central Zone-CZ 158.36+1.63¢  4.92 219.25+2.01b¢ 26.25+0.310  34.78 19.12+0.22 (6)
+0.13P (6) +0.542¢ (5)
Peninsular Zone-PZ 68.88+0.632 20.36 226.251.-].50bc 38.97 29.78 33.75+0.412¢ (6)
+0.23¢ +0.423°(6) +0.46°° (4)
Southern Hill Zone- 111.25+1 .63b 9.06 146.75+2.502 36.54 24.56 35.15+0.323¢ (3)
SHZ +0.06° +0.552¢ (4) +0.49P (5)

TIAA-Indole Acetic Acid in ug ml™'; 2ARA-Acetylene Reduction Assay- nmol ethylene h™" mg™ protein; 3P solubilisation pg

ml™"; “Antagonism in per cent (%). Values in parentheses are the number of isolates showed antagonism. The mean
values (+ S.E.))followed by the same letter(s) are not significantly different from each other (p = 0.05 ANOVA followed by
the DMRT test).

The principal component analysis was performed for all the cultural phenotypes tested for the representative cultures from
the six wheat cultivation zones. The analysis showed that the contributions of the first principal component (PC1) was 40.0%
while that of the second component (PC2) was 26.25%, together accounting for 66.25% of variations(Fig.2). The principal
component (PC1) explained the maximum variation with significant negative correlations in the activities of cellulase and
pectinase while those related to the activities of esterase, xylanase, protease, lipase, and phytase, the production of I1AA and
phosphate solubilization, and the antagonistic activities against T. indica, F. graminearum, and B. sorokiniana were found
positively correlated. The phenotypic trait accounting for PC2 is xylanase showing maximum variation over cellulase.

The enzyme activities of phytase, lipase, and xylanase had positive correlation whereas amylase was negatively correlated
with PC2. The majority of traits (i.e., xylanase, esterase, protease, and lipase activities and antagonism against B.
sorokiniana) that contributed to the separation of samples had higher coefficients with the NHZ; the activities of esterase and
phytase had with the PZ. The representative endophytic bacterial cultures from the NHZ and NWPZ showed maximum
variance through PC1 axis and are considered to be highly efficient with most of the enzyme activities and antagonistic
activities against three pathogens tested while those in the NEPZ had less variance, on both sides of the axis, considered in
having lesser efficiencies. The analysis also showed that the CZ, SHZ, and NEPZ are closely related and the NWPZ and NHZ
as the most diverged from all other cultivation zones.

Colonization abilities of selected WSEB in wheat seedling roots

The root colonization abilities of three endophytic isolates of Bacillus and one each of Pantoea and Pseudomonas, and of

the non-colonizing bacterial isolate of E. coli as the experimental control were assayed using the TTC staining. The wheat

seedlings treated with the selected endophytic isolates showed differential responses as compared to the control and the
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untreated seedlings. The visual observations after 10 h of treating the seedlings with bacterial cells showed the motility,
gathering around root tip first and stained as pink tips of root hairs (Fig. 3).0n the extension of incubation for 24 to 48 h led
to the increased colonization of root hairs and the whole root system. The inoculated bacteria were alive, colonizing the root
tips first, and then entering into root hairs.The control treatment using E. coli had no pigmentation, neither stained after the
TTC or H,0, staining. The TTC-stained roots, root hairs, and root sections clearly showed that the bacterial cells of B.
megaterium NEP-22, P agglomeransNWP-9, and P, putida NWP-10 adhered closely, on the surface of epidermal parenchyma,
entered intracellularly and subsequently colonized the roots (Fig. 3a, 3b, 3¢).

The root cells showed the intracellular presence of bacteria, stained dark brown due to the H,0, staining, in tissues under the
bright field microscopy (Fig.3e, 3f). Through microscopic examinations of seedlings, we observed intracellular bacteria in the
roots of selected species examined. Several bacteria were observed in various locations in seedling tissues, including root
hairs, root epidermal cells, and root tips. In all treated seedling roots, bacteria were seen to be located within cells, located
intercellularly in seedling roots and its hairs. Bacteria were observed in root tissues but could not be visualized in shoot
tissues.

GFP-tagged bacterial endophytes in wheat seedlings

The GFP plasmid (pCambia1301) vector DNA isolated from E. coliwas about 11 kb. The five predominant isolates of T.
aestivum such as Bacillus cereusNWPZ-5, Pantoea agglomerans-NWPZ-9, Pseudomonas putida-NWPZ-10, Bacillus
megateriumNEP-22, and Bacillus subtilisPZ-23 were selected for the preparation of competent cells, and tagged with GFP
plasmid vector through transformation process at different temperatures and timings. The bacterial colonies from the Kans
NA plate were prepared for the confocal microscopy and the tagged cells were observed as in Fig.4. The colonization patterns
of the tagged isolates differed in the tissues. Out of the isolates tested, two of them belonging to the most prevalent bacterial
groups (Pantoeaspp. and Pseudomonas spp.) among all the wheat seeds were easier to transform than the other prevalent
group of Bacillus spp. When the GFP-tagged endophytes were treated with wheat seeds, more light-green autofluorescence
was observed in leaves, compared to root and stem of seedlings. In general, the GFP-tagged cells were more on 7 d after
inoculation, than on 5 or 15 d after inoculation. After 15 d of inoculation, the endophytic colonization was more in inter- and
intra-cellular spaces in roots, leaves, and the xylem vessels of the stem(Fig.4a, 4b, 4c, 4d, 4€). The matrix such as the soft
agar medium did not affect the colonization pattern while the rapid spread in the vascular system suggesting the systemic
colonization. The seedlings under the hydroponic condition led to greater colonization of GFP-tagged cells in stem, with
lesser in root apices, root hairs and leaves. But the GFP-tagged bacterial cells colonized the zone of lateral root emergence,
root tips and in the intercellular spaces of root epidermis.

Discussion

The culturable bacterial endophytes in seeds of popular wheat genotypes that were characterised from six agro-ecological
zones showed their beneficial roles, and their potential for colonization and growth promotion in germinating plants. The
soils of these agro-ecological zones differ in their physico-chemical properties(Table 1) and there are many variations among
climatic variables that have contributed to the adaptative traits and the popularity of certain wheat genotypes. In the wheat
genotypes (about 21) tested, the composition of culturable bacteria at the levels of genus and species level was inconsistent
in seeds. Nevertheless, there are common culturable bacterial endophytes in wheat seeds suggesting them as the significant
constituents of seeds. In an earlier study by Robinson et al. (2016), the seed borne microbial communities in roots and shoots
of the axenically grown seedlings were characterized by isolation and cultivation. Only eight bacterial taxa could be defined
at the genus level in their study. However, the optimized isolation protocols followed in the present study helped to identify
higher diversity of seed bacterial endophytes from the popular wheat genotypes cultivated in six different agro-ecological
zones. These new isolates thereby suggest their possible roles in seed development and the ensuing plant growth, and
provide an extended microbial resource for further research. What are interesting to know are how abundant these bacterial
members are, what their functional characteristics are, and how they are protected in seeds.
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Many bacterial seed endophytes isolated from wheat seed genotypes could form endospores. Earlier, Compantet al.

(2011) observed that the seed endophytes had the ability to form endospores, thus providing protection from changing
conditions inside seeds. These endophytes have other traits such as cell motility and phytase activity to migrate freely inside
the plant and enter the seeds before they harden. Nevertheless, there are relatively few studies examining the diversity of
seed-borne endophytes.

In the present study, both the number of endophytic bacterial phyla and total number of culturable bacteria varied inside
seeds of different genotypes. The members of the phyla Firmicutes, Actinobacteria, Proteobacteria were predominant in the
wheat genotypes tested. The most abundant member of Firmicutes was the Bacillus species (about 40 identified) and other
numbers of identified species (three each) belonged to Actinobacteria and Proteobacteria. Nevertheless, there were significant
differences among the bacterial community at the level of OTU in seeds. In earlier report on seeds of rice variety (CT6919),
the microbiological, physiological, and molecular characterization of about 39 fast-growing seed-borne bacterial flora
revealed the diversity of seed-borne mesophiles with the potentials for plant probiotic activities such as diazotrophy and
antagonism of fungal pathogens. The seed-borne bacteria were found to protected the rice seedlings against the infection of
Curvularia sp. (Ruizaet al., 2011). The functional roles of seed endophytes belonging to Firmicutes, Actinobacteria and
Proteobacteria still remain quite elusive. Xu et al. (2014) reported that bacteria belonging to several genera showed plant
growth promotion (PGP) and biocontrol activities, suggesting the fascinating hypothesis of a bacterial-plant co—evolution
and functional selection.

The wheat seed endophytic bacteria can improve germination, plant growth, and the suppression of host plant pathogens.
These endophytic bacteria can directly facilitate the germination process and the proliferation of their plant host through the
production of the stimulatory phytohormones and hydrolytic enzymes. IAA, the best characterized auxin among the
phytohormones, is essential for the growth and development of plants. The wheat seed endophytic bacteria isolated from
different agro-ecological zones in the present study possess the functional characteristic of IAA production. The results of the
present study corroborated with the report of Khalaf and Raizada (2016) who isolated cucurbit seed-associated endophytes
with plant growth promoting traits such as phytohormone biosynthesis and nutrient acquisition. In addition to the
phytohormone production, plant growth promotion is mediated by a variety of mechanisms including the solubilization of
phosphorus, potassium and zinc; production of ammonia, siderophores and HCN (Tilak et al,, 2005). There are considerable
populations of P- or K-solubilizing bacteria observed in seeds of rice, wheat and other plant species. The P-solubilizing
bacteria (PSB) can solubilize inorganic phosphate compounds, such as tricalcium phosphate (Vyas et al., 2009). In the
present study the P-solubilization activity was exhibited by many genera such as Alcaligenes, Arthrobacter, Achromobacter,
Bacillus, Delftia, Methylobacterium, Pseudomonas, Rhodobacter, Staphylococcus, and Salmonella. Most seed endophytes
isolated from different genotypes possessed the P solubilization abilities while relatively a few isolates could fix nitrogen in
the present study. Similarly, Johnston-Monje and Raizada (2011) reported that most of the bacterial isolates from seeds of
different maize genotypes could solubilize phosphorus, secrete acetoin and fix nitrogen. In addition, the ACC deaminase
activity and antibiosis were found to be moderately conserved among these seed endophytes from different maize
genotypes.

Van den Berg (2017) reported that up to one third of in vitro tested endophytes exhibiting activity against plant pathogens. In
the present study, seeds of different wheat genotypes had endophytes with antagonistic activities against Fusarium, Bipolaris
and Tilletia, three of the most important soil-borne pathogens. Our findings corroborated with the report of Van den Berg
(2017) that a large number of seed-associated endophytes (54%, 25/46) could antagonize the phytopathogens tested. In
another report, Herrera et al. (2016) isolated endophytes from wheat seeds such as Paenibacillus sp., Pantoea sp., and
Bacillus sp., which significantly enhanced plant growth and resistance against . graminearum. Numerous cucurbit seed-
associated bacterial endophytes possess the extracellular lytic enzyme activities, including cellulase, pectinase and protease
(Khalaf and Raizada, 2016). The presence of endophytes with extracellular lytic enzymes is relevant as several biocontrol
agents exert their antagonistic activity through secretion of lytic enzymes, protecting the host plants either directly or
indirectly. The direct mechanisms involve breaking down of essential complex polymers within the pathogen such as chitin,
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protein, cellulose and DNA (Pliego et al,, 2011). Even the lysis products (e.g., chitin fragments) can be indirectly employed in
plant protection by eliciting host defence responses (Duran-Flores and Heil, 2016).

On inoculation of wheat seedlings with endophytic bacterial suspensions, the root colonization was observed with H,0,
staining, more in the inoculated seedling roots than the uninoculated roots. The possibility of some endophytic bacteria that
remained in the surface sterilized control seedlings existed; bacteria in the control roots were however present in low
numbers. Paungfoo-Lonhienneet al. (2010) showed that the bacterial entry into cells was accompanied by upregulation of
plant cell wall related enzymes such as cellulases, pectinases, xyloglucan endotransglycosidases, cellulose synthases, and
expansins. The involvement of host enzymes suggests that plant cells engage in phagocytosis to acquire bacteria. In
addition to the host involvement, bacteria may also produce the cell wall loosening- and degrading enzymes to colonize the
interior of plant cells. Many symbiotic bacteria enter plant cells using their own cell wall degrading enzymes. The capacity of
Klebsiellaoxytoca to endophytically colonize wheat plants correlated with its ability to produce pectinases (Kovtunovychet al.
1999). The vital staining using 2,3,5-triphenyl tetrazolium chloride (TTC) helps to detect the live endophytic bacteria (Bacon et
al,, 2002; Thomas, 2011). In the present study, the vital staining showed the intra-tissue presence of some live bacteria that
are motile and of those non-motile members.

The seed endophytic bacteria isolated from different wheat seed genotypes in the present study have multifunctional traits
such as hydrolytic enzyme production, plant growth promotion by the synthesis of phytohormones and nutrient acquisition,
biocontrol activity and enhanced survival fitness at the high salt concentration, drought stress and high temperature.
Similarly, Bodhankaret al. (2017) isolated many maize seed endophytic bacteria (MSEB) from 30 genotypes and found that
the dominant genus was Bacillus of Phylum Firmicutes with a few isolates belonging to the genus Staphylococcus and an
isolate belonging to Corynebacterium species of Phylum Actinobacteria. The isolate of Corynebacterium species exhibited
multifunctional traits related to the plant growth promotion and activities such as antagonism against phytopathogenic
fungi, production of ammonia and secretion of lytic enzymes. In addition, many MSEB exhibited tolerance to salinity (10%),
osmotic stress (40% PEG6000), and temperature (60°C) (Bodhankaret al. 2017).

The colonization of wheat seed endophytes was confirmed through the use of both the H,0, and the 2,3,5-triphenyl
tetrazolium chloride (TTC) staining methods in the present study. In general, endophytes colonize the host plants,
predominantly in roots and are often present in low abundance, relative to the rhizoplane colonizers (Bulgarelliet al. 2012).
Compared to the root colonizers, the culturable endophytes are less in numbers in seeds. The vital staining using TTC for
detection of live endophytic bacteria showed the presence of both the motile and non-motile members, supporting with the
earlier report of Thomas (2011) in many other plant species. The colonization of plant tissues is advantageous to bacteria as
there is less competition for plant nutrients, relative to those bacteria which colonize the plant (exterior) surfaces
(Rosenblueth and Martinez-Romero, 2006). Moreover, endophytic bacteria within the plant tissues get better protection from
abiotic stresses compared with surface colonizers (Hallmannet al,, 1997). The colonization routes of seed endophytic
bacteria include their entry through roots, either through passive penetration (via root tip, side root emergence or pathogen
entry sites) or active penetration (using cell wall degrading enzymes such as cellulase and pectinase) (Ebeltagyet al.,, 2000;
James et al,, 2002).

Methods
Ecology, Wheat Genotypes, Seed Sourcing and Processing

Twenty wheat genotypes growing in six agro-ecological zones were selected for sourcing seeds; four different locations in

each zone that have characteristic features related to the total area and productivity, number of varieties released, and major

constraints of wheat cultivation were selected (Table 1). The composite seed samples of each genotype were pooled and 15

seeds were randomly collected for isolating endophytic bacteria. The seeds of each genotype were surface-sterilized

separately using sodium hypochlorite (4%) for 3 min with shaking, followed by washings with sterile distilled water. Then,

these seeds were immersed in ethanol (75%) for 4 min, followed by repeated washings with sterile distilled water for complete
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removal of traces of sterilant. An aliquot of the final rinse (100 pl) was tested for the surface sterilization efficiency by plating

on the trypticase soy agar (TSA) and incubating at 28 + 1 °C for three days. The seeds free of surface bacteria were
immersed in sterile water for 1 h to soften the layers for the enumeration and isolation of endophytes.

Endophytic bacterial extraction from seeds

The culturable bacterial endophytes were enumerated and isolated using trypticase soya agar (TSA) and nutrient agar (NA)
media, and the newly developed wheat flour-based agar (WFA) medium(SaiPrasad, et al. 2020) that contained wheat flour
(1%), yeast extract (0.1%), sodium chloride (0.05%) and agar (1.8%). Seed coats of swollen surface-sterilized seeds were
removed gently, using a sterilized scalpel, to get endosperm under aseptic conditions. For isolation of endophytic bacteria,
endosperms were pressed with the scalpel mildly and placed on agar plates of different growth media; each plate with five
endosperms in triplicates for each genotype tested, were incubated at 28 + 1°C for 4-5 days. The bacterial colonies in and
around endosperms were further picked up, streaked, and purified for isolation on the respective medium plates. For
enumerating endophytic bacteria, the surface-sterilized seed endosperm of each genotype (one gram each) was crushed in a
sterile mortar pestle. The standard serial dilution plating technique was followed for counting the CFUs. The pure bacterial
colonies as the wheat seed endophytic bacteria (WSEB) were maintained on the slants of NA as working cultures at 4 °C, and
in the glycerol stocks (30%) at-20°C for further use as described earlier (Robinson et al., 2016).

I(Dhenot)yping and Phylotyping of Wheat Seed Endophytic Bacteria
WSEB

The phenotyping of isolates of WSEB in terms of color, size, and other colony characteristics such as form, margin, elevation
and pigmentation on agar medium, and differential staining for Gram reactions and spore formation was done following
Bergey's Manual of Determinative Bacteriology (Holt et al,, 1994). All the isolates of WSEB were screened for their growth
potential at different temperatures (4- 40 °C), pH (3 to 10), and salt (5-15%), after the overnight grown cultures (108 cells mI™)
were spot-inoculatedon different plates. The nutrient agar amended with polyethylene glycol (PEG 6000 at 10 and 15%) were
used for spot-inoculation and incubated at 28 °C for 48 h for examining tolerance to the drought-like (deficient water
availability) stress. Testing of phenotypes of these isolates included the hydrolase production, plant growth-promoting traits
and biocontrol activities. All tests were performed in triplicate, using different standard protocols.

Qualitative evaluation for hydrolases

The WSEB isolates were screened qualitatively for hydrolytic enzymes such as amylase, cellulase, xylanase, protease,
pectinase, phytase, esterase and lipase by using suitable substrates. Amylase activity was tested using starch agar plates,
and cellulase activity was determined using carboxy methyl cellulose according to the methods of Sahuet al. (2005) and
Emmyrafedziawati and Stella (2015), respectively. The selective xylan-agar plates containing 1% (w/v) birchwoodxylan were
used for xylanase activity (Smibert and Krieg, 1994). Activities of pectinase on media containing pectin (1%) as the sole
carbon source were screened (Hankinet al, 1971).

On the plates containing the medium (glucose- 1.5%, NH,NO3-0.5%, calcium phytate-0.5%, MgS0O,-7H,0- 0.05%, KCI-0.05%,
FeS0,-7H,0-0.001%, MnS0O,-4H,0-0.001%, and agar- 2.0%), phytate utilization was tested; lipase activity on the medium
composed ofpeptone (1%), NaCl (0.5%), CaCl, (0.01%) Tween 20 (1% v/v), and agar—agar (1.5%) with pH 7.4, and esterase
activity by replacing Tween 20 with Tween 80 in the above-mentioned medium were screened (Plou et al., 1998).

Quantitative estimation of hydrolase activities
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The active cultures of bacterial isolates (eight each) were randomly selected from the representative zone and inoculated into
broth containing soluble starch (1%), peptone (0.5%), (NH,), SO, (0.2%), KH,PO, (1%), K,HPO, (0.2%), MgCl, (0.001%) at pH
7 and incubated on a shaker at 150 rpm for 3 days at 30°C. After incubation, the culture was centrifuged at 10000 rpm for 15
min at 4 °C; the cell-free supernatant was prepared to serve as the enzyme source. The amylase activity was assayed by the
method of Bernfeld (1955) with some modifications (Miller, 1959). The cellulase activities of cultures were estimated as
described earlier (Lisdiyantiet al,, 2012); the activities of xylanase by the method of Saha (2002). The activities of protease
and phytase were assayed by the methods of Tsuchida (1986) and Fiske (1925), respectively. Lipase activity was determined
using p-nitrophenol palmitate (pbNPP) as a substrate described earlier (Karadzic, 2006). Citrus pectin (0.5% (w/v) in 0.1M of
pH 7.5 phosphate buffer was used for estimating pectinase activity (Rehman 2012). Esterase activity was determined by
using hydrolysis of p-nitrophenyl butyrate (pNPB) as a substrate as described by Karadzic (2006).

Phenotyping of WSEB for plant growth promotion traits

The qualitative screening of their plant growth promoting (PGP) attributes viz. estimation of solubilization of nutrients
(phosphorus, potassium) and production of phytohormone indole-3-acetic acid, siderophores, HCN and ammonia was
determined by the standard methods (Pikovskaya, 1948; Hu et al., 2006; Schwyn and Neilands, 1987; Bricet al. 1991; Bakker
and Schippers 1987; Cappucino and Sherman 1992, respectively). The nitrogen-fixing potential of the WSEB was tested using
the acetylene reduction assay (ARA) (Hardy et al, 1968). The bacterial isolates were assayed under aerobic and
microaerophilic conditions, after inoculation in solid and semisolid nitrogen free medium into 30 mL vials and incubation for
7 days at 30 °C. Then the vials were sealed with rubber septa, and the gas phase of each vial was replaced with a gas mixture
of nitrogen, air, and acetylene (90:10:10, v/v) and cultures were re-incubated at 30 °C for 24 h. The amount of ethylene
produced by acetylene reduction was measured in a gas chromatograph (F11, PerkinElmer, USA), and expressed on the basis
of protein, determined by the standard Bradford (1976) method. The P-solubilisation was quantitatively estimated by the
method of Mehta and Nautiyal (2001). Indole acetic acid production was estimated according to Patten and Glick (2002). All
assays were done in triplicates using the isolates from each representative zone.

Antagonistic activities of WSEB against fungal pathogens

Three fungal pathogenic strains (Fusarium graminearum (ITCC 3437), Bipolarissorokinianaand Tilletiaindica)were collected
from the Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India. The actively growing fungal
strains (1 cm? plug) were inoculated on one side of the PDA plates, the other side of plates were streaked with bacterial
endophytes at equidistant points of the plate, and incubated at 25°C for 7 days. All the WSEB were assayed for antifungal
activities using dual cultures on the PDA plates according to Sijam and Dikin (2005). The culture assays were repeated three
times per isolates and for each fungus.

Phylotyping using 16S rRNA genes

All the selected WSEB isolates (46) were characterized phylogenetically, using the 16S rRNA gene sequencing. The genomic
DNA of these isolates was extracted using Zymo Research (ZR) Bacterial DNA MiniPrep™ extraction kit according to the
manufacturer protocol (The Epigenetic Company). The quality & quantity of the extracted DNA was examined by running on
agarose gel electrophoresis. The 16SrRNA gene of genomic DNA was amplified with forward pA(27F) and reverse pH
(1492R) primers using PCR thermocycler (pegSTAR 96, VWR International GmbH, Vienna). The reaction mixtures contained
the master mix (10 pl) containing 10 x Taq buffer, ANTPs (10mM), MgCl, (25mM) Taq DNA polymerase (1 U), forward and
reverse primers (1.5 pl), and genomic DNA (2 ul) and the PCR grade water (5ul). The thermal cycler was programmed for 35
cycles. The PCR products were sequenced the Sanger dideoxy method (AgriGenome, TDI Centre, New Delhi); the sequence
data were compared with known sequences in GenBank using BLAST, NCBI. Species identification was based on the
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percentage similarity with known species sequences in the data base; the partial 16SrRNA gene sequences were submitted to
NCBI GenBank under the assigned accession numbers (MT184815- MT184857)

Colonization of WSEB and their visualization in the emerging plants

The surface-sterilized seeds were inoculated by soaking in the 24 h-old bacterial suspensions for 60 min. These treated seeds
were placed on petri-plates with soft agar (0.8%), and kept for incubation in the light: dark (12:12) condition at 20 °C for 5-7
days (seedling stage). For each culture, three plates with five seeds each were maintained. The controls included seeds
without bacterial culture treatment. The bright-field microscopy of seedling roots was done for visualizing the live isolates of
endophytes using two stains, TTC and H,0,. Each plate with seedlings was flooded with TTC (1.5g L"), malic acid (625 mg

L") solution in 0.05 M potassium phosphate buffer (pH 7.0) for 10 h, as described earlier (Bacon et al,, 2002; Thomas and
Reddy, 2013). After incubation, roots, and leaves were excised from seedlings under aseptic conditions, rinsed with sterile
water to remove any external organisms, and examined by the vital bacterial staining technique with cells turned pink or red.
Tissue sections were mounted in sterile water, and the images were captured using bright-field microscope (Dewinter, India).
In another set of seedlings, the bacterial internalization in roots of seedlings (1- to 3-week-old) was stained for 10 h by
flooding soft agar plates with potassium phosphate buffer (5 ml, pH 6.9 & 100 mM), 3, 30-diaminobenzidine tetrachloride
(DAB) (2.5 mM) and 5 purpurogallin unit’s mL™" of horseradish peroxidase. The roots and shoots of seedlings were then
excised, placed them on a slide containing aniline blue/lactophenol stain (aniline blue dye 0.05 g, phenol crystals 20 g,
glycerol 40 mL, lactic acid 20 mL, H,0 20 mL) and were examined using the bright field microscopy (White et al., 2014).

Tagging and tracking of seed endophytes using GFP expression vector

The green fluorescent protein (gfp) plasmid DNA vector was isolated from E. coli using the alkali method (Bimboim and Doly
1979). The isolated plasmid DNA was checked for quality and its size on agarose gel (1.2%). The competent cells of selected
bacterial endophytes (both Gram-positive and Gram-negative isolates) were prepared using CaCl,, and MgCl, (0.1 M); the
isolated GFP plasmid DNA (10 pL) was mixed gently with competent cells (200 pl). Transformation events were standardised
for the Gram-positive and Gram-negative isolates and the transformation efficiencies were calculated. The transferred
colonies were re-streaked on NA-Kans, plates and the colonies were observed under fluorescence (Dewinter, India) and
confocal laser scanning microscope (Leica DMIRE2 & DM IRB system) using an excitation laser of 488 nm (Argon laser) and
collecting the emission band of 500-550 nm for fluorescence. Additionally, the colony PCR was performed to determine the
insert of the plasmid vector into the transformed cells using mGFP primers forward (TCAGTGGAGAGGGTGAAGGT) and
reverse (GTGGTGGTGGCTAGCTTTGT) using PCR thermocycler (peq STAR 96) (Edwards et al., 1989). The phylotyping of
GFP tagged endophytes was performed using the 16S rRNA genes, the sequences were determined by the Sanger Dideoxy
method (Agrigenome, India), and identified by BLAST.

The GFP tagged endophytes were bioassayed for their potentials to colonize wheat plants, in soft agar plates and in
hydroponic conditions under aseptic condition using the Hoagland solution, as described by Elliott and Lynch (1984). Proper
guidelines have been followed for laying out the experiment and destructive sampling as per IARI Phytotron guidelines. The
GFP tagged bacterial endophytes (10° cells mL™") were treated with the surface-sterilized seeds for 1 h under the aseptic
condition. The observations on seed germination were made on 24, 48 and 72 h in the plate assay. For the soft agar plate-
and the hydroponics-based assays, after 12 days, the fresh roots that grew along the inner wall of plate and leaves were
excised from seedlings under aseptic conditions. The tissue sections of roots and leaves were prepared by cutting into pieces
around 1 cm in length with a sterile razor blade, and these sections were kept on the oil free glass slides with addition of
sterile double distilled water droplets to avoid dryness. The sample glass slides were later observed by the confocal laser
scanning microscopy. The transmission light was collected to visualize root structure particularly GFP fluorescence of cells
was viewed and images were acquired and reconstructed by Leica Confocal Software (LCS 2.6) and picture was saved using
different objective lens (i.e., 10x, 40x, and 100x).

Page 13/21



Statistical analysis

The 16S rRNA gene sequences of the isolates showing >P 99% sequence similarity were grouped into the same OTU
(phylotype). The Shannon index (H), Evenness (J), Simpson’s index (D) and Chao-1 were calculated as described earlier
(Schloss et al., 2009). Principal coordinate analysis (PCA) was performed for different plant growth promoting attributes of
bacterial isolates using the R software (https://www.r-project.org/). Other statistical calculations were done using MS-Excel.
Sequence alignment and comparison was performed, using the program CLUSTAL-W software. One sequence from each
group was selected as a representative operational taxonomic unit (OTU). The phylogenetic tree was constructed on the
aligned datasets using the neighbor-joining method implemented in the program MEGA 6 software (Tamura et al., 2007).

Conclusion

The culturable endophytic bacteria from the seeds of different genotypes provide new insights into their composition and the
potential for colonization. The environmental conditions have a significant effect on their diversity. In addition, our study
showed that the genotypes play a profound role in their diversity, with variations in the hydrolytic enzyme production, plant
growth promotion and priority effects on seedling colonization. The diversity analysis showed that highest values of diversity
indices such as Shannon diversity (H), Chao1, Simpson’s reciprocal index and Species evenness (J) were generally in the PZ,
followed by the NHZ. These endophytes (WSEB) showed variations in the functional traits such as plant growth promotion
related to N, fixation, and phosphorous and potassium solubilization. Of eight hydrolytic enzymes tested qualitatively, the
maximum number of isolates were positive for amylase (83%) followed by cellulase (72%), and xylanase (72%); the least
number of isolates were positive in phytase (41%). Higher potentials for hydrolytic enzyme production suggest the
multifarious mechanisms mediated by these seed endophytic bacteria for colonization and antagonism against plant
pathogens.
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Figure 1

Niche specific and common endophytic bacterial species isolated from different zones
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Figure 2

(a) Principal coordinate analysis of the different attributes, Biplot showing relationship PGP lytic enzymes and Biocontrol of
bacterial isolates, Component 1 and Component 2 accounted for 22.9% and for 14.5% of the total variation, respectively. (b)
Variable PCA showing relationship between different activities viz., PGP, lytic enzymes and Biocontrol of bacterial isolates in
total variation covered by component 1(22.9% and component 2 (14.5%).
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Figure 3

Colonization of bacterial seed endophytes in wheat seedlings evident from TTC and H202 treatment. a-main roots (TTC); b-
root hair tips (TTC); c-root hairs (TTC); d-seedlings treated with TTC; e-main roots (H202)and f-root hairs (H202).
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Figure 4

GFP tagged endophytes tracking in 15 days wheat seedlings under hydroponic condition using confocal microscopy. a.
Colonization in root tips; b. Colonization in root hairs; c. Colonization in main roots; d. Colonization in cross sectioning of
stem; e. Colonization in leaf of wheat plant.
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