(1) Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 2014;345(6194):1250092.
(2) Leng P, Lübberstedt T, Xu M. Genomics-assisted breeding–a revolutionary strategy for crop improvement. J Integr Agric 2017;16(12):2674-2685.
(3) Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 2004;270(5):371-377.
(4) Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018;361(6403):eaar7191.
(5) Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 2019;51(5):885.
(6) Rasheed A, Xia X. From markers to genome-based breeding in wheat. Theor Appl Genet 2019;132(3):767-784.
(7) Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 2007;24(7):1506-1517.
(8) Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, et al. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 2005;110(5):859-864.
(9) Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 2015;66(12):3477-3486.
(10) Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T, et al. Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS One 2015;10(7):e0132112.
(11) Idrees M, Irshad M. Molecular markers in plants for analysis of genetic diversity: a review. European academic research 2014;2(1):1513-1540.
(12) Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int;2015.
(13) Khan MK, Pandey A, Choudhary S, Hakki EE, Akkaya MS, Thomas G. From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis. Genet Resour Crop Evol 2014;61(5):1001-1032.
(14) Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant biotechnol J 2014;12(6):787-796.
(15) Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 2011;6(5):e19379.
(16) Holtz Y, Ardisson M, Ranwez V, Besnard A, Leroy P, Poux G, et al. Genotyping by sequencing using specific allelic capture to build a high-density genetic map of durum wheat. PloS One 2016;11(5):e0154609.
(17) Cruz VMV, Kilian A, Dierig DA. Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop lesquerella and related species. PLoS One 2013;8:e64062
(18) Valdisser PA, Pereira WJ, Almeida Filho JE, Müller BS, Coelho GR, de Menezes IP, et al. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 2017;18(1):423.
(19) Yang X, Ren R, Ray R, Xu J, Li P, Zhang M, et al. Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Plant Genetic Resources 2016;14(3):226-233.
(20) Baloch FS, Alsaleh A, Shahid MQ, Çiftçi V, Sáenz de Miera L, Aasim M, et al. A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PloS One 2017;12(1):e0167821.
(21) Robbana C, Kehel Z, Sansaloni C, Bassi F, Amri A. Genome-Wide genetic diversity and population structure of tunisian durum wheat landraces based on DArTseq technology. Int J Mol Sci 2019;20(6):1352.
(22) Edet OU, Gorafi YS, Nasuda S, Tsujimoto H. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep 2018;8.
(23) Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 2017;121(4):603-616.
(24) Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant methods 2013;9(1):29.
(25) Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, et al. An Arabidopsis example of association mapping in structured samples. PLoS Genetics 2007;3(1):e4.
(26) Pfluger LA, Martin LM, Alvarez JB. Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theor Appl Genet 2001;102(5):767-772.
(27) Ruiz M, Giraldo P, Royo C, Villegas D, Aranzana MJ, Carrillo JM. Diversity and genetic structure of a collection of Spanish durum wheat landraces. Crop Sci 2012;52(5):2262-2275.
(28) Aguiriano E, Ruiz M, Fité R, Carrillo JM. Analysis of genetic variability in a sample of the durum wheat (Triticum durum Desf.) Spanish collection based on gliadin markers. Genet Resour Crop Evol 2006;53(8):1543-1552.
(29) Moragues M, Moralejo M, Sorrells ME, Royo C. Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites. Genet Resour Crop Evol 2007;54(5):1133-1144.
(30) Kilian B, Graner A. NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 2012;11(1):38-50.
(31) Heslot N, Rutkoski J, Poland J, Jannink JL, Sorrells ME. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PloS One 2013 September 05;8(9):e74612.
(32) Manickavelu A, Jighly A, Ban T. Molecular evaluation of orphan Afghan common wheat (Triticum aestivum L.) landraces collected by Dr. Kihara using single nucleotide polymorphic markers. BMC Plant Biology 2014;14(1):320.
(33) Dvorak J, Luo M, Yang Z, Zhang H. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 1998;97(4):657-670.
(34) Lagudah ES, Appels R, Brown A, McNeil D. The molecular–genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 1991;34(3):375-386.
(35) Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, et al. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 2004;168(2):701-712.
(36) Miftahudin KR, Ma X, Mahmoud AA, Layton J, Milla MR, Chikmawati T, et al. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 2004;168(2):651.
(37) Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 1995;91(2):282-288.
(38) Cubizolles N, Rey E, Choulet F, Rimbert H, Laugier C, Balfourier F, et al. Exploiting the repetitive fraction of the wheat genome for high-throughput single-nucleotide polymorphism discovery and genotyping. The plant genome 2016;9(1).
(39) Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, et al. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front Plant Sci 2017;8:1277.
(40) Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, et al. High throughput SNP discovery and genotyping in hexaploid wheat. PloS One 2018;13(1):e0186329.
(41) Novoselovic D, Bentley AR, Simek R, Dvojkovic K, Sorrells ME, Gosman N, et al. Characterizing Croatian wheat germplasm diversity and structure in a European context by DArT markers. Frontiers in plant science 2016;7:184.
(42) Raj A, Stephens M, Pritchard JK. Variational inference of population structure in large SNP datasets. Genetics 2014:197:573-589
(43) Gadea M. Trigos españoles. Instituto Nacional de Investigaciones Agronómicas; 1954.
(44) Oliveira HR, Campana MG, Jones H, Hunt HV, Leigh F, Redhouse DI, et al. Tetraploid wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity. PLoS One 2012;7(5):e37063.
(45) Sahri A, Chentoufi L, Arbaoui M, Ardisson M, Belqadi L, Birouk A, et al. Towards a comprehensive characterization of durum wheat landraces in Moroccan traditional agrosystems: analysing genetic diversity in the light of geography, farmers’ taxonomy and tetraploid wheat domestication history. BMC Evo Biol 2014;14(1):264.
(46) Mac Key J. Wheat: its concept, evolution, and taxonomy. Durum Wheat Breeding: CRC Press; 2005. p. 35-94.
(47) Mac Key J. Species relationship in Triticum. Hereditas 1966;2:237-276.
(48) Basualdo J, Díaz ML, Cuppari S, Cardone S, Soresi D, Camargo GP, et al. Allelic variation and differential expression of VRN‐A1 in durum wheat genotypes varying in the vernalization response. Plant Breed 2015;134(5):520-528.
(49) Konopatskaia I, Vavilova V, Kondratenko EY, Blinov A, Goncharov NP. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biology 2016;16(3):244.
(50) Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 2004 March 12;303(5664):1640-1644.
(51) Shcherban A, Emtseva M, Efremova T. Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions. Cereal Res Commun 2012;40(3):351-361.
(52) Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, Von Zitzewitz J, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 2005;273(1):54-65.
(53) Chu CG, Tan CT, Yu GT, Zhong S, Xu SS, Yan L. A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.) G3 2011 Dec;1(7):637-645.
(54) Fayaz F, Sarbarzeh MA, Talebi R, Azadi A. Genetic diversity and molecular characterization of iranian durum wheat landraces (Triticum turgidum durum (Desf.) Husn.) Using DArT Markers. Biochem Genet 2018:1-19.
(55) Mengistu DK, Kidane YG, Catellani M, Frascaroli E, Fadda C, Pé ME, et al. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol J 2016;14(9):1800-1812.
(56) Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger AE, Warburton ML. Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genet Resour Crop Evol 2006;53(7):1351-1360.
(57) Talbert LE, Smith LY, Blake NK. More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 1998;41(3):402-407.
(58) López-Arias M, Grau-Corbí JM. Metales pesados, materia orgánica y otros parámetros de la capa superficial de los suelos agrícolas y de pastos de la España peninsular. II. Resultados globales.INIA, MMA, MEC, MAPA. Madrid. 2005.
(59) Rodriguez-Quijano M, Vazquez JF, Carrillo JM. Variation of high molecular weight glutenin subunits in Spanish landraces of Triticum aestivum ssp. vulgare and ssp. spelta. Journal of Genetics & Breeding 1990;44(2):121-126.
(60) Giraldo P, Rodriguez-Quijano M, Simon C, Vázquez JF, Carrillo JM. Allelic variation in HMW glutenins in Spanish wheat landraces and their relationship with bread quality. Span J Agric Res 2010;8(4):1012-1023.
(61) Iqbal M, Navabi A, Yang R, Salmon DF, Spaner D. The effect of vernalization genes on earliness and related agronomic traits of spring wheat in northern growing regions. Crop Sci 2007;47(3):1031-1039.
(62) Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 2013;110(20):8057-8062.
(63) Muller T, Schierscher-Viret B, Fossati D, Brabant C, Schori A, Keller B, et al. Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt. Theor Appl Genet 2018 Feb;131(2):407-416.
(64) Brambilla V, Gomez-Ariza J, Cerise M, Fornara F. The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front Plant Sci. 2017;8:665.
(65) Soriano JM, Villegas D, Aranzana MJ, Garcia Del Moral, L. F., Royo C. Genetic structure of modern durum wheat cultivars and mediterranean landraces matches with their agronomic performance. PLoS One 2016 Aug 11;11(8):e0160983.
(66) Andreu JP. Las innovaciones biológicas en la agricultura española antes de 1936: el caso del trigo. Agricultura y Sociedad, 1998:163-164.
(67) Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 2012;30(1):105.
(68) Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 2003;100(10):6263-6268.
(69) Hedden P. The genes of the Green Revolution. Trends Genet. 2003;19(1):5-9.
(70) Bread wheat (Triticum aestivum L.) core collection based in Spanish landraces. Proceedings 8th International wheat conference; St. Petersburg, Russia. NI Vavilov Research Institute of Plant Industry 2010.
(71) Doyle JJ, Doyle JL, Hortoriun LB. Isolation of plant DNA from fresh tissue. Focus 1990;12:13-15.
(72) Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol. 2012;888:67-89
(73) Sansaloni C, Petrol C, Laccoud D, Carling J, Deterinh F, Grattapaglia D, Kilian A. Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC proceedings: BioMed Central; 2011.
(74) Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol 2013;13(1):199.
(75) Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 2008;48(2):458-470.
(76) McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R. Catalogue of gene symbols for wheat. Wheat Information Service 2013;97:27-37.
(77) R Core Team. R: A language and environment for statistical computing. 2014.
(78) Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 2004;4(1):137-138.
(79) Gruber B, Unmack PJ, Berry OF, Georges A. dartR: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources 2018;18(3):691-699.
(80) Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 1973;70(12):3321.
(81) Goudet J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes 2005;5(1):184-186.
(82) Jost L. GST and its relatives do not measure differentiation. Mol Ecol 2008;17(18):4015-4026.
(83) Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984;38(6):1358-1370.
(84) Pembleton LW, Pembleton ML. Package 'StAMP'. 2017.