(1) Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al. Ancient
hybridizations among the ancestral genomes of bread wheat. Science 2014;345(6194):1250092.
(2) Leng P, Lübberstedt T, Xu M. Genomics-assisted breeding–a revolutionary strategy
for crop improvement. Journal of integrative agriculture 2017;16(12):2674-2685.
(3) Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression
in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed
sequence tags. Molecular Genetics and Genomics 2004;270(5):371-377.
(4) Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting
the limits in wheat research and breeding using a fully annotated reference genome.
Science 2018;361(6403):eaar7191.
(5) Rasheed A, Xia X. From markers to genome-based breeding in wheat. Theor Appl Genet
2019;132(3):767-784.
(6) Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, et al. Grinding up
wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 2007;24(7):1506-1517.
(7) Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Saint Pierre C, Payne T, et al. Exploring
and mobilizing the gene bank biodiversity for wheat improvement. PLoS One 2015;10(7):e0132112.
(8) Idrees M, Irshad M. Molecular markers in plants for analysis of genetic diversity:
a review. European academic research 2014;2(1):1513-1540.
(9) Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment
in crop plants and its recent advances: an overview of its analytical perspectives.
Genetics research international 2015;2015.
(10) Khan MK, Pandey A, Choudhary S, Hakki EE, Akkaya MS, Thomas G. From RFLP to DArT:
molecular tools for wheat (Triticum spp.) diversity analysis. Genet Resour Crop Evol
2014;61(5):1001-1032.
(11) Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization
of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide
polymorphism array. Plant biotechnology journal 2014;12(6):787-796.
(12) Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust,
simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one
2011;6(5):e19379.
(13) Holtz Y, Ardisson M, Ranwez V, Besnard A, Leroy P, Poux G, et al. Genotyping
by sequencing using specific allelic capture to build a high-density genetic map of
durum wheat. PloS one 2016;11(5):e0154609.
(14) Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, et al. Diversity arrays
technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor
Appl Genet 2006;113(8):1409-1420.
(15) Valdisser PA, Pereira WJ, Almeida Filho JE, Müller BS, Coelho GR, de Menezes
IP, et al. In-depth genome characterization of a Brazilian common bean core collection
using DArTseq high-density SNP genotyping. BMC Genomics 2017;18(1):423.
(16) Yang X, Ren R, Ray R, Xu J, Li P, Zhang M, et al. Genetic diversity and population
structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs.
Plant Genetic Resources 2016;14(3):226-233.
(17) Baloch FS, Alsaleh A, Shahid MQ, Çiftçi V, de Miera, Luis E Sáenz, Aasim M, et
al. A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum
wheat from central fertile crescent. Plos one 2017;12(1):e0167821.
(18) Robbana C, Kehel Z, Sansaloni C, Bassi F, Amri A. Genome-Wide Genetic Diversity
and Population Structure of Tunisian Durum Wheat Landraces Based on DArTseq Technology.
International journal of molecular sciences 2019;20(6):1352.
(19) Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS:
a review. Plant methods 2013;9(1):29.
(20) Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, et al. An Arabidopsis
example of association mapping in structured samples. PLoS genetics 2007;3(1):e4.
(21) Pflüger LA, Martín LM, Alvarez JB. Variation in the HMW and LMW glutenin subunits
from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank).
Theor Appl Genet 2001;102(5):767-772.
(22) Ruiz M, Giraldo P, Royo C, Villegas D, Aranzana MJ, Carrillo JM. Diversity and
genetic structure of a collection of Spanish durum wheat landraces. Crop Sci 2012;52(5):2262-2275.
(23) Aguiriano E, Ruiz M, Fité R, Carrillo JM. Analysis of genetic variability in
a sample of the durum wheat (Triticum durum Desf.) Spanish collection based on gliadin
markers. Genet Resour Crop Evol 2006;53(8):1543-1552.
(24) Moragues M, Moralejo M, Sorrells ME, Royo C. Dispersal of durum wheat [Triticum
turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean
basin assessed by AFLPs and microsatellites. Genet Resour Crop Evol 2007;54(5):1133-1144.
(25) Kilian B, Graner A. NGS technologies for analyzing germplasm diversity in genebanks.
Briefings in functional genomics 2012;11(1):38-50.
(26) Heslot N, Rutkoski J, Poland J, Jannink JL, Sorrells ME. Impact of marker ascertainment
bias on genomic selection accuracy and estimates of genetic diversity. PLoS One 2013
September 05;8(9):e74612.
(27) Manickavelu A, Jighly A, Ban T. Molecular evaluation of orphan Afghan common
wheat (Triticum aestivum L.) landraces collected by Dr. Kihara using single nucleotide
polymorphic markers. BMC plant biology 2014;14(1):320.
(28) Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, et al. A chromosome
bin map of 16,000 expressed sequence tag loci and distribution of genes among the
three genomes of polyploid wheat. Genetics 2004;168(2):701-712.
(29) Miftahudin KR, Ma X, Mahmoud AA, Layton J, Milla MR, Chikmawati T, et al. Analysis
of expressed sequence tag loci on wheat chromosome group 4. Genetics 2004;168(2):651.
(30) Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD. Structural evolution of
wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet
1995;91(2):282-288.
(31) Cubizolles N, Rey E, Choulet F, Rimbert H, Laugier C, Balfourier F, et al. Exploiting
the repetitive fraction of the wheat genome for high-throughput single-nucleotide
polymorphism discovery and genotyping. The plant genome 2016;9(1).
(32) Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, et al.
Genetic diversity within a global panel of durum wheat (Triticum durum) landraces
and modern germplasm reveals the history of alleles exchange. Frontiers in plant science
2017;8:1277.
(33) Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, et al. High throughput
SNP discovery and genotyping in hexaploid wheat. PloS one 2018;13(1):e0186329.
(34) Novoselović D, Bentley AR, Šimek R, Dvojković K, Sorrells ME, Gosman N, et al.
Characterizing Croatian wheat germplasm diversity and structure in a European context
by DArT markers. Frontiers in plant science 2016;7:184.
(35) Raj A, Stephens M, Pritchard JK. Variational inference of population structure
in large SNP datasets. Genetics 2014:genetics. 114.164350.
(36) Gadea M. Trigos españoles. Madrid, España: Instituto Nacional de Investigaciones
Agronomicas,; 1954.
(37) Ruiz M, Giraldo P, Royo C, Villegas D, Aranzana MJ, Carrillo JM. Diversity and
genetic structure of a collection of Spanish durum wheat landraces. Crop Sci 2012;52(5):2262-2275.
(38) Oliveira HR, Campana MG, Jones H, Hunt HV, Leigh F, Redhouse DI, et al. Tetraploid
wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity.
PLoS One 2012;7(5):e37063.
(39) Sahri A, Chentoufi L, Arbaoui M, Ardisson M, Belqadi L, Birouk A, et al. Towards
a comprehensive characterization of durum wheat landraces in Moroccan traditional
agrosystems: analysing genetic diversity in the light of geography, farmers’ taxonomy
and tetraploid wheat domestication history. BMC evolutionary biology 2014;14(1):264.
(40) MacKey J. Species relationship in Triticum. Hereditas 1966;2:237-276.
(41) Mac Key J. Wheat: its concept, evolution, and taxonomy. Durum Wheat Breeding:
CRC Press; 2005. p. 35-94.
(42) Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, et al. Multiple
QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations.
Physiol Plantarum 2007;129(3):635-643.
(43) Basualdo J, Díaz ML, Cuppari S, Cardone S, Soresi D, Camargo GP, et al. Allelic
variation and differential expression of VRN‐A1 in durum wheat genotypes varying in
the vernalization response. Plant Breeding 2015;134(5):520-528.
(44) Konopatskaia I, Vavilova V, Kondratenko EY, Blinov A, Goncharov NP. VRN1 genes
variability in tetraploid wheat species with a spring growth habit. BMC plant biology
2016;16(3):244.
(45) Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, et al.
The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science
(New York, N.Y.) 2004 March 12;303(5664):1640-1644.
(46) Shcherban A, Emtseva M, Efremova T. Molecular genetical characterization of vernalization
genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent
regions. Cereal research communications 2012;40(3):351-361.
(47) Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, Von Zitzewitz J, et al. Large deletions
within the first intron in VRN-1 are associated with spring growth habit in barley
and wheat. Molecular genetics and genomics 2005;273(1):54-65.
(48) Chu CG, Tan CT, Yu GT, Zhong S, Xu SS, Yan L. A Novel Retrotransposon Inserted
in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum
turgidum L.). G3 (Bethesda) 2011 Dec;1(7):637-645.
(49) Baloch FS, Alsaleh A, Shahid MQ, Ciftci V, E Saenz de Miera, L., Aasim M, et
al. A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum
Wheat from Central Fertile Crescent. PLoS One 2017 Jan 18;12(1):e0167821.
(50) Fayaz F, Sarbarzeh MA, Talebi R, Azadi A. Genetic Diversity and Molecular Characterization
of Iranian Durum Wheat Landraces (Triticum turgidum durum (Desf.) Husn.) Using DArT
Markers. Biochem Genet 2018:1-19.
(51) Mengistu DK, Kidane YG, Catellani M, Frascaroli E, Fadda C, Pè ME, et al. High‐density
molecular characterization and association mapping in Ethiopian durum wheat landraces
reveals high diversity and potential for wheat breeding. Plant biotechnology journal
2016;14(9):1800-1812.
(52) Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger AE, Warburton ML.
Genetic diversity and relationships of wheat landraces from Oman investigated with
SSR markers. Genet Resour Crop Evol 2006;53(7):1351-1360.
(53) López-Arias M, Grau-Corbí JM. Metales pesados, materia orgánica y otros parámetros
de la capa superficial de los suelos agrícolas y de pastos de la España peninsular.
II. Resultados globales.INIA, MMA, MEC, MAPA.Madrid.[In Spanish] 2005.
(54) Rodriguez-Quijano M, Vazquez JF, Carrillo JM. Variation of high molecular weight
glutenin subunits in Spanish landraces of Triticum aestivum ssp. vulgare and ssp.
spelta. Journal of Genetics & Breeding 1990;44(2):121-126.
(55) Effects of HMW glutenin subunits on some quality parameters of Portuguese landraces
of Triticum aestivum ssp. vulgare. Wheat gluten. Proceedings of the 7th International
Workshop Gluten 2000, Bristol, UK, 2-6 April 2000: Royal Society of Chemistry; 2000.
(56) Giraldo P, Rodriguez-Quijano M, Simon C, Vázquez JF, Carrillo JM. Allelic variation
in HMW glutenins in Spanish wheat landraces and their relationship with bread quality.
Spanish Journal of Agricultural Research 2010;8(4):1012-1023.
(57) Iqbal M, Navabi A, Yang R, Salmon DF, Spaner D. The effect of vernalization genes
on earliness and related agronomic traits of spring wheat in northern growing regions.
Crop Sci 2007;47(3):1031-1039.
(58) Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide
comparative diversity uncovers multiple targets of selection for improvement in hexaploid
wheat landraces and cultivars. Proceedings of the national academy of sciences 2013;110(20):8057-8062.
(59) Muller T, Schierscher-Viret B, Fossati D, Brabant C, Schori A, Keller B, et al.
Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread
wheat and spelt. Theor Appl Genet 2018 Feb;131(2):407-416.
(60) Soriano JM, Villegas D, Aranzana MJ, Garcia Del Moral, L. F., Royo C. Genetic
Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with
Their Agronomic Performance. PLoS One 2016 Aug 11;11(8):e0160983.
(61) Gadea M. Trigos españoles. : Instituto Nacional de Investigaciones Agronómicas;
1954.
(62) Andreu JP. Las innovaciones biológicas en la agricultura española antes de 1936:
el caso del trigo. Agricultura y Sociedad, 1998:163-164.
(63) Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, et al. Exploiting
genetic diversity from landraces in wheat breeding for adaptation to climate change.
J Exp Bot 2015;66(12):3477-3486.
(64) Nazco R, Villegas D, Ammar K, Peña RJ, Moragues M, Royo C. Can Mediterranean
durum wheat landraces contribute to improved grain quality attributes in modern cultivars?
Euphytica 2012;185(1):1-17.
(65) Vázquez JF, Chacón EA, Carrillo JM, Benavente E. Grain mineral density of bread
and durum wheat landraces from geochemically diverse native soils. Crop and Pasture
Science 2018;69(4):335-346.
(66) Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, et al. Resequencing 50 accessions of
cultivated and wild rice yields markers for identifying agronomically important genes.
Nat Biotechnol 2012;30(1):105.
(67) Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional
cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy
of Sciences 2003;100(10):6263-6268.
(68) Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, et al. Detection
of QTLs for heading time and photoperiod response in wheat using a doubled-haploid
population. Genome 2000;43(3):487-494.
(69) Bread wheat (Triticum aestivum L.) core collection based in Spanish landraces. Proceedings 8th International wheat conference; Junio 2010; : Dzyubenko NI; 2010.
(70) Doyle JJ, Doyle JL, Hortoriun LB. ISOLATION OE PLANT DNA FROM FRESH TISSUE. 1990.
(71) Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. Diversity arrays
technology: a generic genome profiling technology on open platforms. : Springer; 2012.
p. 67-89.
(72) Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D. Molecular characterization of
vernalization and response genes in bread wheat from the Yellow and Huai Valley of
China. BMC plant biology 2013;13(1):199.
(73) Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH. Allelic variation at
the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars
and their association with growth habit. Crop Sci 2008;48(2):458-470.
(74) McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R. Catalogue
of gene symbols for wheat. Wheat Information Service 2003;97:27-37.
(75) R Core Team. R: A language and environment for statistical computing. 2014.
(76) Rosenberg NA. DISTRUCT: a program for the graphical display of population structure.
Molecular Ecology Notes 2004;4(1):137-138.
(77) Gruber B, Unmack PJ, Berry OF, Georges A. dartr: An r package to facilitate analysis
of SNP data generated from reduced representation genome sequencing. Molecular Ecology
Resources 2018;18(3):691-699.
(78) Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the
National Academy of Sciences 1973;70(12):3321.
(79) Goudet J. Hierfstat, a package for R to compute and test hierarchical F‐statistics.
Molecular Ecology Notes 2005;5(1):184-186.
(80) Jost L. GST and its relatives do not measure differentiation. Mol Ecol 2008;17(18):4015-4026.
(81) Weir BS, Cockerham CC. Estimating F‐statistics for the analysis of population
structure. Evolution 1984;38(6):1358-1370.
(82) Pembleton LW, Pembleton ML. Package ‘StAMPP’. 2017.